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Using Weighted Rankings in the Analysis of Complete 

Blocks With Additive Block Effects 
DANA QUADE* 

The standard nonparametric procedures for testing the hypothesis 
of no treatment effects in a complete blocks experiment depend en- 
tirely on the within-block rankings. If block effects are assumed 
additive, however, then between-block information may be re- 
covered by weighting these rankings according to their credibility 
with respect to treatment ordering. (For the special case of only two 
treatments, the sign test exemplifies use of unweighted rankings and 
the signed-rank test weighted.) A general family of weighted-rank- 
ings test statistics for comparing two or more treatments is presented. 
They are simple to compute, are strictly distribution free, and have 
asymptotic chi-squared distributions. 

KEY WORDS: Ranks; Weighted rankings; Complete blocks. 

1. INTRODUCTION 

Let Xi, be the observation on the jth of m treatments 
in the ith of n complete blocks, and consider testing the 
hypothesis of no treatment effects, specifically 

Ho: Xii, ..., Xim are interchangeable for each i 

(By definition, random variables are interchangeable if 
their joint distribution function is invariant under 
permutations.) The alternatives under consideration are 
fairly general; however, a specific example is that of 
additive treatment effects: 

Hi: There exist quantities Tr, ..., rm (treatment effects), 
not all equal to zero, such that for i = 1, ..., 

Xi, - Tri ... X Xim - Tm are interchangeable. 

Standard nonparametric procedures for attacking this 
problem, for example, the tests of Friedman (1937) and 
of Brown and Mood (1951), are based on within-block 
rankings. Thus, the only assumption they require is that 
the blocks be independent. 

Assumption 1: The random vectors 

Xi = (Xii1 . . *, Xim) , 

for i = 1, ..., n (i.e., the blocks), are mutually 
independent. 

It is common to make the additional assumption of addi- 
tive block effects. 

Assumption 2: There exist quantities ..., On (block 
effects) such that the random vectors (Xi, - fi,. 
Xim - O)' are all identically distributed. 

* Dana Quade is Professor, Department of Biostatistics, School 
of Public Health, University of North Carolina, Chapel Hill, NC 
27514. This work was partly supported by a Research Career De- 
velopment Award (No. GM-38906) from the National Institute of 
General Medical Sciences. 

With this assumption, comparisons of observations are 
possible between blocks as well as within. Thus, pro- 
cedures that use only within-block comparisons waste 
information. For further discussion of this point, see 
Hodges and Lehmann (1962). 

With m = 2 treatments only, the use of within-block 
rankings is equivalent to performing a sign test. For this 
special case, however, a simple distribution-free pro- 
cedure is available that recovers between-block informa- 
tion: the signed-rank test of Wilcoxon (1945). For 
m > 3, the situation is less satisfactory. A permutation 
test, based on the classical two-way analysis of variance 
statistic, was proposed by Pitman (1938), but the cal- 
culations it requires are so extensive as to render it in- 
feasible except for small m and n. Another procedure, 
originally proposed by Hodges and Lehmann (1962), 
involves analyzing the observations after first aligning 
them by subtracting out estimates of the block effects, 
but this is only asymptotically distribution free, except 
insofar as it also is a permutation test. Finally, a pro- 
cedure of Doksum (1967) consists essentially of consider- 
ing signed-rank tests on all pairs of treatments simul- 
taneously, but this too is only asymptotically distribu- 
tion free. Thus, there is still need for a method that 
recovers between-block information for m > 3 while 
remaining both feasible to compute and strictly distribu- 
tion free. 

2. WEIGHTED RANKINGS 

In this section is presented a class of procedures based 
on a method of weighted within-block rankings that 
generalizes the standard method based on unweighted 
rankings. The intuitive idea behind these procedures 
seems to have been first expressed in a rarely cited article 
by Tukey (1957). Suppose the observations on different 
treatments are more distinct in some blocks than in the 
others; then it seems intuitively reasonable that the 
ordering of the treatments that these blocks suggest is 
more likely to reflect the underlying true ordering. These 
same blocks might more or less equivalently be described 
as having greater observed variability, although the word 
observed is to be emphasized because by Assumption 2 all 
blocks are identically distributed except for additive 
block effects. Thus, these blocks, which may be referred 
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to as more credible with respect to treatment ordering, 
will be given greater weight in the analysis. 

Consider in more detail the structure of the test sta- 
tistics based on the standard method. For simplicity of 
exposition, make the (unessential) assumption 

Assumption 3: 

P{Xij = Xij,} =0 for j # j', 

so that there will be no within-block ties, and let Rij be 
the within-block rank of Xij: (Rij, ..., Rim) is then a 
permutation of (1, . . ., m). Let t , ... . tm be a fixed set of 

treatment scores, not all equal. Define t = - tj/m and 
T = (tj - )2. Then, 

m 
COii = E (tNj - t) (tRNi - t)IT 

j=l 

is a measure of rank correlation between the ith and i'th 
blocks; in particular, if tj = j this is the Spearman rank 
correlation. A measure of agreement among the blocks is 
the average rank correlation 

C* =E Cii'/n(n - 1) 

and the corresponding test statistic is 

W = (m - 1)[1 + (n - 1)C*] 
m n 

(m - 1) L E L (tRi - 1)1]2/nT 
j=1 i=1 

Sen (1968) shows that as n tends to infinity, W has 
asymptotically a x2 distribution with (m - 1) degrees of 
freedom. 

To determine the weight for the ith block, use some 
location-free statistic Di = D (Xi1, ..., Xi.) that mea- 
sures the credibility of the block with respect to treat- 
ment ordering, and let Qi be the rank of Di among 
D1, . . ., D n. Again, for simplicity of exposition, make the 
(unessential) assumption 

Assumption 4: 

P{Di= Di,} =0 for i# i', 

so that there will be no ties in the ranking of the blocks. 
Now, let b1, ..., b,n be a fixed set of block scores, and 
define Bk = E bi. Then the weight given to the ith 
block will be proportional to bQi, and the weight given to 
the correlation between the ith and i'th blocks propor- 
tional to bQibQi,, so that the weighted average rank cor- 
relation becomes 

C = E E bQjbQi Ci*/1(Bi2 - B2) 

and the test statistic is 

W = (I - 1)[1 + (B12/B2-1)] 
m n 

=-(in-1) E [~ bQ,(tR, - t)]2/B2T. 
i=l *=1 

Given any particular choice of the block scores b* and 
the treatment scores tj, there must be some block in which 
the observations are replaced by bit,, ..., bit. in some 
order, another block with b2t1, ..., b2tm, and so on to 
bnti, ... I bntm. But all rankings of the blocks are equally 
likely because the statistics Di are independent (by 
Assumption 1) and identically distributed (by Assump- 
tion 3), and all rankings within the blocks are equally 
likely under the null hypothesis. Hence the weighted- 
rankings statistic is strictly distribution free under Ho 
(and independent of the choice of the credibility measure 
D); thus it could be tabulated, at least for small m and n. 

Now consider the asymptotic distribution of W as the 
number of blocks increases without limit. 

Theorem: Suppose Assumptions 1 and 2 are satisfied 
(make Assumptions 3 and 4 also, to simplify the exposi- 
tion by preventing ties, but they are not really essential). 
Then under H0 as the number of blocks tends to infinity 
the test statistic W has asymptotically a x2 (m-1) 
distribution, provided that 

1? (bni - bn)r/[E (bni -bn )2]r12 

= O(nl-rl2) for r = 3, 4, * . 

where 6b = E bni/n (and n has been indicated explicitly 
by writing b,ni for bi-elsewhere n is usually suppressed). 

Proof: The theorems referred to as (3.4.1), (3.4.5), and 
(7.2.1) are from Puri and Sen (1971). Define treatment 
totals Gj = E bflQitRii for j = 1, .. ., m, and consider 
an arbitrary contrast in them, say G = E gjGj where 
E 9;= 0 and E 9j2 > 0. Then, G = E2b,QjAj where 
Ai = E gjtRi. By Assumptions 1 and 2 the Ai's are in- 
dependent and identically distributed random variables, 
and they are clearly bounded. Under Ho they have mean 
0 and (using Assumption 3) variance T E gj2/ (m - 1) 
> 0, so they satisfy the conditions of (3.4.5). Further- 
more, by Assumptions 1 and 2 (and 4), the Qi's are a 
random permutation of the integers 1, ..., n; under Ho 
they are independent of the A i's. Hence, it is easy to 
verify that G has mean 0 and variance 

a2 = (E bn,2)( tj2)(E gj2)/(m - 1) 

Thus, by (3.4.1) the ratio G/a is asymptotically a stan- 
dard normal variable, and the present theorem follows 
using the same argument as for (7.2.1). 

Simple but tedious algebra yields the lower moments 
of W under Ho: 

E{W} = m-1 , 

E[W - (m - 1)]2 = 2(m - l)7ln 

E[W - (m - 1)]I3 = 8(m - 1){ 72n + Y3n.Ym} 

where 
'Yln = 1 - B4/B22 
-Y2n = 1 - 3B4/B22 + 2B6/B23 
73n = (B32 -B6)/B23 , 

and 
Ym= m(m -1)[,2 (t - t)3]2/2(m -2)T3. 
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Note that ym = 0 if the t's are symmetrically placed 
about their median, and that, under the condition of the 
theorem, yln and Y2n tend to 1 and -y3n to 0 as n -* oo. It 
then follows that 

EW - (m - 1)]-Yln/Q(Y2n + 'Y3nYm) + S 

may be approximated by a x2 with 

a = (m - l)'Yln3/ (Y2n + 'y3nym)2 

degrees of freedom. This approximation improves on the 
one given by the theorem in that it fits three moments 
exactly, rather than only one, for all values of n. 

3. WHICH WEIGHTED-RANKINGS STATISTIC? 

There are several dimensions of choice available in the 
class of weighted-rankings statistics as defined earlier: 
We must decide on the treatment scores ti, the block 
scores bi, and the credibility measure D. Recalling that 
under Ho statistics of the form of W all have expectation 
(m - 1), a reasonable approach is to ask which choices 
would maximize the expectation under H1. Define 

Oki= EtRi -t Qi = k] ; 

this -may be described in words as the expected value of 
the score for the jth treatment, corrected for the mean, 
in the kth-most credible block. Then, 

EECii,IQi = kIc, Q kt = kc']- T X 

and 

E[C] = E[2bQjbQ&,Cii/ (Bj1 - B2)] 
m 

bk bkbOkjOkj/(Bi2- B2)T 

Hence, j n1 k#k' 

E[W] = (m - 1)[1 + E { ( bkOkj)2 
j=1 k=1 

m 

- bk2Okj21/B2T] 
k=1 

or, in matrix notation, 

E[W] = (m - 1)[1 + b'(ee' - A)b/b'bT] 

where b = (b1, .. ., bn)', e = ((0ij)), and 

A = diag( O02) 
j 

Thus, if b is chosen as the characteristic vector corre- 
sponding to the largest characteristic root (say, X1) of 
(88' - A), then E[W] = (m - 1)[1 + X1/T], and 
this is its maximum possible value. 

Define 

j= = 0,k}/n = E[tR,j - Q 
k 

(note E oj = 0); and, assuming o = j2 > 0, define 

ftk = EX jl* 
j 

(note E =k-n). If the credibility measure D has been 
well chosen, then 0 < '1 ? . .. < n; if it is irrelevant, 

then 4'k = 1 for all k. Now consider approximating Okj by 
6k+j. With this approximation, 60' = 1++' where 
+ = (4', ..., *X)' and A = I diag(4Oi2), so 

E[W] = (m - 1)1 + *b'(+p' - diag(4.i2))b/b'bT] 

For large n the matrix diag (,O2) can be neglected, and the 
optimal b = +, the characteristic vector corresponding 
to the largest characteristic root +'+ of P+'; then 

E[W] = (m - 1)[1 + *+'+/T] 

With unweighted rankings, b = (1, . .. , 1)', and 

E[W] = (m - 1)[1 + n'/T] . 

Note that +'+ 2 n, suggesting greater efficiency for 
weighted rankings. 

The approach just outlined suggests that the optimal 
treatment scores are the same for the weighted-rankings 
situation as for the unweighted situation discussed by 
Sen (1968). In what follows, only simple linear scores 
tj = j are used. Unfortunately, no method is yet available 
for calculating the expectations 0k, and hence no analytic 
solution to the problem of choosing block scores bi or 
credibility measure D can be provided. Instead, one must 
rely on intuitive notions, with some guidance from Monte 
Carlo work. 

A particularly simple choice is to take zero-one block 
scores 

b*=O if i= 1, ...,1 

=1 if i=l+1,...,n. 

This amounts to discarding from analysis the I lowest- 
ranking blocks. The great advantage of this choice is 
that it allows use of existing tables. With these scores, 
the null-hypothesis distribution of the weighted statistic 
for n blocks is the same as that of the corresponding 
unweighted statistic for (n - 1) blocks. 

Another simple and intuitive choice-the one suggested 
by Tukey (1957)-is to use linear scores 

bi=i , i= 1, ...,n . 

These scores directly generalize the signed-rank statistic 
to m > 3. With linear scores for both blocks and treat- 
ments, the test statistic becomes 

72S 9(m + 1)n(n + 1) 

m(m + 1)n(n + 1)(2n + 1) 2(2n + 1) 

where 
m n 

S = E [E QiRij]2 
j=1 i-1 

is a convenient integer. Quade (1972) provides tables of 
the exact null-hypothesis distribution of W in this special 
case for the following combinations of m and n: (3, 3), 
(3, 4), (3, 5), (3, 6), (3, 7), (4, 3), (4, 4), and (5, 3). 
Because the successive values of S differ by 2 (or multiples 
of 2), a continuity correction of 1 to S may be employed 
in applying the asymptotic x2 approximations. Also, the 
quantities Bk are givren by well-known formulas for sums 



Quade: Weighted Rankings for Complete Blocks 683 

of powers of integers, where in particular one obtains 

y1n = 1 - 6(3n2 + 3n - 1)/5n(n + 1)(2n + 1) 

72n = 3-yln- 2 + 72(3n4 + 6n3 - 3n + 1)/ 
7n2(n + 1)2(2n + 1)2 

Thus, {[W - (m - 1)]I'lf/Y2n + 5} is distributed as 
x2(a) where a = (m - 1)Yln 3/y2n 2. 

For his doctoral dissertation, Silva (1977) made an 
extensive Monte Carlo investigation into the efficiency 
of weighted-rankings procedures. His results indicate 
considerable advantages for linearly weighted rankings 
over unweighted, both in small experiments and asymp- 
totically for large n, with normal or uniform errors. 
Results were mixed with double-exponential errors. 
Zero-one block scores also were considered, but performed 
poorly. (Linear treatment scores were used exclusively.) 

Finally, with respect to the credibility measure D, 
Silva's Monte Carlo work suggests that the choice may 
not be crucial. He considered the range, standard devia- 
tion, mean deviation, interquartile difference, and mean 
difference, but found at most trivial differences among 
them. Thus, the range may be tentatively recommended 
on the grounds of simplicity. Because the work by Tukey 
(1957) did not come to attention until later, his suggestion 
to use the least difference between any two observations 
within a block was not evaluated. 

The following little example, chosen for ease of cal- 
culation, may help readers to check their understanding 
of the formulas. Suppose there are m = 3 treatments 
and n = 7 blocks, with raw data (Xij) as follows: 

Block 1 2 3 4 5 6 7 
A 52 63 45 53 47 62 49 

Treatment B 45 79 57 51 50 72 52 
C 38 50 89 43 56 49 40 

Standard procedures include ordinary two-way analysis 
of variance, which yields for these data F (2, 12) = 6.841 
and hence P = .010, and Friedman's test, for which 
x2(2) = 6.000 and the exact P = .051. The block rank- 
ing, using ranges or standard deviations, is 4752163. Dis- 
carding the two lowest-ranking blocks, and thereby 
reducing n from 7 to 5, produces Friedman's X2 (2) 
= 8.400 and exact P = .008. Using linear block scores 
yields S = 10,550 and W = 8.157 and, thus, exact 
P = .005 according to Quade (1972). With continuity 
correction, W= 8.150, and taking this as X2(2) gives 
approximate P = .017. For the more complicated three- 
moment approximation, 'y = .761 and 72 = .419, and 
then X2(5.029) = 16.205, giving the more accurate ap- 
proximation P = .006. 

4. CONCLUDING REMARKS 

Let the reader be reminded that all blocks are assumed 
to have equal underlying variability, so that those with 
greater observed variability are more credible with re- 
spect to treatment ordering. If instead it is suspected 
that blocks with greater observed variability may have 
greater underlying variability, then one should perhaps 
weight them less rather than more: Indeed, it may then 
be grossly inefficient to use the method of weighted rank- 
ings (or any of its competitors, including ordinary analysis 
of variance). See Skillings (1978) for work along these 
lines. 

Finally, in this article attention has been restricted to 
experiments with exactly one observation per treatment 
per block. Silva (1977) has extended the method to 
balanced incomplete blocks, and it is conceptually simple 
to extend to other balanced cases. Silva also has con- 
sidered extension to groups of experiments with additive 
block effects within groups but more general block differ- 
ences between groups. 

[Received January 1978. Revised March 1979.] 
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