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necessarily subsume any other column of A; since duplicate
columns are removed in Step 3-b.3. However, at some point in
the reduction of P’ to I’, P’ is reduced to some I'y;*, P’ < I'y;*
and, as shown above, there exists an FPI Q such that Q is the
disjunction of Q’7;* and possibly X; and/or X,. Q' may also have
been reduced to Q" by Step 3-b, Q° < Q”. So now,

coll col2
r Q"

A4, = X, X;
yj* )_’j*

where col 1 is derived from P and col 2 is derived from Q. Since
we are interested in generating I’ X, X;, we will consider two cases.

Case 1: I’ = Q". If P contains X;X;, then an e is placed
below col 1 and X;X,;I’ = I is added to A. However, P =
X, X.P' < X; X;y*I' = X;X;I'’ = I. Therefore, P < I, which
is a contradiction since P is an FPI. Therefore, P cannot contain
X;X;. So an ¢ is placed below col 1, and 7 is not added to A.

Case 2: I’ = Q”. As shown above, P does not contain X;X;.
If Q contains X,JX;, then an e is placed below col 1 and col 2,
and X,X,I’ = I is added to 4. However, 0 = X, X;7,*Q' S
X;X;5*Q" < X, X,0" = X;X;I' = I. Therefore, Q0 < I, whichis
a contradiction since Q is an FPI. Therefore, O cannot contain
X, X;. So an ¢ is placed below col 1 and col 2, and [ is not added
to A.

Therefore, any nonessential FPI of F will not appear in the
function resulting from the algorithm of this paper. Q.E.D.

V. CONCLUSIONS

In this paper we have described an algorithm which finds
precisely the set of essential fuzzy prime implicants of a fuzzy
function in a sum of products form. At present, this is the only
known fuzzy minimization method for disjunctive functions
which does so without the construction of a cover table.

This algorithm is less cumbersome than existing methods of
generating all fuzzy prime implicants in that it does not include
an intermediate expansion of the function. Reduction takes place
only on those phrases which are in the original representation of
the function. For this reason we feel that this is a significant
algorithm, introducing concepts which may prove useful in other
areas of fuzzy set theory.
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Two Modifications of CNN
IVAN TOMEK

Abstract—The condensed nearest-neighbor (CNN) method chooses
samples randomly. This results in a) retention of unnecessary samples
and b) occasional retention of internal rather than boundary samples.
Two modifications of CNN are presented which remove these dis-
advantages by considering only points close to the boundary. Per-
formance is illustrated by an example.

INTRODUCTION

The condensed nearest-neighbor (CNN) method [1] is a
method of preprocessing of the design set for pattern recognition.
1t is based on the nearest-neighbor (NN) rule [2]. Its purpose is
to reduce the size of the original design set D (set of samples
with known membership) by the elimination of certain samples
without affecting significantly the performance of NN classifica-
tion: The NN rule used with E (the new design set E < D),
should give almost the same result as NN used with D.

CNN works as follows:

a) pass « 1,
b) choose x € D randomly, D(1) = D — {x}, E = {x},
¢) D (pass + 1) = &, count « 0,
d) choose x € D (pass) randomly, classify x by NN using E,
e) if classification found in d) agrees with actual membership
of x
then D(pass + 1) = D(pass + 1) U {x}
else E = E U {x}, count « count + 1,
f) D(pass) = D(pass) — {x},
g) if D(pass) # J go to d),
h) if count = 0
then end of algorithm
else pass < pass + 1, go to b).

It is clear that CNN has the following properties. It generates a
design set E 1) which is a subset of the original design set and
2) which classifies (NN rule) all samples in D correctly. Property
1) usually means that E is much smaller than D and thus com-
putationally much better suited for NN classification: it requires
less storage and computation. Property 2) indicates that NN
classification with E is very similar (although not necessarily
identical) to NN classification with D. This is especially true
when D is “representative” (by this we mean that the number of
samples and their distribution is such that the approximation
of the ‘“‘true” underlying probability distribution by relative
frequency of samples is “good”).

The disadvantage of CNN is that it processes samples from D
randomly—moves them from D to E quite randomly at the
beginning and less so later on (when it tends to take samples
closer to the boundary). This means that E contains a) interior
samples which could be eliminated completely without change in
the performance and b) samples which define a boundary on E
but not on D (i.e., samples not essential in D become boundary
points in E). Point a) implies that E is larger than necessary,
point b) causes an undesirable shift between boundaries.

The ideal method of reduction of D would work essentially as
CNN but would only use points close to the decision boundary
to generate E. Unfortunately, the true decision boundary is
unknown by definition. The next best is to use only those points
which generate the piecewise-linear decision boundary in D (as
given by the application of the NN rule). Even this is difficult.
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Fig. 2. Points represented by full symbols should be chosen for the final
design set. They are not retained by Method 1.
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Fig. 3. Step ) in Method 1. y is the nearest neighbor of x (y € F).

Two even less ideal methods will be described in the remainder of
this text. It will be shown that they are considerable improve-
ments upon CNN. They are both based on intuitive approxima-
tions of the notion of a boundary point.

ORDERED CNN

Two methods will now be described which differ from CNN
in that only samples with certain properties are considered for
the reduced design set E.

Method 1

Let xe D, y its nearest neighbor from the opposite class
(y = nno(x)). Then y must be close to the decision boundary
(Fig. 1). These points form the basis of our first modification of
CNN. It has to be noted that they are not by themselves sufficient
in all situations. If we only used them, points from set A4 (Fig. 1)
would never be found, and yet they are necessary for E to
classify all D correctly. To discover points in A we have to
proceed indirectly. If at a given stage of generation of E, z is
classified incorrectly (because no points from A are in E), use
the nearest neighbor of z in E (x in Fig. 1). It belongs to the
“opposite” class (since z is classified incorrectly and z is the
nearest neighbor). Now find the nearest neighbor of # which
classifies z correctly—this is v € 4.

Let us note that while this approach generates E which a)
classifies D correctly and b) contains only boundary points, it
still does not guarantee that all the desirable boundary points
are included (Fig. 2). The algorithm is as follows:
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Flowchart for Method 2 (notation adapted from [3]). C is the set

Fig. 4.
& at the

of pairs of samples accepted for the final design set. C =
beginning.

a) pass = 1,

b) choose x € D randomly, find y = nno(x), D) = D — {y},
E={y,,F# J,

¢) D(pass + 1) = ¢, count = 0,

d) choose x € D(pass) randomly and classify it by NN using E,
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Fig. 5. Example of application of Method 2: The upper pair (X,Y) is
accepted as a member of C, the lower pair is not.
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Fig. 6. Comparison of proposed methods with two others. Example taken from [4] with two classes with uniform distributions
separated by the indicated boundary. Original set (400 samples) is not shown. Results of processing: (a) Method 1 (only subset
C is shown). (b) Method 2. (c) Method from [4]. (d) CNN.
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e) if classification found in d) agrees with actual membership
of x,
then D(pass + 1) = D(pass + 1) U {x}
elseif xe F
then E = EVU {x}, F= F — {x}
else classify x by F,
if classification agrees
then E = Ev {x}, F= F — {x}
else find z = nno(x), z D(pass) and assign it to F: F =
F U {z}, next find « such that dist (#,z) = minv e A4 dist
(v,z) where A = {w | w e D(pass), dist (x,w) < dist (x,z),
class (w) = class (x)}, E = E U {u}.

Steps f), g), and h) are the same as in CNN.

A part of step e) is illustrated in Fig. 3. It is clear that Method
1 guarantees that E classifies all samples of D correctly. (Note
that set 4 in step e) is always nonempty since x € A4.)

Method 2

The method works as CNN but instead of moving to E
samples from the complete D, only a subset of D (C < D) is
used. Subset C is chosen according to the flowchart in Fig. 4.
(It is assumed that x(i), i = 1, N are all samples of D belonging
to class 1 and y(i), i = 1, M all samples of D belonging to
class 2.) See also Fig. 5.

EXPERIMENTAL RESULTS

For illustration and comparison with other methods, an
example presented in [4] has been repeated. Results are shown in
Fig. 6. The original design set consists of 2 classes of 200 two-
dimensional samples each. Distribution is uniform with irregular
decision boundaries as indicated.

CONCLUSION

Both proposed modifications work better than CNN since
a) the resulting design set is smaller and b) the retained boundary
points are better chosen (close to the decision boundary).
Method 2 has another potentially important property: It finds
pairs of boundary points which participate in the formation of
the (piecewise-linear) boundary. This information might be very
useful in the development of more powerful methods of clas-
sification by piecewise-linear classifiers. Such methods could use
these pairs to generate progressively simpler descriptions of
acceptably accurate approximations of the original completely
specified boundaries. Note also that the choice of subset C is
order independent.

Unlike the other existing methods of reduction of the design
set [4], [5], the proposed methods explicitly seek to find bound-
ary points. This results in retaining points closer to the boundary
and also in retaining fewer points.

Wilson [6] introduced an editing method intended to improve
the classification. As a by-product, this method also insigni-
ficantly reduces the size of the design set (by eliminating most
samples on the “wrong side” of the boundary). When, however,
the edited set is processed by CNN or other methods, the result
is reduction much more significant than that attainable on the
original set. The reason for this is that the edited design set is
much “cleaner” than the original one. This is also discussed in [7].

APPENDIX

Theorem: All points in D are correctly classified by the NN
rule using subset C generated by Method 2.
Proof:
a) All points from C are classified correctly.
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Fig. 7. Illustration for proof in Appendix.

b) Let x; € D — C, be classified incorrectly. Let y € C be its
nearest neighbor. Assume x € class 1, so that yeclass 2. Let
z = 0.5%(x; + y) (Fig. 7). Since x, € C there must be a point
x, € D closer to z than x,; (otherwise x would belong to C by
definition). x, € C is impossible since y is nearest to x, of all
points of C and dist (x,,x;) < dist (¥,x;).

Now either

1) x, eclass 2. Since x, € C this means that there is another
point (x5 € D) inside S(x,x,) < (xy,)); otherwise x, € C which
is a contradiction.

(S(x1,x,) is the bigger sphere centered at 0.5%(x; + x3) with
radius 0.5* dist (x;,X,)). This either leads us back to the begin-
ning of argument 1 with x, replaced by x3, or to case 2. In both
situations we arrive at a contradiction due to the finite size of D.

2) x, € Cy, and we are in the same situation as at the beginning
of the proof, with x; replaced by x,, but dist (x,,») < dist (xy, »).
By induction and the finiteness of D it leads to a contradiction.

This completes the proof.
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Polynomial Interpolation Errors for Band-Limited Random
Signals

ROBERT B. KERR

Abstract—One method of digitally simulating a differential system in
real time involves approximating the input signals by polynomial inter-
polations between their sample values. In this note, the statistical error
in various polynomial interpolations of band-limited random signals
sampled at the Nyquist rate is investigated. The time average of the mean-
squared error is calculated for zero-, first-, and second-order holds, with
best results obtained for the first-order hold (linear interpolation).

INTRODUCTION

Some approximation is required if one is to simulate the
behavior of a differential system, driven by continuous-time
analog forcing functions, with a digital computer. One of the
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