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Finding Prototypes For Nearest Neighbor ClassiFiers
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Abstract-A nearest neighbor classifier is one which assigns a
pattern to the class of the nearest prototype. An algorithm is given
to find prototypes for a nearest neighbor classifier. The idea is to
start with every sample in a training set as a prototype, and then
successively merge any two nearest prototypes of the same class
so long as the recognition rate is not downgraded. The algorithm
is very effective. For example, when it was applied to a training set
of 514 cases of liver disease, only 34 prototypes were found necessary
to achieve the same recognition rate as the one using the 514 samples
of the training set as prototypes. Furthermore, the number of proto-
types in the algorithm need not be specified beforehand.

Index Terms-Discriminant functions, generation of prototypes,
minimal spanning tree algorithm, nearest neighbor classifiers,
pattern recognition, piecewise linear classifiers, recognition rates,
test sets, training sets.

I. INTRODUCTION

ASSUME that an n-dimensional vector in a Euclidean
space is a pattern. Let us also assume that there are

r possible classes. The problem of designing a classifier
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for pattern recognition can be stated as follows: find r
functions, g1,. ..,g, , such that a pattern x is in class i if
gi(x) is the optimal value among gi (x),... ,gg, (x). Each
of these g9,.-.--,g is called a discriminant function [6].
There are many types of discriminant functions. In this
paper, we shall consider classifiers based on nearest neigh-
bor discriminant functions described below.
For i = 1,- --,r, let pi1,. ..,piki be vectors in an n-di-

mensional Euclidean space En. If a discriminant function
gi is of the form

gi(x) = min {d(x,pil), *- ,d(x,piki) I (1)

where d(x,pi') is a distance between x and pi3, gi is called
a nearest neighbor discriminant function. Note that
pi',--.-,piki are often called prototypes (reference points)
for class i. A classifier based on a set of nearest neighbor
discriminant functions is called a nearest neighbor classifier
[2], [5]. A nearest neighbor classifier assigns an unknown
pattern to the class of the closest prototype. That is, a
pattern x is assigned to class i if gi(x) is the smallest value
among g1(x),--.g. (x). Although in a nearest neighbor
classifier any distance measurement can be used, we shall
restrict ourselves to the Euclidean distance.

In the sequel, for a pattern x, we shall use class (x)
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to denote the class that x belongs to. Given a set T of
sample patterns whose classes are known, our task is to
design a nearest neighbor classifier which can classify most
of the patterns in T correctly. T is usually called a training
set. To accomplish this task, we need to determine not
only the number ki of prototypes but also prototypes
pti,,,pi for each i = 1,..,r. Obviously, the simplest
way to obtain a nearest neighbor classifier is to use all
points in the training set T as prototypes, and to assign
an unknown pattern to the class of the closest point in
T. A nearest neighbor classifier designed in this fashion
achieves the highest recognition rate possible for the
training set. However, this nearest neighbor classifier has
one major drawback. That is, to classify an unknown
pattern x, it requires the computation of distances be-
tween x and all points in the training set. In practice,
since a training set T must contain all possible variations
of patterns, T is usually very large. For example, in charac-
ter recognition, it is not surprising that a training set con-
tains thousands of sample patterns. Therefore, while
maintaining the highest possible recognition rate, we
would like to use a small number of prototypes. In this
paper, we shall present a method to solve this problem.

II. AN ALGORITHM FOR DESIGNING A
NEAREST NEIGHBOR CLASSIFIER

Suppose a training set T is given as T = {t',. ,tm}.
The idea of our algorithm is as follows: we start with
every point in T as a prototype. We then successively
merge any two closest prototypes pl and p2 of the same
class (i.e., replace pl and p2 by a new prototype p) if
the merging will not downgrade the classification of pat-
terns in T. The new prototype p may be simply the average
vector of pl and p2, or the average vector of weighted
pl and p2. The -class of the new prototype is the same as
the one of pl and p2. We continue the merging process
until the number of incorrect classifications of patterns
in T starts to increase. We give a simple example to il-
lustrate the above idea. Suppose we are given a training
set of samples shown in Fig. 1 (a). We start with prototypes
shown in Fig. 1 (b) which is the same as Fig. 1 (a) . Note
that a nearest neighbor classifier using the prototypes of
Fig. 1 (b) can correctly classify all patterns in Fig. 1 (a).
Now, since prototypes A and B are the closest and are of
the same class, we try to merge them. If A and B are
replaced by a new prototype H, all patterns in Fig. 1 (a)
are still correctly classified. Therefore, replacing A and
B by H, we obtain a new set of prototypes shown in
Fig. l(c). Similarly, replacing H and C by I, we obtain
Fig. 1 (d). Merging F and G to J, we obtain Fig. 1 (e).
Finally, replacing D and E by K, we obtain Fig. 1(f).
Using prototypes shown in Fig. 1(f), every pattern in
Fig. 1(a) will still be correctly classified. However, if
we continue to merge I and J, some patterns in Fig. 1 (a)
will be incorrectly classified. Therefore, we stop the merg-
ing process and the points shown in Fig. 1 (f) will be used
as the prototypes in a nearest neighbor classifier.
We now give an efficient algorithm to carry out the

(a)

A B C D E F G
(b) _ o

H C D E F G
(c) _ _ _ _ _

I D E F G
(d) ____

I D E J
(e) 0 0 _

I K J
(f) __

Fig. 1.

merging process. This algorithm is similar to the minimal
spanning tree algorithm of Prim [7]. The minimal span-
ning tree algorithm is also used in the related problem of
cluster analysis [9]. Our algorithm is specially tailored
for pattern recognition, and has to deal with the generation
of new prototypes and the associated problems. Roughly,
our algorithm can be stated as follows:

Given a training set T, let initial prototypes be just
the points of T. At any stage the prototypes belong to one
of two sets-set A or set B. Initially, A is empty and B
is equal to T. We start with an arbitrary point in B and
initially assign it to A. Find a point p in A and a point
q in B such that the distance between p and q is the
shortest among all distances between points of A and
points of B. Try to merge p and q. That is, if p and q are
of the same class, compute a vector p* in terms of p and
q. If replacing p and q by p* does not decrease the recog-
nition rate for T, merging is successful. In this case, delete
p and q from A and B, respectively, and put p* into A,
and the procedure is repeated again. In the case that
p and q can not be merged, i.e., if either p and q are not
of the same class or merging is unsuccessful, move q from
B to A, and the procedure is repeated. When B becomes
empty, recycle the whole procedure by letting B be the
final A obtained from the previous cycle, and,by resetting
A to the emptylset. This recycling is stopped when no new
merged prototypes are obtained. The final prototypes in
A are then used in a nearest neighbor classifier.
The above procedure W* is just an outline. Some im-

portant parts of W* will be discussed in detail as follows:
1) In procedure W*, we have to compute p* in terms

of p and q. There are several ways to compute p*. In this
paper, we define p* to be the average of weighted p and q.
That is, we first let every initial prototype be associated
with 1. If p and q are associated with integersM and N, re-
spectively, p* is defined as p* = (Mp + Nq) /(M + N),
and is associated with the integer (M + N). Note that
p* is the average of all initial prototypes contributed to
p and q.

2) In procedure W*, we need to find a point p in set A
and a point q in set B such that the distance between p
and q is the shortest among all distances between points
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of A and points of B. An efficient way to find such a pair
of points p and q is to use an algorithm similar to the
minimal spanning tree algorithm given by Prim [7] and
implemented by the program of Ross [8]. The idea is to
store the distances between all points of B and their re-
spective nearest points in A. Every time a new point is
put into A, or A is changed, these distances are updated.
Thus, from these distances, it is very fast to find two
nearest points p and q such that p is in A and q is in B.

3) Once a pair of nearest points p and q is found, where
p C A and q C B, we need to test whether or not we can
merge p and q. In this paper, we give an efficient method
to perform this. The idea of our method is to associate
with every point ti in the training set T= {tl,...t
two distances wi and bi, where

-wi distance between ti and the nearest prototype of
the same class as the class of ti;

bi distance between ti and the nearest prototype of
the different class from the class of ti.

The initial values of wi,-wm and bi, .-,bm can be
obtained by the method described in the next paragraph.
We first discuss how these values can be updated. Suppose
p and q belong to class k, i.e., class (p) = class (q) = k.
If p and q are merged to p*, only some of w1,* . . ,Wm and
b1, -. ,bm need to be updated. For i = 1,.. ,m, wi should
be updated only if class (ti) = k. In this case, if neither
p nor q is the nearest prototype to ti, wi is updated to
be d(ti,p*) if d(ti,p*) is smaller than the present wi, and is
unchanged otherwise. If p or q is the nearest prototype to
ti, let wi be the smallest distance among all distances
between ti and prototypes different from p and q which
are of the same class of ti. On the other hand, for
j = 1I... m, bi should be updated only if class (ti) # k.
In this case, if neither p nor q is the nearest prototype to
ti, bi is updated to be d(ti,p*) if d(ti,p*) is smaller than
the present bi, and is unchanged otherwise. If p or q is
the nearest prototype to ti, let bi be the smallest distance
among all distances between ti and prototypes different
from p and q which are of a different class from ti. We
note that for a pattern ti in T to be correctly classified, wi
must be less than bi. To test whether or not p and q can
be merged to p*, we try to use the above method to up-
date wi, * * ,wm and b1,* * *,bm to, say, wl', ...*w' and
bi',t ,bm', respectively. If there exists such a condition
that wi < bi and wi' > bi', i.e., ti is correctly classified
by the present set of prototypes but incorrectly classified
by the would-be new set of prototypes, then p and q
can not be merged. Otherwise, merging is to be performed.
Now, we describe how the initial values of wi,- w.

and b1, * * *,bm can be calculated as follows.
a) At the beginning of algorithm W*, the prototypes

are just points in the training set T. Therefore, since the
nearest prototype to ti of T is ti itself, wi = 0 for

b) Initially, t1,... ,tm are both samples and prototypes.
In this case, bi- -,bm can be efficiently calculated by an
algorithm which is a modified version of the minimal

t t3 t t5 t6
(al)

(bl

(c)

(d)

(e)

(ff)l~
V VV V V

(g) n

Fig. 2.

spanning tree algorithm. That is, at any stage, tI,... ,tm
belong to one of two sets-set A* and set B*. Initially,
A* is empty and B* is T. Also, initially set bi = oo for
i = 1,*** ,m. Then the following steps are taken.

Step 1: Start with an arbitrary point ti in B* and as-
sign it to A*.

Step 2: For all points tP in B* such that class (tP) $
class (ti), update bk to be the distance d (tk,ti) between
tk and tU if this distance is smaller than the present bk.
Otherwise, bk is-unchanged.

Step 3: Among all points in B*, find a point V which
has the smallest b8 associated with it.

Step 4: If tU is not the nearest point to ts such that
the classes of ti and ts are different, go to Step 6. Other-
wise, continue.

Step 5: Check whether or not d(ti,t8) is less than bj.
If no, go to Step 6. If yes, let bj = d(tJ,tP) and continue.

Step 6: Let j = s, move ts from B* to A*, and go to
Step 2 until B* is empty. When B* is empty, the final
bi, * * *,bm are the desired ones.
Example: Consider the sample points shown in Fig.

2(a), where points t1 and t2 are in class 1, t3 and- class 2,
and t5 and t6 class 3. Let these points also be prototypes.
A:t the beginning, A* is empty and B* = {t1, ,.
Suppose, in Step 1 of the above algorithm, we start with
tl and initially assign it to A*. After going through Steps
1 to 2, we should obtain b1,- - ,b6 shown in Fig. 2(b),
where bi is indicated by a distance shown by an arc
leaving from ti and entering some nearest point (of the
different class) so far found by the algorithm. If no arc
is leaving ti, that means bi = oo, i = 1, ,6. Note that
points assigned to A* are indicated by check marks. In
Fig. 2(b), since b3 is the smallest, t3 is assigned to A*,
and Steps 2-6 are repeated. Thus we obtain b1, ,b6
shown in Fig. 2(c). Now, b2 is the smallest. Therefore,
t2 is assigned to A* and Steps 2-6 are repeated again.
This is repeated again and again until B* is empty. Fig.
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Fig. 3.

2(b)-(g) shows the sequence of bi, ,bs being updated.
We see that the final bi,.- ,b6 shown in Fig. 2(g) are the
correct distances between t',- ,t6 and their respective
nearest points of different classes.
The detailed flowchart of the algorithm W* is shown in

Fig. 3.

III. EXPERIMENTS
The algorithm W* given in the above section was imple-

mented by a Fortran program. We give the following
examples to show how well the program worked.
Example 1: Consider a training set T of 2-dimensional

sanples shown in Fig. 4(a). There are three classes. Each
class has two clusters. There are all together 66 samples.
We initially use all of these 66 samples as prototypes.
However, after the program was applied to these proto-

.(a) 0 0 00 0 00

0 00a0 00 0

A 0~~aa0 00 0

AA ~~0 0 0

A A6 00
a

0 0

0 0 0l Prototypes

0

0 0a

(b) Prototypes o o o00

0a0 0 000

A
~ ~ 00000o o

0 a

Fig. 4.

types, the number of prototypes was reduced to only 6.

The 6 prototypes are shown in Fig. 4(b). The recognition

rate for set T based on these 6 prototypes is the same as

the one based on the initial 66 prototypes. Nevertheless,

to classify a pattern, we now only have to compute 6

distances, instead of 66 distances initially needed. This

is a saving of about 91 percent in computation.

Example 2: In this example, we consider the. iris data

used by Fisher [4]. Four measurements, namely, sepal

length, sepal width, petal length, and petal width, were

made on an iris flower. There are three classes (varieties)
of irTis flowers, namely, Iris setosa, Iris versicolor, and

Iris v'irg'inilca. Fifty samples were obtained from each of

the three classes. Thus, the training set consists of 150

samples. Our program started with 150 prototypes.
However, after the program finished the job, only 14 proto-

types were found to be needed to have the same recogni-

tion rate for the training set as the one using 150 proto-

types. This is a reduction by about 90 percent.
Example 3: Consider the data set shown in Fig. 5(a).

This set is similar to the one considered in [5]. We con-

sidered only 476 points because we were unable to generate
482 points as used by Hart. We ran our program on this
set and reduced the number of prototypes to 17. The final

prototypes and the decision boundaries are shownin

Fig. 5(b). Our results are comparable with Hart's. In

fact, in algorithm Wtshown in Fig. 3, if we arbitrar)y

0 0

0 0 0

0 0 0 a A

0 0 a a A a

0 a a a

0 a a

00 0
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TABLE I
LiST OF SYMPTOMS

Sypo ypo ypoSymptom
Number

1 Heavy alcoholic intake
2 Nausea
3 Weight loss
4 Abdominal pain
5 Malnutrition
6 Jaundice
7 Ascites
8 Edema
9 Abdominal collaterals

10 Spider nevi
11 Gynecomatis
12 Testicular atrophy
13 Hair loss
14 Palmar erythems
15 Splenomegy
16 Liver tenderness
17 Liver nodularity
18 Abnormal alkaline
19 Necrosis: diff. or focal
20 Necrosis: Cent. or portal
21 Bile thrombi
22 Regeneration: bile ducts
23 Regeneration: retic. endo.

SyNptom
Number

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Regeneration: paren. or mitoses
Degeneration: diff. or focal
Degeneration: central or portal
Cells: diff. or focal
Cells: Central or portal
Cells: polys
Cells: lymphs
Cells: monos. or epithel
Cells: eos
Cells: plasma or giant
Fat: diff. or zonal
Fat: 1-2+ or 3-4+
Pigment: Iron or bile
Pigment: paren, or gen.
Pigment: kupff. or portal
Mall. B. or culture
Fibrosis: diff. or focal
Fibrosis: portal or cent.
Stool color
Body temperature
l'Bilirubin
Total bilirubin

TABLE II
LIST OF DISEASES

Number in Number in
Disease name Disease number training test

set set

Normal liver 1 103 26
Laennec' s cirrhosis 2 345 80
Biliary cirrhosis 3 66 14

Total 514 120

.

0 5 10

(b)

Fig. 5.

15 20

select a point p in A and a point q in B, and let p* be p,

instead of (Mp + Nq) / (M + N), then algorithm W*
works similarly to Hart's algorithm except it is based
on a different merging criterion. In algorithm W*, we

choose a pair of nearest neighbors p and q to merge be-
cause we believe that it is more likely to obtain a successful
merging for p and q than for any random pair of points.

IV. THE DIAGNOSIS OF LIVER DISEASE

In this section, we shall consider a set of liver disease
data. This set is a part of a large file used by Croft in
his study [3]. Because of the limit of computer memory,

we used only cases with 1 of the first 3 diseases out of 20
considered by Croft. Since there are missing data about
some symptoms in Croft's file, we disregarded these
symptoms and used a slightly different list of symptoms
shown in Table I. After cases with missing information
were eliminated from the training and test samples in
Croft's file, the number of cases in each class for both our

training and test sets is shown in Table II. Each case was

checked for the presence or absence of the symptoms

listed in Table I. We coded the presence by 1 and the
absence by 0. Thus each case was characterized by a

45-dimensional binary vector. First, starting with all 514
cases of the training set as prototypes, we ran the program
on a PDP-10 time sharing system. After the program was

finished, 34 prototypes were produced. These 34 proto-
types were then used to classify patterns in both the

trang and test sets. The recognition rates using the
514 initial prototypes were compared with the ones using
the 34 final prototypes. These are given in Table III.

From this table, we can see that a nearest neighbor
clasgifier based on the 34 prototypes still gives high recog-
nition rates for both the training and test sets, even though
the number of the prototypes is only about 6 percent of

the 514 initial prototypes.

V. CONCLUSION

We have given an algorithm for finding a small number
of prototypes for a nearest neighbor classifier without
sacrificing the recognition rate. The experimental results
indicate that the algorithm is effective.
We note that if a classifier which decides membership

of a pattern by a majority vote of the k nearest prototypes,
we call it a k-nearest neighbor classifier [6]. A nearest

neighbor classifier is just a 1-nearest neighbor one. It is

easy to see that the algorithm given in this paper can be

slightly modified to find prototypes for a k-nearest neigh-
bor classifier.
Another point.we would like to mention here is that a

0

020

15

10

Symptom symptom
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TABLE III
RECOGNITION RATES FOR LIVER DISEASE DATA

Training Set Test Set
(514 cases) (120 cases)

Recognition Error Recognition Error
Classifiers Rate Rate Rate Rate

The Nearest Neighbor
Classifier Using 100 0 92.5 7.5
514 Initial Prototypes

The Nearest Neighbor
Classifier Using 100 0 91.7 8.3
34 Final Prototypes

nearest neighbor classifier can be changed into a piecewise
linear classifier [1], [6]. That is, in the nearest neighbor
discriminant function gi given in (1) of Section I, if we
replace every d(x,pij) by (-xzpij + 0.5pij*pij), we will
obtain a piecewise linear discriminant function, denoted
by gj*. It can be shown that the classification decision of
a pattern based on gi*, * * ,g,* is the same as the one based
on gi,--.-,g,. Therefore, we can use the algorithm given
here to find piecewise linear discriminant functions. That
is, first, use the algorithm to find nearest neighbor dis-
criminant functions, and then change them into piece-
wise linear ones. In this way, the number of linear func-
tions in the piecewise linear discriminant functions need
not be specified beforehand.
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