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Synthesmng Knowledge A Cluster Analys1s
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Abstract—An event-covering method [1] for synthesizing knowledge
gathered from empirical observations is presented. Based on the detection
of stafistically significant events, knowledge is synthésized through the use
of a special clustering algorithm, This algorithm, employing a probabilistic
information measure and a subsidiary distance, is capable of clustering
ordered and unordered discrete-valued data that are subject to noise -
perturbation. It consists of two phases: cluster initiation and cluster refine-
ment, During cluster initiation, an analysis of the nearest-neighbor distance
distribution is performed to select a criterion for merging samples into
clusters. During cluster refinement, the samples are regrouped using the
event-cavering method, which selects subsets of statistically relevant.events,
For performance evaluation, we tested the algorithm using both simulated
data and a set of radiological data collected from normal subjects and spina
bifida patients.

L INTRODUCTION

NOWLEDGE achuSlll(}l’l isa dlfflcult yet 1mportant

process in the construction of knowledge-based sys-
tems. ‘In ‘'most of the existing knowledge acquisition
schemes, knowledge is either put into the system by experts
or acquired through inductive learning or automatic deduc-
tion [2}, [3]. For example, the acquisition of knowledge by.. .
learning from examples has been siccessfully applied to
the concept formation of toy blocks [4]. In this paper we
propose an approach whereby knowledge can be synthe-
sized by extracting from empirical observations the statisti-
cal or deterministic patterns inherent in the data. The
newly developed method is capable of synthesizing a large
amount of data into statistical interdependence patterns

~ through an cvent -covering [1] and data-clustering lech-

nique.

Clustering and classification methods have been con-
stantly used in exploring new ways for constructing auto-
mated data analysis systems [1}, [2], [5]-[15]. These meth-
ods can be used to detect patterns for concept acquisition,
partitioning, and classification. The rationale is that if new
patterns can be detected with high reliability, valuable
additional insights on the data may be acquired. We have
used an event-covering method to detect statistically sig-
nificant amino acid groups in cytochrome ¢ biomolecules
and have used the information to classify taxonomical
patterns in living organisms [1}. We believe that our pro-
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posed methodology can play an important role in extend-
ing some of the existing knowledge-based systems for
decision-support applications.

Among the clustering algorithms, numerical taxonomy
methods, such as the construction of the dendogram [9],
cluster data according to a distance or similarity measure.
These methods normally apply to data of the continugus
type and usually do not perform very well on discrete-
valued data due to the lack of a sensitive similarity mea-
sure. The conceptual clustering methods [6] group discrete-
valued data using a set of predefined criteria. But problems
arise when a set of relevant and reliable criteria is not

easily available, and when the given set of observed datais
-very large. Other significant attempts include the decision- -~ -
“directed clustering algorithm {11} and DECA [12], both of
-which use 'a probability measure and the subsidiary

Hamming distance. These methods are designed to cluster
both ordered and unordered discrete-valued data. DECA
uses Hamming distance in initiating clusters and a second-

order probability estimate to_group samplcs into clusters i ..
based on the Bayes’ dec1s1on rule. Tt requires no assumed -

parameters, However, it too has some drawbacks. Accord-

ing to DECA, data that are closer to the mode in the

probability-distance (P-D) space are grouped to form an
initial cluster. Since the distances from the mode of the
samples are all projected onto one axis in the P-D space, it
may fail to separate the overlapping clusters in that space.

" Kiowledge involves the “ability to select relevant dction

or information for a particular goal [16]. Thus, to a certain
extent, fealure extraction in pattern recognition can be
considered as a form of knowledge acquisition. For dis-
crete-valued data, even though relevant features can be
identified using techniques in [5], [7], [8], [17], only limited
effort has been made in developing techniques capable of
discriminating between relevant and irrelevant events of a
single variable or a joint variable. Though feature variables
are selected for clustering or classification purposes, irrele-
vant events associated with these variables can still affect
the effectiveness of an analysis. In this paper we will use an
event-covering method to select useful statistical informa-
tion (at the event representation level) for cluster analysis
on discrete-valued data. By event-covering, we mean cover-
ing or selecting statistically significant events that are a
subset of outcomes of the variable, disregarding whether or
not the variable as a whole is statistically significant. This
new approach eliminates the effect of “noise” at the event
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representation level. And when subsequent pattern analysis
is performed; only this subset of relevant events is used.
With the event-covering method, we introduce a new
cluster analysis algorithm that utilizes only significant sta-
tistical information in the data. It consists of a cluster
initiation process based on an analysis of the nearest-
neighbor distribution, followed by a regrouping process
~ using the event-covering method. This algorithm can be
*extended to cluster incomplete multivariate data with mixed
discrete and continuous values [18]. The extended work -
will be reported in a separate paper. :

In the next section, we discuss how our approach can be
used to acquire knowledge. Since the detection of statistical
.interdependency is a form of useful knowledge, inherent

“clusters extracted based on . these relationships can be
viewed as a synthesis of statistical knowledge. Section III
introduces our cluster initiation method based on the dis-
tance measure. Section IV presents our cluster regrouping
algorithm and the event-covering method. The event-cover-
ing—method_is..a. statistical _method _that can detect

significant interdependent relationships at the event-repre-
sentation level. This is used to select relevant events for
clustering. In Section V, experiments using simulated data
are used to evaluate the method in detail. Then in Section
VI, we apply this method to real-life data and show that
important medical knowledge can be extracted using our
4method : S :

Il SYNTHESIS OF STATISTICAL KNOWLEDGB

Wlth our approach, knowledge is acquired by means of
systematlc cbservations rather than through deductions
. from a body of theory.: However, through observations
-alone, some relevant knowledge is not immediately ap-
parent since many useful interdependent relationships in
~ the data are unknown. For example, in the diagnosis of a
-disease by observing the symptoms of a single patient, we
may not fully comprehend the significance of some di-
-agnostic features if previous knowledge of the relationships
between the symptoms and the disease is unavailable. In
this paper we propose a method to detect the interdepen-
dence relationships on the event level and use this informa-
tion as “primitive” knowledge for further analysis.

Since this knowledge of event interdependence usually
cannot be acquired by a single observation but can be
synthesized through repeated observations, we extract this
information based on a given set of observed samples.
When the observed events are tabulated as according fo
their frequency of occurrence,.such as in the construction
of a contingency table, the frequency will reflect their
inherent interdependent relationship. However, some of
‘these associations indicated by the frequency of occurrence
are just random associations, and do not necessarily indi-
cate any of their true relationships. Hence, associations for
which' the frequency of occurrence significantly deviates
- from the random situations are most important. Using
statistical tests on ordered and unordered discrete-valued
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data, we can ascertain this 1ndependent relatlonshlp for
- further analysis. '

When the statistical mterdependent relatlonshlps are de-
termined, we can gain further knowledge by observing the
clustering patterns that take into consideration "these
acquired interdependent relattonships. When the clustering
subgroups are formed, the significance of the events within
the subgroups can be analyzed. Pattemns of the clustering
subgroups are thus knowledge-synthesized. Further, the
data have a structure described by their event interdepen-
dent relationships.

With these in mind, we can now introduce our cluster
analysis algorithm and the event-covering method. But
first, we shall describe how a cluster can be initiated usmg
analysis on the dlstance between observaﬂons '

1L CLUSTER INI‘I‘IATION

A. Relationship Between Nearest- Netghbor Distance
Dlsmbutxon and_Cluster._ Characteristics '

The cluster initiation process involves the analysis of the
nearest-neighbor distance distribution on a subset of sam-
ples, the selection of which is based on a mean probability
criterion, To describe the cluster initiation process, a few
definitions and notations must first be introduced. _

Let X = (X, X3,..., X,) be arandom n-tuple of related

vanables and; x = (xl, XiiersnXn ). beits, reahzatlon .Then

a sample can be represented as X. We call' x a pattern

" n-tuple since it 1s anatogous to the pattern vector. in the

Euclidean space.) Let § be an ensemble of observed sam-
ples represented as n-tuples. - :

. Definition 1: The nearest—nelghbor dlstance of a sample
x, with respect to a set of samples S is defmed as;.

D(x,-, §) = min d(x,, x,)
. xJES : :
X;# X
where d(x,, x;) is a distance measure.. - .

Definition 2 Let C be a set of samples forn-ung a single
cluster. We define the maximum within-cluster nearest-
neighbor distance as

D* = max D(x,, C)

xeC

D} reflects an mterestmg characteristic of the cluster con-
figuration; that is, the smaller the DX, the denser the
cluster: If the clusters in S are unknown we do not know
the value of D¥*. However, we can estimate D* with the

following analysns (Fig. 1). The estimation will depend on

- our conception of a cluster, which is as follows.

« If all the clusters C; in an ensemble S have the same
degree of denseness, then D is the same for all C; in
S and also the same as the maximum of all the
D{x, §) values (Cases 1 and 2 in Fig. 1). .

YFor data represented as a siring, a lree or a graph, the n-tuple
representation can also bBe used if the data can be mapped into a
parncu]ar ordenng scheme [10], [14], [15] :




IZING KNOWLEDGE - , .| .

o _aéé.i FIE

Clusker ] Cluster 2
* * * *
* * * - * *
* * * 3
Case 2 :
Cluster 1 Cluster 2 o
xR * ok
*  akk A kKR *
& R & x ® &
*
Case 3 :
Cluster 1 Cluster 2
* Qutlier
® * * *
* & * * * *
4\ * - * *
i
Fig. 1.

e ae® 1T the clusters in .S have dlfferent dcgrecs of dense-----
' ness, then when all D(x, ) values are projected onto

a teal axis, distinct groups will result. An isolated
sample x, which does not belong to any cluster (i.e. an

“outlier”), will have a relatively large D(x, §) value.

Thus one way to characterize the denseness of all
distinet clusters is by the maximum value of D(x, §)
for all x in S after_the large values associated with

freg

Rclationshlp between nearest-nelghbor distance dlstnbuuon and cluster characteristics.

: Samples.withiﬁ clusters
are fairly evenly apart.

freq.

Rearest-neighbor distance

Ereq Samples within clusters
‘are not evenly apart, but
they have similar densenass

and clusters are distinct.

Nearest-neighbar distance

Outlier is separated by a
wide qap 1f clustera are
distinct.

Fa¥
Nearest-neighbor distance

known to be the- best secornd order approxlmatlon of the*
high-order probablhty distribution [19]. Then correspond- -
ing to each x in the ensemble, a probability P(x) can be
.esumated :

In general, it is more likely for samples of relatwely hlgh
probabillty to form clusters. By introducing the mean
probability as below, samples can be divided into two
subsets:_those_above the mean and those_below. Samples..

isolated samples are removed (Case 3 in Fig. 1). We
represent this vahie as D*,

Using a mean probability criterion to select a similar
subset of samples, the isolated samples can be easily
detected by observing the wide gaps in the nearest-neigh-
bor distance space. The probability distribution from which
the criterion is derived for the samples can be estimated
using a second-order probability estimation [19], [20]. An
estimation of P(x), known as the dependence tree product
approximation {19), can be expressed as

A .
P(x)= ,HIP(x,,,ﬂxm‘_{,.,). 0 <k(j)<j
7=

where (1) the index set {mv my,-- -, m,} 18 a permutation
of the integer set {1,2,...,n}, (2) the_ ordered pairs
{Xpj» X, } 8r€ 50 chosen that they represent the set of
branches of a spanning tree defined on X with their
summed mutual information maximized, and (3)

P(x,, |%y,) = P(x,,). The probability defined above is

above the mean will be considered first for cluster 1n1—
tiation.
Definition 3: Let §={x}. The mean probabtlfty is
defmed as
): P (x)/lS I

xES

where || is the number of samples in .

B. Cluster Initiation Algorithm

When distance is considered for cluster initiation, we can
use the following criteria in assigning a sample x to a
cluster.

S e e e

1) If there exists more than one cluster, say {C,lk =
. }, such that D(x, C,) < D* for all k, then all . ;
these clusters together with x can be merged. o
2} If there exists exactly one cluster C,, such that |
D{x, C,) < D*, then x can be grouped into C,. - ]
3 If D(x,C,) > D* for all clusters C,, then x may not =~ I
belong to any cluster.




“10) Go 10 4 until § = 0,

~ing. Let C = {a,, a,,,.
possible clusters to Wthh x can be assigned. Initially, C is

We use the mean probability to control this merging
process at each iteration in the algonthm outlined below:

1) Calculate P{x} for all x in .

2y Set K=10; 1:=0.

3) Let ¢, be a dummy subgroup representing samples

of unknown cluster. Initially C, is empty. :

4) If |St> T then P’:=p_ else P'= 0. (T is a size
. threshold indicating the smallest size of a cluster.?)

53) List all x € S in a table L, if P(x) > P’

6) Calculate D(x, L) for all x in L.

7y D* := max D(x, L) and assume that x is not iso-

XEL

lated.’
8) For all x in L do the following.
a) Find x such that P(x) is the highest.
by If D(x,C, ) < D* for more than one cluster,
say Ck,» i= 1,2,..., then do
i) if one of the cluster, say Ck,, is found at a
previous iteration, i.e. k; < K, then C; =

U {x};
-ii) else all the clusters; Ck,, i =1,2,...5--are-
merged. '
¢} If D(x,C,) < D* for exactly one cluster C,,
then C, :={x} U C,.

d) If D(x,C,) > D* for all clusters C,, k=
1,2,...,¢, then r+=¢t + 1and C, = {x}.
e) Remove x from L and S
9 K=2 e B R B s

11) For £ = 1 to ¢ do the following.
If |Gyl < T, ther Gy = G U (.
1V, CLUSTER REFIN"EMENT

The cluster regrouping process uses a decision ruIe based

‘on statistical significant events obtained through’event-

covering method. In this section, we describe how this can
be achieved.

A. -Event-Covering and Covered-Subset

The event-covering method can be conceptualized as a
mapping which maps events onto a binary decision state
which indicates whether or not they are relevant for cluster-
+» @} be the set of labels for all

Since second-order statistics are required in the probability estimation,
the minimum sample size for a reliable estimation can be assumed to be

T= AX max L2
j=l.

where the constant A may be taken as three for liberal estimation and L "

"is the number of possible events for variable X; in X. Since the sample

size is small for our experiments, we choose a smaller value for 7 based

on some initial irials of the experiments. We also perform experiment

using simulated data to determine the sensitivity of the choice of '[hlS
value,

ATo avoid including distance calcu[auon of outlier, we use a simple
mcthod which assigns D* ‘the maximum value of all nearest-neighbor
distances in L provided there is a sample in L having a nearest-neighbor
distance value of D* — 1 (with the distance values rounded 1o the nearest

: mtegervalue) _ )

purpose we defme a mappmg
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the set of cluster labels found after the initiation process.
Since each x in S is a realization of X = (X, X,,..., X)) .
and also associates with a value in C, C can be considered
as an additional variable associated with X. The informa-
tion of significant events assoctated with the cluster config-
uration is obtained by analyzing the frequency of events
observed in the ensemble through the use of a contingency
table. For X, in X, we can form a contingency table
between X, and C. Let a,, and a,; be possible outcomes -
of X and C, respectively, and let obs(a,,) and obs(a ;) be
the respective marginal frequencies of their observed occur-
rences. The expected relative frequency of (a,,, a.) is
expressed as

obs(a,,) X obs(a,,)
11 -

Let obs(a,,, a;) represent the actual observed frequency
of (a,,, a,;) in S. The expression

explay,, acj) =

’ . 2

j=1 £ exp(ak.ﬂacj

summing over the outcomes of C in the contingency table,
possesses an asymptotic chi-square property with (¢ — 1)
degrees-of-freedom. D can then be used in a criterion for
testing the statistical dependency between a,, and C at a
presumed significant level as descnbed below For thlS

2 =
1 (az,. C) = {1_, if D> x (q 1)
_ - 0, otherwise .
where x2(g — 1) is the tabulated chi-square value, The -
subset of selected events of X, which has statistical inter-
dependency wnh C,is defmed as .

Ef= [ak3|hk(“m»c) }

We call Ef the covered event subset of X, with respect to
C. Likewise, the covered event subset Ef of C with respect
to X, can be defined.

B. Selection of Significant f_/’arfab!es using Event-Covering

 After finding the covered event subsets of Ef and Ef
between a variable-pair (C, X)), information measures can
be used to detect the statistical pattern of these subsets.
These information measures are based on an incomplete
probability scheme [21) defined over the subset of signifi-
-cant events in the outcome space of the variables. Let X}
and C* represent the restricted variables of the covered
event subsets EX and Ef respectively. An interdependence
redundancy measure [17] between X{ and C" can be
defined as

where I{ Xg, C*) is the expected mutual information and
H(X{,C*) is the Shannon’s entropy defined respectively
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on X : and cE Malhematlcally, they are expressed as

; (acw aks)
I X CF) wsidasis ) p(awa s)log«-—-—-—
( : ) a.,EEF ai, €Ef : : ( ,_.,,)P(ah)
and
H(X;:',Ck) by E Z P(am, a“)log})(acw ah)_

a. E-Ek a € Ef

The 1nterdependencc redundancy measure has a Chl -square
distribution [17]:

Xir
2ISIH(X;, C*)
where df is the corresponding degree of freedom having the
value (|EX| = 1)(|E{ = 1). A ch1~square test is then used

to select interdependent variables in X at a presumed
significant level.

X Gl

C. Second-Order Event Selection usin ¢ Event-Covering

For a data set with low-noise level, analysis based on the
‘marginal probability distribution of the first-order events
(events of a single variable) may be adequate. However, for
data with higher noise level, the second-order probability
distribution, defined on the joint events corresponding to a
variable pair, may be needed. We call these joint events of
a variable-pair the second-order events. The second-order
events are of particular importance because 1) rehable
- probablhty estimates can be obtained in an ensemble of a
reasonable size and 2) random noise which may affect the
outcome of one variable is less likely to simultaneously
affect the joint outcome of two variables. Thus during the
clustering process, it is desirable that only second-order
events are included.

When selecting joint events for clustering purposes, those

“reflecting inferdependency usually contain more informa-

tion. In other words, their observed frequency should de-
viate significantly from the expected marginal relative
frequency derived from its first-order event. Thus the sec-
ond-order event corresponding to (X, X;) must be in
E; x E}, if they contain additional information as com-
parcd to the marginal events. Hence, we accept only these
second-order events for further testing while the others are
disregarded. Since only a subset of second-order events is
now involved, the number of events for analysas during the
regrouping phase is substantially reduced. -

Now, a new variable corresponding to a variable-pair
(X,, X)) in X can be used to associate with the second-order
events in the outcome space of E; X EX. For samples
represented as X = (X, X,,..., X,), we can construct a
new representation X, = (X, X,,..., Xy). X, consists of
all the variables in X as well as those rcprescntmg all the
possible combination of the variable- -pairs. Thus, N has
the value n 4+ n(n — 1)/2. We call X, the extended tuple
of X. We can then extend the selection of significant events
and variables for clustering as described before to X,.

if .

D Cluster Regroupmg A:'gonthm

Since not all the components in a sample are slaustlc, y
relevant for clustering purposes, components _(fust—_.._an’d
second-order events) of a sample x are chosen based on the
subsets of events selected in the event-covering process. . |
The component of a sample is selected if it has significant
interdependency with the hypothesized cluster label. Let -
x'(a.;) = {x{, x5,..., x,} (m > 0) be the set of selected
components of x, in estimating the cluster label as .a,
The event x, in the set x’(a,,) is chosen if the followmg
conditions are satisfied.

1) The value of x, is not a second-order event that is .
disregarded.

2) The value of x; is in Ef and a

3) R(X{, C*) is significant.

;is in EX,

The cluster regrouping process uses an information mea-
sure to regroup data iteratively. In [1] we have proposed an
information measure called normalized surprisal (NS) to
indicate significant joint information. Using this measure,
the information conditioned by an observed event x, is
weighted according to R( Xf, C), their measure of interde-
pendency with the cluster label variable. Therefore, the
higher the mterdependency of a condmonmg event, the
more relevant the event is. NS measures the joint informa-
tion of a hypothesized value based on the selected set of
significant components. It is defined as

1(a,|x’ (a))

NS(alx(a;))) = =—m
| Erten)

Y R(Xg,C¥)

where I(ax'(a.;)) is the summation of the weightéd i
conditional information defined on the incomplete prob-
ability distribution scheme [1] as

 1(aglx(a)

7 Z R inck I quxk ..
k= !! |
- -ka) = ;.
= Z R(Xg,C*)| —log el o et il
k= * Z P(aculxk). R i} it
4 S B .
P(aglx;) > 0.
(-..EE.‘ ! '
5 y : : .: .|.I
In rendering a meaningful calculation in the above |
incomplete probability scheme formulation, x, is selected il

2 P

-k
d.,E€E;

a.l|x,)>T

NS can be used in a decision rule as given below in the
regrouping process. Let C = {ad,

I
where T > 0 is a size threshold for meaningful estimation. | |1
1

l

|

,da.,) be the set - e
to x, if Nl

Aigse--

of possible cluster labels. We assign a,
NS(a,, J)) = NS W)
(a.lx(a,,)) min, (ﬂculx (a))

|

{

|
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If no component is selected with respect to all hypothe-
sized cluster labels, or if there are more than one label
associated with the same minimum NS, then the sample is
assigned a dummy label, indicating that the estimated
cluster label is still uncertain. Also, zero probability may be
encountered in the probability estimation, an unbiased
probability estimate based on [22] is adopted.

In the regrouping algorithm, the cluster label for each
sample is estimated iteratively until a stable set of label
assignments is attained. The cluster regrouping algorithm is
outlined as follows,

1) Construct x, from x in the ensemble.
2) Identify {Ef}, {E}) and compute the finite prob-
ability schemes based on the current cluster labels C.
3) Set number_of change = 0.
4) For each x, in the ensemble do the following
a) If esumatmn is uncertain, then assign the
dummy label a;
b] Otherwise assign x, to cluster a,; if

NS ) = i NS(a e ()
¢)ifa,;+ prevmuq cluster_label then do the fol-
Ic-wmg,
i) Set number_of_change
= number_of change +1.
ii) Update cluster label for x,.

5ok 5). If number_of_change > 0 then go to 2; else stop.

¥ FXPERIMEN‘FS UsING SIMULATED DATA

Fnr comparing and evaluating the algorithm, four sets of
simulated data taken form [12] are used. They are labeled
El, .E2, E3, and E4 and have the form X =
5} The pussclb]e discrete values taken up by
the variables are from the set {4, B, C}. Thus there are
nine possible second-order events. To test the algorithm’s
sensitivity to cluster size, the sample sizes of the subgroups
in E£2 and E4 are made uneven and all the subgroups in
E3 are made specially small. The sample: sizes of the
subgroups in the four data sets are tabulated in Table 1.

Each of the data sets are stochastically generated tuples
consisting of three subgroups. The subgroups in E1 and
E3 are generated using the same probability distribution
scheme; whereas the subgroups in E, and E, are gener-
ated using different probability distribution scheme. As an
illustration, let us look at the data set E1. E1 is generated
according to the following probability distribution scheme:

- P(X) = P(X))P(X,) X)) P(X,]X,)

LIy PO X)) =2,3,.

P(X X)) P(X|X,) P( Xl X,).

When generating the value for the variables in the ensem-
ble, first, 40 A’s, 40 B's and 40 C’s are generated for X
Then we predetermine a fixed value for the joint probabil-
.4, 6and generate the outcome for

the rest of the variables.

The experiment is to detect the aubgruupq and their

membership. We use the unnormalized Hamming distance:

TABLE 1
CLUSTER SIZE FOR THE SIMULATED DATA SETS
Cluster 1 Cluster 2 . Cluster 3 Total
El 40 40 40 120
E2 o0 T 40 200
E3 16 & 16 48
E4 &0 40 20 120
TABLE II
CLUSTERING RESULT FOR THE SIMULATED DATA SETS'
Data Proposed Method
sets Initiation Regrouping DECA
Fl 100,71 /19 120,/0,/0 112/ 6,0
E2 149,73 748 200,040 184,16 /0
E3 35/0/13 48,00 46,/ 2/0
E4 B2,/4,/34 120,00 92,/28/0

"The entries indicate the number of correct /incor-
rect /unknown cluster label.

TABLE [II
CLUSTERING RESULT USING DATA SETS OF DIFFERENT SizE!
Data Set
Size Initiation Regrouping
200 149,/3,/48 200,/0,/0
175 130,342 175,/0,/0
150 111,2/37 150,/0,/0
125 94/1,/30 125/0/0
1K) 18,/2,/20 100,040
I e ssadnabin 59 /412

!The entries indicate the number of m-rreclfmmr.rr:ct,r’un
knpwn cluster label.

* Cluster regrouping is also applied to small clusters detected
at the initiation phase.

.in the cluster initiation phase. Thus, the distance has
integer value ranging from zero through six. In the re-

grouping phase, a 95- -percent significance level is used in all
the chi-square tests. After several iterations, the algorithm
terminates with the cluster result.

The clustering results in both phases together with the
final result obtained from DECA [12] are tabulated in
Table II. It is noted that even in the cluster initiation
phase, the cluster members with high correct rate are
detected, though some samples still have unknown cluster
label. The sizable gmup of unknown cluster labels may be
due to the insensitivity of the Hamming distance. The final
result shows a significant improvement over the previous
studies [11]-[12] and gives a 100-percent correct rate in all
four data sets. The superiority of the information measure
using event-covering is thus obvious. The use of probability
and distance criterion for clustering discrete-valued data,
however, is better than the result obtained using the dis-
tance measure alone.

In the above experiment, we choose the value 10 for T in
the cluster initiation algorithm, The choice of this value has
two major effects on the execution of the algorithm: 1) the
determination of the smallest cluster size (step 11) and 2)
the termination of the cluster initiation process (step 4).
Although a rule of thumb has been proposed in footnote 2
to select the value of T, a smaller value can be used to
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Fig. 2. I"u:atu.rcs observed on the X-ray plates of human bladder diagnosed by a radiologist.

; .,obtaln clusters of smaller sizes if the clusters are distinct. i

To evaluate the pcrformann: sensitivity of the algorithm
over a range of T values, we apply the algorithm on all
four data sets using different T values. First, we choose T'
to be five. We find that there is no change in the result for
all four data sets. Then we choose T to be 15, We find that
for E1 and E2, which have clusters of size greater than 135,
the result remains the same as before. However, for E3 and

"~ E4, which originally have small clusters {less than'15) and

the cluster label of some of the samples remains unknown,
this criterion will cause the small clusters to be rejected. 1f
we apply the cluster regrouping to small clusters as well, we
achieve the same final result as in Table II. In brief, from
our experiment we find that the choice of this value is not
sensitive in altering the clustering result.

Next, we evaluate the effect of sample size on the
statistical stability of the cluster result, Our cluster regroup-
ing consists of the event-covering process and the decision
rule which combines the information from the significant
events. By the use of the event-covering method and the
selection of significant events, better results can be achieved
than when the complete set of outcomes is considered
without statistical screening. The event-covering method is
basically a statistical method and subject to two types of
statistical errors: type 1 error, which rejects an event even
though it is relevant for clustering and type 2 error, which
accepts an event even though it is irrelevant. Needless to
say, the more samples we have, the more reliable our
method is. Since our method combines the information

from multiple events, the et‘facl of lhc st.amuca] crrgrs ool

“committed can be minimized. - bR

However, an experiment is set up to evaluate the stabil-
ity of our method using data sets of different size. We
choose the data set E2 for this experiment since it has
uneven number of samples in the subgroups. In our experi-
ment, we attempt to show that the reduction of sample
size, to a certain degree, will not changf: the results signifi-
“cantly. From the ensemble of the original 200 samples; we "1
obtain smaller subensembles by incrementally taken out 25
samples randomly each time. The resulting five data sets
then consist of 175, 150, 125, 100, and 75 samples. The
clustering result is tabulated in Table III. It is noted that
change in the sample size of the ensemble does not de-
teriorate the overall performance of the method in both the
cluster initiation and the regrouping phase (Table I11). The
gradual decrease in the samples of unknown cluster label
during cluster initiation probably reflects the decrease in
sample size, whereas the number of incorrect cluster label
samples remains fairly stable. From this result, we have
shown statistical stability on the performance of the al-
gorithm.

VI. ExprrIMENT UsiNG CLINICAL DATA

To demonstrate the feasibility of the algorithm when
applied to real-life data with fairly high noise level, a set of
clinical data [23] is used. It consists of features diagnosed
from X-ray plates of both normal subjects and spina bifida

i
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Fig. 3. [ﬁtr%dcpcndcﬁce redundancy measures between the restricted
variables and clusler label variable. Covered event subsets of the follow-
" ing variables:

Ef = {A4,€,D}, Ef={A,C,D)}
Ef={A4.C, D), E;={A.C).
X1 : Shape

A : highly probable to be normal
B : not indicative

C : more likely ko be abnormal
D : more likely to be abnormal

X2 = Trabeculation

TR Y Indicates normal subgroup

B : not indicative

C : indicates abnormal subgroup |
D : indicates abnermal subgroup

X3 : Divert sacculat{g_g

A : highly probable to be normal
B : not indicative

C : irdicates abnormal subgroup

D : highly probable te be abnormal

Xg" outlet

A : more likely to be normal
©B 3 not indicative
C : less likely to be nornal

Fig. 4. Significance of the events (of X; through Xj) in mdncaung the
- subgroups. Events which are not in the covered event subsets are not
IﬂdlCi.'lIlVL ol' the subgmups Events are ]abcl!cd as ace:ordmg h:- Flg 2_

paticnts by a radiologist. Spina bifida is a falﬁrjiy 6f épinal
-disorders that occur when a section of spine is left exposed

by vertebral abnormalities. Seven features on X-ray plates
of the bladder are diagnosed on each sample. They are 1)

-shape of bladder, 2) presence of trabeculation, 3) divert
~ sacculation, 4) outlet (indicating filling), 5) thickness of

bladder wall, 6) presence of right reflux (i.e. reverse urine
flow to the right kidney), and 7) presence of left reflux.

‘These features are described for each X-ray plate indicat-

ing the different degrees of severity or abnormality (Fig. 2).
It happens that all the features selected have four possible

- different descriptions except for features 3 and 4, which

have only three. The data is then represented as X =
CXG X X,
When the clustering algorithm is applied, it is found that.

- the noise level of this data set is fairly high. Since the

features are rank-ordered values, Fuclidean distance mea-

- sure is used in the cluster initiation phase. After cluster
~ initiation, interdependence redundancy is calculated be-
- tween each variable in the extended tuples and the cluster

label variable. The tests indicate a low interdependency
level and that only the first four variables together with
some of their second- order vanables are significant. In

TABLE IV
CLUSTERING RESULT OF THE CLIMICAL DATA

Unique characteristics

Subgroups Size [ound in the subgroups
Normal
subgroup . 295 1) No trabeculation.
Abnormal
subgroup 139 1) Severe trabeculation,
2} Sacculation in the bladder wall.
3} Divert rellux sacculation with a
i e bell shape bladder.
subgroup 18 4) Sacculation outside of the bladder
wall with a bell shape bladder.

Total 452

TAEBLE V
ABNORMAL SUBGROUPS AND THEIR CHARACTERISTICS

Unique Characteristics

Subgroups Size Found in the Subgroups
Abnormal ;
subgroupl 116 1y Sacculation in the
e T e e _bladderwall e
1 Bacculation out of
Abnormal - the bladder wall. .
subgroupl L9 No divert sacculation,
Unknown :
subgroup 4

* Total 139

'order to 1mprc—ve thc dntance measure, we include nnl}r the

first four variables and apply cluster initiation again. When

. the cluster regrouping algorithm is applied on the extended

tuples of the four variables, a normal subgroup and an
abnormal subgroup are found. The result remains the same
when the: clusters are regrouped based on”the e.xtcndcd,
tuples of the seven variables, since the other variables are
not found to be significant. The interdependency patterns
are described for the first four significant restricted vari-
ables (Fig. 3). When the events are analyzed, a set of
unique events (first order or second order) is found in each
subgroup. The significance of the events detected by the
event-covering and the clustering process is described in
more detail in Figs, 4 and Table IV. The characteristic of
spina bifida’ having trabeculate bladder is consistent with
what has been reported in [24].

Next, the samples of the subgroups are clustered sep-
arately based on the first 4 variables. After cluster
initiation, nine abnormal subgroups and eight normal sub-
groups are identified. The abnormal subgroups have sam-
ple sizes ranging from four to 19 and the normal subgroups
naturally have a dominant one. When the abnormal sub-
groups are regrouped based on this small sample result,

~only variable 3 is found to be significant in estimating any

further groupings. The regrouping algorithm merges some
of the initial clusters and identifies two abnormal sub-
groups and one normal subgroup. They are described in
Table V. These subg,roups identified seem to provide a
meamngful grouping and may be useful for medical diag-
nosis.
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VIL. CONCLUSION

It is generally accepted in philosophy that knowledge is
a true belief (or a fact, with justification [25]. Our method
uses statistical tests as evidence to detect “primitive”
knowledge in the form of event association. We then select
the relevant events for clustering to reflect the inherent
data interdependence relationship. Once the clustering sub-
groups are found, subsequent analysis on the class pattern
can be performed. This synthesized knowledge cannot be
obtained by observing individual events in isolation, but it
must be based on a set of observations. We have tested the
algorithm using simulated data, and both the cluster ini-
tiation and the regrouping process show superior results.
When we tested the algorithm in a real-life pattern recogni-
tion problem using clinical data, we became convinced that
the patterns indicated by the clusters and the covered event
subsets may be very useful for diagnostic study.
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