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Abstract—Classification of objects is an important area of research and 
application in a variety of fields. In the presence of full knowledge of the 
underlying probabilities, Bayes decision theory gives optimal error rates. In 
those cases where this information is not present, many algorithms make 
use of distance or similarity among samples as a means of classification. 
The ÄT-nearest neighbor decision rule has often been used in these pattern 
recognition problems. One of the difficulties that arises when utilizing this 
technique is that each of the labeled samples is given equal importance in 
deciding the class memberships of the pattern to be classified, regardless of 
their "typicalness." The theory of fuzzy sets is introduced into the AT-nearest 
neighbor technique to develop a fuzzy version of the algorithm. Three 
methods of assigning fuzzy memberships to the labeled samples are pro-
posed, and experimental results and comparisons to the crisp version are 
presented. In fact, not only does the fuzzy algorithm dominate its counter-
part in terms of a lower error rate, the resulting memberships give a 
confidence measure of the classification. The fuzzy ΑΓ-ΝΝ rule is also 
shown to compare well against other standard, more-sophisticated pattern 
recognition procedures in these experiments. A fuzzy analog of the nearest 
prototype algorithm is also developed. 

I. INTRODUCTION 

Classification of objects is an important area of research and of 
practical applications in a variety of fields, including pattern 
recognition and artificial intelligence, statistics, cognitive psy-
chology, vision analysis, and medicine [1]-[10]. Considered as a 
pattern recognition problem, there have been numerous tech-
niques investigated for classification. Clearly, the more a priori 
information that is known about the problem domain, the more 
the classification algorithm can be made to reflect the actual 
situation. For example, if the a priori probabilities and the state 
conditional densities of all classes are known, then Bayes decision 
theory produces optimal results in the sense that it minimizes the 
expected misclassification rate [3]. However, in many pattern 
recognition problems, the classification of an input pattern is 
based on data where the respective sample sizes of each class are 
small and possibly not representative of the actual probability 
distributions, even if they are known. In these cases, many 
techniques rely on some notion of similarity or distance in feature 
space, for instance, clustering and discriminant analysis [2], [3]. 
Under many circumstances, the AT-nearest neighbor (ÄT-NN) al-
gorithm [3], [11] is used to perform the classification. This deci-
sion rule provides a simple nonparametric procedure for the 
assignment of a class label to the input pattern based on the class 
labels represented by the ΑΓ-closest (say, for example, in the 
Euclidean sense) neighbors of the vector. 

The ΛΓ-ΝΝ rule is a suboptimal procedure. However, it has 
been shown that in the infinite sample situation, the error rate for 
the 1-NN rule is bounded above by no more than twice the 
optimal Bayes error rate and, that as K increases, this error rate 
approaches the optimal rate asymptotically [11], [12]. Since its 
introduction, the ÄT-NN rule has been studied and improved 
upon by numerous researchers [13]-[18]. But it is not this 
asymptotic behavior in the limit that has maintained interest in 
this family of decision rules, but rather their computational 
simplicity and the perhaps surprising good results obtained by 
their use in many problems of small sample size [19]-[22]. It has 

Manuscript received September 1, 1984; revised February 26, 1985. 
J. Keller and J. Givens are with the Department of Electrical and Computer 

Engineering, University of Missouri, Columbia, MO 65211, USA. 
M. Gray was in the Department of Electrical and Computer Engineering, 

University of Missouri. He is now with Wright-Patterson Air Force Base, OH 
45433, USA. 

been found for example that ÄT-NN classification is well suited to 
those problem domains characterized by data that is only par-
tially exposed to the system prior to employment [21], [22]. 

One of the problems encountered in using the ÄT-NN classifier 
is that normally each of the sample vectors is considered equally 
important in the assignment of the class label to the input vector. 
This frequently causes difficulty in those places where the sample 
sets overlap. Atypical vectors are given as much weight as those 
that are truly representative of the clusters. Another difficulty is 
that once an input vector is assigned to a class, there is no 
indication of its "strength" of membership in that class. It is 
these two problems in the ÄT-NN algorithm that we address by 
incorporating fuzzy set theory into the ÄT-NN rule. 

Fuzzy sets were introduced by Zadeh in 1965 [23]. Since that 
time researchers have found numerous ways to utilize this theory 
to generalize existing techniques and to develop new algorithms 
in pattern recognition and decision analysis [24]-[27]. In [24] 
Bezdek suggests that interesting and useful algorithms could 
result from the allocation of fuzzy class membership to the input 
vector, thus affording fuzzy decisions based on fuzzy labels. This 
work is concerned with incorporating fuzzy set methods into the 
classical ÄT-NN decision rule. In particular, a "fuzzy ÄT-NN" 
algorithm is developed utilizing fuzzy class memberships of the 
sample sets and thus producing a fuzzy classification rule. Three 
methods of assigning fuzzy membership for the training sets are 
proposed, and their advantages and disadvantages are discussed. 
Results of both the "crisp" (that based on traditional set theory) 
and fuzzy ÄT-NN rule are compared on two data sets, and the 
fuzzy algorithm is shown to dominate its crisp counterpart by 
having lower error rates and by producing membership values 
that serve as a confidence measure in the classification. 

Finally, a simple variant of the ÄT-NN rule, the nearest proto-
type technique, is considered. In this decision scheme, a typical 
pattern of each class is chosen, and the unknown vector is 
assigned to the class of its closest prototype. A fuzzy analog to 
this procedure is developed and the results of the two versions are 
compared. 

II. FUZZY SETS 

Given a universe U of objects, a conventional crisp subset A of 
U is commonly defined by specifying the objects of the universe 
that are members of A. An equivalent way of defining A is to 
specify the characteristic function of A, uA\ £/-> {0,1} where 
for all x e U 

/ x / l , x <= A 
" ^ x ) = \ 0 ; X0A. 

Fuzzy sets are derived by generalizing the concept of a char-
acteristic function to a membership function u: £/-» [0,1]. An 
example of a fuzzy set is the set of real numbers much larger than 
zero, which can be defined with a membership function as 
follows: 

w(x) = p/(*2 + i), *>o 
lO, x< 0. 

Numbers that are not at all larger than zero are not in the set 
(u = 0), while numbers which are larger than zero are partially in 
the set based on how much larger than zero they are. Thus the 
impetus behind the introduction of fuzzy set theory was to 
provide a means of defining categories that are inherently impre-
cise [24]. Since the introduction of fuzzy set theory the terms hard 
and crisp have been used to describe sets conforming to tradi-
tional set theory. 

Most crisp set operations (such as union and intersection) and 
set properties have analogs in fuzzy set theory. (See [28] for a 
more detailed presentation of fuzzy set theory.) 

The advantage provided by fuzzy sets is that the degree of 
membership in a set can be specified, rather than just the binary 
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is or isn't a member. This can be especially advantageous in 
pattern recognition, where frequently objects are not clearly 
members of one class or another. Using crisp techniques an 
ambiguous object will be assigned to one class only, lending an 
aura of precision and definiteness to the assignment that is not 
warranted. On the other hand, fuzzy techniques will specify to 
what degree the object belongs to each class, which is information 
that frequently is useful. 

Given a set of sample vectors, { χλ, · · ·, xn }, a fuzzy c partition 
of these vectors specifies the degree of membership of each vector 
in each of c classes. It is denoted by the c by n matrix U, where 
ulk = Uj(xk) for / = 1,· · ·, c, and k = 1,· · ·, n is the degree of 
membership of xk in class i. The following properties must be 
true for U to be a fuzzy c partition 

c 

0 < Σ uik<n, 
k = l 

«iÄc[0,l]. 

The fact that a vector's memberships in the c classes must sum 
to one is for mathematical tractability. In the two class case for 
example, memberships near 0.5 indicate that the vector has a high 
degree of membership in both classes; i.e., the "bounding region" 
separates one class from another. 

III. THE K-NEAREST NEIGHBOR ALGORITHMS 

The nearest neighbor classifiers require no preprocessing of the 
labeled sample set prior to their use. The crisp nearest-neighbor 
classification rule assigns an input sample vector y, which is of 
unknown classification, to the class of its nearest neighbor [11]. 
This idea can be extended to the AT-nearest neighbors with the 
vector y being assigned to the class that is represented by a 
majority amongst the AT-nearest neighbors. Of course, when more 
than one neighbor is considered, the possibility that there will be 
a tie among classes with a maximum number of neighbors in the 
group of AT-nearest neighbor exists. One simple way of handling 
this problem is to restrict the possible values of K. For example, 
given a two-class problem, if we restrict K to odd values only no 
tie will be possible. Of course, when more than two classes are 
possible, this technique is not useful. A means of handling the 
occurrence of a tie is as follows. The sample vector is assigned to 
the class, of those classes that tied, for which the sum of distances 
from the sample to each neighbor in the class is a minimum. Of 
course, this could still lead to a tie, in which case the assignment 
is to the last class encountered amongst those which tied, an 
arbitrary assignment. Clearly, there will be cases where a vector's 
classification becomes an arbitrary assignment, no matter what 
additional procedures are included in the algorithm. 

A. The Crisp K-NN Algorithm 

Let W = { xx, x2, · · ·, xn} be a set of n labeled samples. The 
algorithm is as follows: 

BEGIN 
Input y9 of unknown classification. 
Set ΑΓ,Ι ^ K ^ n. 
Initialize / = 1. 
DO UNTIL (AT-nearest neighbors found) 

Compute distance from y to xt. 
IF (/ < K) THEN 

Include xt in the set of Af-nearest neighbors 
ELSE IF (x; is closer to y than any previous nearest 

neighbor) THEN 
Delete farthest in the set of ^Γ-nearest neighbors 
Include x, in the set of Af-nearest neighbors. 

END IF 
Increment /. 

END DO UNTIL 
Determine the majority class represented in the set of K-
nearest neighbors. 
IF (a tie exists) THEN 

Compute sum of distances of neighbors in each class 
which tied. 
IF (no tie occurs) THEN 

Classify y in the class of minimum sum 
ELSE 

Classify y in the class of last minimum found. 
END IF 

ELSE 
Classify y in the majority class. 

END IF 
END 

B. Fuzzy K-NN Classifier 

While the fuzzy Af-nearest neighbor procedure is also a classifi-
cation algorithm the form of its results differ from the crisp 
version. The fuzzy Af-nearest neighbor algorithm assigns class 
membership to a sample vector rather than assigning the vector 
to a particular class. The advantage is that no arbitrary assign-
ments are made by the algorithm. In addition, the vector's 
membership values should provide a level of assurance to accom-
pany the resultant classification. For example, if a vector is 
assigned 0.9 membership in one class and 0.05 membership in 
two other classes we can be reasonably sure the class of 0.9 
membership is the class to which the vector belongs. On the other 
hand, if a vector is assigned 0.55 membership in class one, 0.44 
membership in class two, and 0.01 membership in class three, 
then we should be hesitant to assign the vector based on these 
results. However, we can feel confident that it does not belong to 
class three. In such a case the vector might be examined further 
to determine its classification, because the vector exhibits a high 
degree of membership in both classes one and two. Clearly the 
membership assignments produced by the algorithm can be use-
ful in the classification process. 

The basis of the algorithm is to assign membership as a 
function of the vector's distance from its AT-nearest neighbors and 
those neighbors' memberships in the possible classes. The fuzzy 
algorithm is similar to the crisp version in the sense that it must 
also search the labeled sample set for the AT-nearest neighbors. 
Beyond obtaining these K samples, the procedures differ consid-
erably. 

Let W — { x1, x2, · · ·, xn } be the set of n labeled samples. Also 
let w,(.x) be the assigned membership of the vector x (to be 
computed), and uiy- be the membership in the / th class of the yth 
vector of the labeled sample set. The algorithm is as follows: 

BEGIN 
Input x, of unknown classification. 
Set K, 1 < K < n. 
Initialize / = 1. 
DO UNTIL (AT-nearest neighbors to x found) 

Compute distance from x to x{. 
IF (i < K) THEN 

Include JC,· in the set of AT-nearest neighbors 
ELSE IF (xt closer to x than any previous nearest neigh-
bor) THEN 

Delete the farthest of the ΑΓ-nearest neighbors 
Include xt in the set of ΑΓ-nearest neighbors. 

END IF 
END DO UNTIL 
Initialize i = 1. 
DO UNTIL (x assigned membership in all classes) 

Compute W,(JC) using (1). 
Increment i. 

END DO UNTIL 
END 
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where 

Σ "ij(iA\x - xj\\2Am-l)) 

* , ■ ( * ) - ^ · ( i ) 

Σ (VU* - Xj\\2Am-l)) 

As seen by (1), the assigned memberships of x are influenced 
by the inverse of the distances from the nearest neighbors and 
their class memberships. The inverse distance serves to weight a 
vector's membership more if it is closer and less if it is farther 
from the vector under consideration. The labeled samples can be 
assigned class memberships in several ways. First, they can be 
given complete membership in their known class and nonmem-
bership in all other classes. Other alternatives are to assign the 
samples' membership based on distance from their class mean or 
based on the distance from labeled samples of their own class 
and those of the other class or classes, and then to use the 
resulting memberships in the classifier. Both of these techniques 
have been used in this study and the results are reported. It is 
noted that in [29] an alternate scheme for assigning initial mem-
berships based on a learning scheme was considered. 

The variable m determines how heavily the distance is weighted 
when calculating each neighbor's contribution to the membership 
value. If m is two, then the contribution of each neighboring 
point is weighted by the reciprocal of its distance from the point 
being classified. As m increases, the neighbors are more evenly 
weighted, and their relative distances from the point being classi-
fied have less effect. As m approaches one, the closer neighbors 
are weighted far more heavily than those farther away, which has 
the effect of reducing the number of points that contribute to the 
membership value of the point being classified. In the results 
presented in Section V we used m = 2, but note that almost 
equal error rates have been obtained on these data over a wide 
range of values of m. 

IV. NEAREST PROTOTYPE CLASSIFIERS 

These classifiers bear a marked resemblance to the one-nearest 
neighbor classifier. Actually, the only difference is that for the 
nearest prototype classifier the labeled samples are a set of class 
prototypes, whereas in the nearest neighbor classifier we use a set 
of labeled samples that are not necessarily prototypical. Of 
course, the nearest prototype classifier could be extended to 
multiple pioto types representing each class, similar to the K-
nearest neighbor routine. Nevertheless, this study considers only 
the nearest prototype classifier in both a crisp and fuzzy version. 
The prototypes used for these routines are taken as the class 
means of the labeled sample set. 

A. The Crisp Nearest Prototype Classifier 

Let W = { Zx, Z2, · · ·, Zc} be the set of c prototype vectors 
representing the c classes. The algorithm is as follows: 

BEGIN 
Input x, vector to be classified. 
Initialize i = 1 
DO UNTIL (distance from each prototype to x computed) 

Compute distance from Zi to x. 
Increment i. 

END DO UNTIL 
Determine minimum distance to any class prototype. 
IF (tie exists) THEN 

Classify x as last class found of minimum distance 
ELSE 

Classify x as class of closest prototype. 
END IF 

END 

B. Fuzzy Nearest Prototype Algorithm 

As above, let W = { Zx, Z2, · · ·, Zc} be the set of c prototypes 
representing the c classes. The algorithm is as follows: 

BEGIN 
Input x, vector to be classified. 
Initialize i = 1. 
DO UNTIL (distance from each prototype to x computed) 

Compute distance from Zi to x. 
Increment i. 

END DO UNTIL 
Initialize / = 1. 
DO UNTIL (x assigned membership in all classes) 

Compute uÉ(x) using (2) 
Increment / 

END DO UNTIL 
END 

where 

Σ {W\x - ZjW2*»-») 

The difference between (2) and (1) is that membership in each 
class is assigned based only on the distance from the prototype of 
the class. This is because the prototypes should naturally be 
assigned complete membership in the class that they represent. 

V. RESULTS 

The results presented in this section were produced by software 
implementation of the algorithms described above. The software 
was developed using Fortran 77 on a Perkin-Elmer 3220 in the 
Image Analysis Laboratory at the University of Missouri-
Columbia. 

Three labeled data sets were utilized to test the algorithms. The 
data sets and their attributes are as follows: 

Data Set Number of Number of Number of Features 
Name Classes Vectors per Vector 

IRIS 3 150 4 
IRIS23 2 100 4 
TWOCLASS 2 242 4 

The data set IRIS is that of Anderson. This particular data set 
has been utilized extensively by researchers in the area of cluster 
analysis since 1936, when R. A. Fisher first used it to illustrate 
the concept of linear discriminant analysis [30]. The data repre-
sents three subspecies of irises, with the four feature measure-
ments being sepal length, sepal width, petal length, and petal 
width, all in centimeters. There are fifty vectors per class in this 
data set. The IRIS23 data set is a subset of the IRIS data. It 
includes classes two and three, the nonseparable classes, of the 
IRIS data. 

The TWOCLASS data set is an artificially generated normally 
distributed set of vectors. This data set was included because 
classification results from a Bayes classifier were available to use 
in the comparison. This data set contains 121 samples per class. 

The results of the fuzzy classifications are reported in terms of 
the simplest crisp partition, where a sample vector is assigned to 
the class of maximum membership. The classifications are ob-
tained using the "leave one out" technique. The procedure is to 
leave one sample out of the data set and classify it using the 
remaining samples as the labeled data set. This technique is 
repeated until all samples in the data set have been classified. In 
addition, in order to evaluate one technique used to initialize 
memberships of the labeled samples used in the classifier the 
IRIS23 set was created by using only class two and three of the 
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TABLE I 
RESULTS OF ^-NEAREST NEIGHBOR CLASSIFIERS 

NUMBER OF MISCLASSIFIED VECTORS1 

K 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Average 

/ 
6 
7 
6 
5 
5 
6 
5 
7 
6 

5.9 

Crisp 
T 

26 
26 
21 
20 
20 
19 
19 
21 
21 

21.4 

/' 
6 
7 
6 
5 
5 
6 
5 
7 
6 

5.9 

/ 
6 
6 
6 
6 
5 
5 
5 
6 
4 

5À 

Fuzzy-(l) 
T 

26 
26 
22 
19 
21 
18 
21 
18 
21 

\ 21.3 

/' 
6 
6 
6 
6 
5 
5 
5 
6 
4 

5.4 

Fuzzy-(2) 
T 

26 
21 
21 
20 
20 
20 
18 
20 
18 

20.4 

/' 
6 
6 
7 
7 
7 
6 
6 
6 
5 

6.2 

F 

/ 
6 
6 
5 
5 
4 
4 
4 
4 
4 

4.7 

ruzzy-(3) 
T Γ 

26 6 
21 6 
19 6 
20 5 
19 4 
20 4 
19 4 
20 4 
18 4 

20.2 4.8 

XAT number of neighbors used 
/ IRIS data (four features) 
T TWOCLASS data (four features) 
Γ IRIS23 data (four features) 
(1) crisp initialization 
(2) exponential initialization 
(3) fuzzy 3-nearest neighbor initialization. 

IRIS data set. This was necessary because the initialization tech-
nique will only work on two class classification problems. 

Before comparing the results produced by the nearest neighbor 
algorithms, the types of labeling techniques used for the fuzzy 
classifier are explained. Three different techniques of member-
ship assignment for the labeled data are considered. The first 
method, a crisp labeling, is to assign each labeled sample com-
plete membership in its known class and zero membership in all 
other classes. The second technique assigns membership based on 
the procedure presented in [31]. This technique works only on 
two class data sets. The procedure assigns a sample membership 
in its known class based on its distance from the mean of the 
labeled sample class. These memberships range from one to one 
half with an exponential rate of change between these limits. The 
sample's membership in the other class is assigned such that the 
sum of the memberships of the vector equals one. A more 
detailed explanation of this technique is given in [31]. The third 
method assigns memberships to the labeled samples according to 
a ΛΓ-nearest neighbor rule. The K (not K of the classifier)-nearest 
neighbors to each sample JC (say x in class /) are found, and then 
membership in each class is assigned according to the following 
equation: 

/ 0 . 5 1 + ( « / * ) * 0 . 4 9 , if . / - i 

\ ( * , / * ) *0.49, if y * i. 

The value n is the number of the neighbors found which belong 
to the y'th class. This method attempts to "fuzzify" the member-
ships of the labeled samples, which are in the class regions 
intersecting in the sample space, and leaves the samples that are 
well away from this area with complete membership in the known 
class. As a result, an unknown sample lying in this intersecting 
region will be influenced to a lesser extent by the labeled samples 
that are in the " fuzzy" area of the class boundary. 

Thus with these three initialization techniques, three sets of 
results of the fuzzy ΛΓ-nearest neighbor classifier are produced. 
These results are presented in Tables I and II. Upon comparison 
of the results of the crisp classifier and the fuzzy classifier with 
crisp initialization, we can see that on the average the fuzzy 
classifier has slightly lower error rates. In addition, the fuzzy 
classifier, which uses the second initialization technique, pro-
duced nearly equal results. Although not reported in the tables, 
the results of this fuzzy classifier using the membership assign-
ment rule described in [31] did not produce memberships for the 

TABLE II 

1 
2 
3 

1 

50 
0 
0 

IRIS1 

2 

0 
48 
14 

3 

0 
2 

36 

1 
2 

TWOCLASS2 

1 

114 
15 

2 

7 
106 

1 Terminated in three iterations. 
2 Terminated in ten iterations. 

misclassified vectors that suggest that they actually belong to a 
different class. Instead this second initialization technique causes 
an overall reduction in the values of memberships assigned with 
most of the samples given majority memberships less than 0.7. 
But the nearest neighbor initialization technique does produce 
membership assignments that give an indication of degree of 
correctness of classification. 

Examining the results given in Table II for the ^-nearest 
neighbor classifier with nearest neighbor sample membership 
initialization, the following observations can be made. First of all, 
the results show a somewhat lower overall error rate. But, more 
importantly, the number of misclassified vectors with high as-
signed membership (greater than 0.8) in the wrong class is 
considerably less than half of the misclassified vectors for most 
choices of KiNiT. In addition, the correctly classified samples 
were given relatively higher membership in their known class 
than in other classes. Therefore, more sophisticated classification 
schemes utilizing these memberships (other than just maximum 
membership) could be devised to increase the overall correct 
classification rate, and the final membership values produce a 
natural confidence measure. 

While the main concern of this paper was to demonstrate that 
the fuzzy ΛΓ-ΝΝ technique dominates the crisp version in both 

COMPARISON OF CRISP AND FUZZY ΑΓ-ΝΝ CLASSIFIERS ON 
TWOCLASS Data AND ON IRIS Data WITH 

FUZZY KINIT-NN INITIALIZATION 

Number of Misclassified Vectors (out of 242) 
Fuzzy KINIT 

K Crisp 1 3 5 7 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Averagi 

26 
26 
21 
20 
20 
19 
19 
21 
21 

e 
Misclassification 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Average 
Misclassification 

TWOCLASS Data 

26 
23 
20 
17 
16 
20 
17 
17 
18 

21.4 

6 
7 
6 
5 
5 
6 
5 
7 
6 

5.9 

26 
21 
19 
20 
19 
20 
19 
20 
21 

19.3 

IRIS Data 

6 
6 
5 
5 
4 
4 
4 
4 
4 

4.7 

20.< 

6 
6 
5 
5 
4 
4 
4 
4 
4 

4.7 

26 
23 
21 
19 
19 
20 
20 
20 
21 

> 21.0 

6 
6 
5 
5 
5 
4 
4 
4 
4 

4.8 

26 
22 
21 
19 
20 
21 
20 
20 
21 

21.1 

6 
6 
5 
5 
5 
4 
4 
4 
4 

4.8 

26 
22 
23 
19 
19 
20 
20 
20 
21 

21.1 

6 
6 
6 
5 
5 
4 
4 
4 
4 

4.9 

TABLE III 
CONFUSION MATRICES FOR THE K-MEKHS ALGORITHM 
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TABLE IV 
CONFUSION MATRICES OF THE FIRST-NEAREST PROTOTYPE CLASSIFIER 

TABLE V 
FUZZY CLASSIFIER MEMBERSHIP ASSIGNMENTS1 

IRIS Data 

Four Features Features Three and Four 

Crisp 
1 2 3 

Fuzzy 
1 2 3 

Crisp 
1 2 3 

Fuzzy 
1 2 3 

1 50 0 0 50 0 0 50 0 0 50 0 0 
2 0 45 5 0 45 5 0 48 2 0 48 2 
3 0 7 43 0 7 43 0 4 46 0 4 46 

TWOCLASS Da ta 

Four Features Features Three and Four 

Crisp 
1 2 

Fuzzy 
1 2 

Crisp 
1 2 

Fuzzy 
1 2 

1 113 8 
2 12 109 

1 113 8 1 113 8 1 113 8 
2 12 109 2 12 109 2 12 109 

decreased error rates and information content of the results, our 
algorithm compares favorably to several other more complicated 
techniques on these data sets. In particular, we have run the 
K-means clustering procedure, two types of linear discriminant 
function algorithms, and a Bayes classifier on the data. For the 
ÄT-means [3], we initialized the cluster centers to the sample mean 
and those vectors furthest from the mean. The results are shown 
in Table III. The fuzzy ÄT-NN does at least äs well as this 
procedure (better for the IRIS data) with the added information 
on class membership. 

The perceptron is representative of a class of iterative schemes 
for finding linear decision boundaries between classes using the 
gradient descent approach. This procedure is guaranteed to con-
verge to a solution if the data sets are linearly separable [3]. 
However, since neither of our data sets possess this property, the 
perceptron does not converge. Stopping it after a fixed number of 
iterations may or may not produce a reasonable decision 
boundary. For example, terminating it after two iterations on the 
TWOCLASS data, the linear discriminant result misclassified 62 of 
the 242 vectors; after 70 iterations, 107 vectors were misclassi-
fied; and after 150 iterations, the number of misclassified was 
down to 29 but by 200 iterations, it was back to 67. This of 
course demonstrates the erratic behavior of this algorithm on 
overlapping data. There have been approaches to modify this 
technique to produce reasonable boundaries even in the nonsep-
arable case. One such method, using fuzzy sets, is reported in 
[31]. This technique converged in two iterations misclassifying 21 
vectors, again comparable to the fuzzy X-NN. Similar results are 
obtained on the IRIS set. 

While the primary use of the ÄT-NN algorithms is in those 
situations where the a priori probabilities and class conditional 
densities are unknown, the TWOCLASS data was in fact generated 
with equal a priori probabilities and multivariate normal distri-
butions. So as a final comparison, consider the results of the 
Bayes classifier for the TWOCLASS data. Running a ten-percent 
jacknife procedure1 and assuming equal a priori prob abili ties for 
both classes, the Bayes classifier misclassified twenty of the 
samples. Clearly, depending on the value chosen for K, the fuzzy 
nearest neighbor classifier can perform as well as a Bayes classi-
fier, but with much less restrictive assumptions. Certainly, the 
posterior probabilities in the Bayes classifier provide a measure 
of strength of classification; i.e., they represent the probability 
that the object is a member of each class. The fuzzy Ä'-nearest 

^ h i s procedure involves taking ten percent of the samples as test data and 
the remaining as training data, classifying these, and then repeating the proce-
dure until all samples have been used as test samples. 

IRIS Data 
A B 

TWOCLASS Data 
A B 

Misclassified samples 
(membership assigned > 0.7) 

Classified samples (membership 
assigned > 0.5 and < 0.7) 

15 15 36 36 

xThe intent here is to illustrate that there are very few correctly 
classified samples in the "fuzzy" region between 0.5 and 0.7. A 
denotes four feature and B denotes features three and four used. 

neighbor classifier provides different form of this information. In 
this case, we obtain a measure of how " typical" this object is of 
each class. 

The nearest prototype classifier in both the crisp and fuzzy 
versions is the quickest and simplest of the classifiers considered. 
The reason is that in both versions of the first-nearest prototype 
algorithm, an unknown sample is compared to one prototype per 
class as opposed to the ^-nearest neighbor algorithms, where an 
entire set of labeled samples representing each class must be 
compared before the K nearest are obtained. The results reported 
in Table IV show that the fuzzy prototype classifier and the crisp 
nearest prototype classifier produced equivalent results. But, by 
looking at the memberships of the misclassified samples in terms 
of the number with membership greater than 0.7 in the wrong 
class, given in Table V, it is clear that these memberships do 
provide a useful level of confidence of classification. Further, the 
number of correctly classified samples with memberships in the 
range between 0.4 and 0.7 is small compared to the number of 
correctly classified samples that have membership in the correct 
class greater than 0.7. Thus, we can be assured, based on the 
memberships assigned, that the samples are correctly classified. 

VI. CONCLUSION 

A fuzzy ÀT-NN decision rule and a fuzzy prototype decision 
rule have been developed along with three methods for assigning 
membership values to the sample sets. 

The fuzzy /iT-nearest neighbor and fuzzy nearest prototype 
algorithms developed and investigated in this report show useful 
results. In particular, concerning the fuzzy ΑΓ-nearest neighbor 
algorithm with fuzzy X-nearest neighbor initialization, the mem-
bership assignments produced for classified samples tend to 
possess desirable qualities. That is, an incorrectly classified sam-
ple will not have a membership in any class close to one while a 
correctly classified sample does possess a membership in the 
correct class close to one. The fuzzy nearest prototype classifier, 
while not producing error rates as low as the fuzzy nearest 
neighbor classifier, is computationally attractive and also pro-
duces membership assignments that are desirable. 
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Stochastic Automata Operating in a General 

Multiteacher Environment 
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Abstract—The learning behaviors of the hierarchical structure automata 
operating in the general multiteacher environments are considered. It is 
shown that the generalized version of the reinforcement algorithm is 
absolutely expedient. 
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I. INTRODUCTION 

The concept of the learning automata operating in an unknown 
random environment was initially introduced by Tsetlin [1]. He 
considered the learning behaviors of finite deterministic automata 
under the stationary random environment R(Cl9- —,Cr) and 
showed that they are asymptotically optimal under some condi-
tions. 

The study of learning behaviors of stochastic automata was 
started by Varshavskii and Vorontsova [2] and since then has 
been done quite extensively by many researchers. (The book [3] 
written by Lakshmivarahan and the survey paper [4] written by 
Narendra contain most of the recent works in this field along 
with the valuable comments for future research.) 

Recently, the concept of the hierarchical structure automata 
was introduced by Thathachar and Ramakrishnan [5]. This work 
was followed by Thathachar and Ramakrishnan [6] (and 
Ramakrishnan [7]). They formulated the more general hierarchi-
cal-structure automata system in which each automaton in the 
hierarchy is able to elicit a response from the environment in 
each level. Since many Hving systems follow hierarchical plans 
and our daily decisionmaking is often done in a hierarchical 
fashion, the concept of the hierarchical-structure automata sys-
tem would become one of the most promising tools in various 
application areas. 

In this work we generalize the hierarchical structure automata 
model introduced by Thathachar and Ramakrishnan [6] 
(Ramakrishnan [7]) and consider the learning behaviors of the 
generalized hierarchical automata system operating in the multi-
teacher environment. 

II. HIERARCHICAL STRUCTURE STOCHASTIC AUTOMATA 

Fig. 1 shows the learning mechanism of the hierarchical struc-
ture stochastic automata system operating in the general multi-
teacher environment. Since this is only a direct generalization of 
the learning model introduced in [6] and [7] and almost all of the 
symbols used in Fig. 1 are identical to those used in [6] and [7], 
we will only introduce the brief outline of the learning mecha-
nism described in Fig. 1. 

The A denotes the first level automaton. Initially, all the action 
probabilities are set equal. The A chooses an action at time / 
from the action probability distribution (Pi(t),- · -,pr(t)). Sup-
pose that aJi is the output from A and ß[l(il = I,· - ■ ,^) is the 
response from the /xth teacher (environment). Depending upon 
the output aJl and the responses J /^O ' i = 1 , · · · , ^ ) ) from rx 

teachers, the first level automaton A changes its action probabil-
ity vector P(t) = (Pi(t)9— ',ρΛΟ) governing the choice of the 
actions «,·(/' = 1,· · ·,/*). _ 

Corresponding Jx) the output a ■ of the first level automaton A, 
the automaton Ajx is actuated in the second level. The Aj 
chooses an action from its action probability distribution. Sup-
pose that α/ι/2 is the output from Ah and ß'^(i2 = 1,· · *, r2) is 
the response from the i2th. teacher (environment). Depending 
upon the output a and the environmental responses ß^ih = 

l , - - - , r 2 ) , the second level automata Al9---,Ar change their 
probability vectors. This cycle of operation repeats from the top 
to the bottom. 

III. ABSOLUTELY EXPEDIENT LEARNING ALGORITHM 

By the simple extension of the learning algorithm introduced 
by Thathachar and Ramakrishnan [6] and Ramakrishnan [7], we 
are able to derive the following reinforcement scheme. 

1st Level: Assume that the ^ th action af is selected by the first 
level automaton A at time / and the environmental responses are 
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