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Asymptotic Properties of Nearest Neighbor
Rules Using Edited Data

DENNIS L. WILSON, MEMBER, IEEE

Abstract-The convergence properties of a nearest neighbor rule that
uses an editing procedure to reduce the number of preclassified samples
and to improve the performance of the rule are developed. Editing of the
preclassified samples using the three-nearest neighbor rule followed by
classification using the single-nearest neighbor rule with the remaining
preclassified samples appears to produce a decision procedure whose risk
approaches the Bayes' risk quite closely in many problems with only a

few preclassified samples. The asymptotic risk of the nearest neighbor
rules and the nearest neighbor rules using edited preclassified samples is
calculated for several problems.

1. INTRODUCTION

A BASIC class of decision problems which includes a

large number of practical problems can be charac-
terized in the following way. I) There is a sample to be
classified. 2) There are already classified samples from the
same distributions as the sample to be classified with which
a comparison can be made in making a decision. 3) There
is no additional information about the distributions of any

of the random variables involved other than the information
contained in the preclassified samples. 4) There is a measure

of distance between samples. Examples of problems having
these characteristics are the problems of handwritten charac-
ter recognition and automatic decoding of manual Morse.
In each of these problems preclassified samples may be
provided by a man, and a simple metric can be devised.

"Nearest neighbor rules" are a collection of simple rules
which can have very good performance with only a few
preclassified samples. We shall develop the asymptotic per-

formance of a nearest neighbor rule using editing. The
asymptotic performance is the performance when the
number of preclassified samples is very large.

Nearest neighbor rules were originally suggested for
solution of problems of this type by Fix and Hodges [I] in

1952. Nearest neighbor rules are practically always in-

cluded in papers which survey pattern recognition, e.g.,

Sebestyen [2], Nilsson [3], Rosen [4], Nagy [5], and Ho
and Agrawala [6]. Analysis of the properties of the nearest
neighbor rules was started by Fix and Hodges [I] and
continued by Cover and Hart [7] and Whitney and Dwyer
[8]. Cover [9] summarizes many of the properties of the
nearest neighbor rules. Patrick and Fischer [10] generalize
the nearest neighbor rules to include weighting of different
types of error and problems "in which the training samples
available are not in the same proportions as the a priori
class probabilities" by using the concept of tolerance regions.
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The nearest neighbor decision procedures use the sample
to be classified and the set of preclassified samples in making
a decision.

The Sample to Be Classified
Let Xe Ed be a random variable generated as follows.

Select 0 = I with probability t1 and 0 = 2 with prob-
ability t12. Given 0, select X from a population with density
fi(x) when 0 = I and from a population with densityf2(x)
when 0 = 2 (Ed is a d-dimensional Euclidean space).

The Preclassified Samples
Let (Xi,Oi), i = 1,2, ,N, be generated independently

as follows. Select Oi = I with probability ?1I and 0, = 2
with probability 72. Given 0,, select Xi EEd from a popula-
tion with densityf1(x) when Oi = I and from a population
f2(x) when Oi = 2. The set {(Xi,O,)} constitutes the set of
preclassified samples.
Two types of rules will be discussed: nearest neighbor

rules and modified nearest neighbor rules.
To make a decision using the K-nearest neighbor rule:

Select from among the preclassified samples of the K-nearest
neighbors of the sample to be classified. Select the class
represented by the largest number of the K-nearest neigh-
bors. Ties are to be broken randomly.
To make a decision using the modified K-nearest neighbor

rule:

a) For each i,
I) find the K-nearest neighbors to X, among

(XI,X2, - ,Xi- ,,X,+ X, ,XN};
2) find the class 0 associated with the largest number

of points among the K-nearest neighbors, break-
ing ties randomly when they occur.

b) Edit the set {(X,,O,)} by deleting (Xi,O,) whenever 0,
does not agree with the largest number of the
K-nearest neighbors as determined in the foregoing.

Make a decision concerning a new sample using the modified
K-nearest neighbor rule by using the single-nearest neighbor
rule with the reduced set of preclassified samples.

Examples of the Power of the Nearest Neighbor Rules
The nearest neighbor rules can be very powerful rules,

useful in many problems. Figs. 1-4 demonstrate the asymp-
totic performance of the K-nearest neighbor rule and the
modified K-nearest neighbor rule in four different problems.
Fig. I compares the performance of the two types of rules
with the performance of Bayes' rule when population one
is a logistic distribution centered at - I and population two
is a logistic distribution centered at + 1. The distribution
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Fig. 1. Asymptotic risk of using K-nearest neighor rule and the

modified K-nearest neighbor rule compared to Bayes' risk when
nl = q2 = 0.5 and population one is logistic centered at - 1 and
population two is logistic centered at + 1.
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Fig. 3. Asymptotic risk of using K-nearest neighbor rule and modified
K-nearest neighbor rule compared to Bayes' risk when 711 = 112 =
0.5 and population one is N(O, 1) and population two is N(O, 4).
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Fig. 2. Asymptotic risk of using K-nearest neighbor rule and modi-
fied K-nearest neighbor rule compared to Bayes' risk when 71 =
?I2 = 0.5 and population one is N(O, I) and population two is
N(l, 1).
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Fig. 4. Asymptotic risk of using K-nearest neighbor rule and modi-
fied K-nearest neighbor rule compared to Bayes' risk when ,1 =
'12 = 0.5 and population one is N(2, 1) and population two is
N(-2, 1).

functions for these two populations are

(x) exp (-(x- 1))

[1 + exp (-1(x_- ))]2

f(x)- exp (-(x + 1))
f2 _X= ..

[1 + exp(-(x + 1))]2

Fig. 2 compares asymptotic performance of the nearest
neighbor rules with the performance of Bayes' rule when
population one is a normal distribution centered at 0 with
variance I (N(O, 1)) and population two is a normal distribu-
tion centered at 1 with variance 1 (N(l,l)).

Fig. 3 compares the asymptotic performance of the nearest
neighbor rules with the performance of Bayes' rule when
population one is a normal distribution with mean 0 and

variance 1 (N(O,I)) and population two is a normal dis-
tribution with mean 0 and variance 4 (N(0,4)).

In each of these three figures the risk of using the nearest
neighbor rules decreases as the number of neighbors used
increases. The risk of using the modified nearest neighbor
rule is about halfway between the risk of using the nearest
neighbor rule with the same number of neighbors and the
Bayes' risk.

Fig. 4 presents a more realistic situation. The error rate
is on the order of 2 or 3 per 100 trials as compared to the
error rate of 2 or 3 out of 10 trials in Figs. 1-3. Most decision
makers cannot afford to make 2 or 3 errors in 10 trials.
They will search for more data on which to base the decision
if the risk level is high. In Fig. 4 population one is a normal
distribution centered at -2 with variance I (N(-2,1)) and
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population two is a normal distribution centered at + 2
with variance 1 (N(+ 2,1)). For this problem the asymptotic
risk of using the single-nearest neighbor rule is large com-
pared to the risk of using the other rules. The risk of using
the modified three-nearest neighbor rule is about 10 percent
more than the Bayes' risk.

It is interesting to consider how many trials in making a
decision would be necessary to determine whether a
decision maker was using the Bayes' rule or the modified
three-nearest neighbor rule. For the problem where the
Bayes' risk is about 0.01 and the risk of the modified
nearest neighbor rule is about 10 percent greater, it would
be necessary to check the accuracy of about 10 000 decisions
before there was enough information to begin to estimate
the probabilities of error well enough to tell which rule was
being used; to draw a reliable conclusion would require
about 100 000 sample decisions.
Some example calculations indicate that the number of

preclassified samples required for the risk to be close to the
asymptotic risk is on the order of 50 for the single-nearest
neighbor rule in the problems of Figs. 1-4. (These results
are to be presented in a following paper on conversion
rates.) This suggests that roughly K times 50 samples would
be required to be close to the asymptotic risk for the
K-nearest neighbor rule and for the modified K-nearest
neighbor rule.

II. PRELIMINARY DEVELOPMENT
An Induced Distribution
The nearest neighbor rules depend only on the distances

from the sample to be classified to the preclassified samples,
and not on the direction. The induced distribution of the
distances from the sample to be classified to a preclassified
sample will be useful. This induced distribution is developed
as follows.

Let Zi(x) = lIXi - xll, Z(x) = IIX - xll, and Zi*
IXi- X 11, where IIA - B 11 is the usual Euclidean measure
of distance from point A to point B on Ed. The Zi(x),
i = 1,2, .. ,N, are independent and identically distributed;
the Zj* are not. The induced probability measure condi-
tioned on X = x is specified by the conditional cumulative
distribution function (cdf)

Fz((z x) Fz(x)(z X = x, 0 = 1) = J, f1(x) dx

FZ(2)(z x) Fz(x)(z XX = x, 0 = 2) = f f2(x) dx

where the notation S(x,z) indicates that the integral is to
be taken over the volume of the hypersphere centered at
X = x with radius z. The set {(Zj*,Oj)} constitutes a
description of the preclassified samples in terms of their
distances from the sample to be classified.

A Posteriori Probabilities of the Class Given the Sample
Value

Given X = x, the probability that the associated class is
class I or class 2 is calculated by application of Bayes' rule.

For example,

Pl(x)-P(0 = I X= X)- l(x
nlf1(X) + n2f2(X)

Similarly,

p1(X,z) P(0 = 1 I Z(x) = z)
_lfi(z I x)

q1f1(Z I X) + 12f2(z I X)

where fi(z x) is the pdf corresponding to Fz(1)(z x) and
f2(Z x) is the pdf corresponding to F(2)(z I x).
Decisions and the Associated Risk

A possible decision rule is described by the probability
0(i x) of selecting 0 = i conditioned on the value of X.
Conditioning on the preclassified sample values will also be
used. The risk associated with using a decision rule is given
by

R = [p,(x)q(2 x)L(2 I 1)

+ P2(X)0(l x)L(l 1 2)] dF(x)
where L(j I i) is the loss when the decision is 0 = j given
that i is the true state and F(x) = j q?iFx(x 0 = i). When
the loss is one for each type of error, the risk is simply the
probability of error:

R = f [P1(X)(1 - (1 x)) + (1 - pM(x))(l x)] dF(x).

The nearest neighbor rules also depend upon the pre-
classified sample set. Where necessary, the dependence will
be made explicit.

Bayes' Rule

The Bayes' rule may be developed by using the expression
for the risk. To minimize the risk, minimize the integrand
of the risk integral, the local risk, at each point x. To
minimize the local risk, select 1(1 I x) = 1 whenever
p2(x)L(l 2) < p,(x)L(21 1), select 0(2 1 x)= 1 whenever
p2(x)L(l 12) > p,(x)L(2 1 1), and make the decision in an

arbitrary way when p2(x)L(l 2) = p1(x)L(2 1).
III. ASYMPTOTIC PROPERTIES OF NEAREST NEIGHBOR

RULES
The characteristics of the nearest neighbor rules using

very large numbers of preclassified samples have constituted
most of the well-known results. (See Fix and Hodges [1],
Cover and Hart [7], and Whitney and Dwyer [8].) This
section derives new asymptotic results for the modified
nearest neighbor rules and incidentally rederives most of
the already known asymptotic results for the K-nearest
neighbor rules.
The asymptotic results that are to be derived will be in

terms of convergence "in probability." According to a
standard definition, a random variable YN is said to con-
verge in probability to Y(YN P Y) if, for any e > 0,

P[IIYN -Y II > -El] 0 as N -+Oo.
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A more useful concept of "in probability" has been de-
veloped by Pratt [14]. Appendix I presents Pratt's definition
of "in probability" and develops several theorems. Two
theorems which will be useful in this section are reproduced
as follows (proofs are found in Appendix I).

Theorem I

If YN Y, Y is finite with probability one, and
P[Ye Dg] = 0, where Dg is the set of discontinuities of
the function 9, then g(YN) g(Y).

Theorem I' (Slutsky's Theorem)

If Y1 c and g is continuous at c, then g(Y1) g(c).
We shall use these theorems to show that whenever the

neighbors involved in the decision converge in probability
to the sample to be classified, the probability that the
neighbors come from a given class, the probability of
deciding that a given class is the true class, and the local
risk will converge to easily calculated asymptotic values.

Let Xl'](X,N) be the neighbor which is the ith distant
neighbor from X when there are N preclassified samples.
Also, let LN be a sequence of numbers such that LN = o(N).
(That is, LN/N 0. See Appendix I for a careful definition

of o(N) and O(N).) We begin showing the convergence

properties of the nearest neighbor rules by presenting a

theorem demonstrating that X[LNI(X,N) X. This theorem
concerning convergence before editing is included for
completeness.
Note that LN = i, where i is a constant independent of

N, is a sequence of numbers with the required properties.
Those properties which hold for XKLNI(X,N) will also hold
for XK'k(XN).

Convergence Properties of the Nearest Neighbors

Let ZU1* be the ith order statistic of the random variables
Zr*, i = 152, ,N. Let S(x) be an open neighborhood of
x. The following theorem is suggested by the work of
Cover and Hart [7].

Theorem 2

For LN = o(N), XELN](X,N) X as N -+ oo.

This theorem is proved in Appendix II. A major step in
the proof of the theorem was the proof that the nearest
neighbors converged to the sample value X = x. This fact
will be important in following theorems. The conditions
under which it holds are stated carefully in the next theorem
which has already been proved.

Theorem 2'

If there does not exist a neighborhood S(x) such that
P[S] = 0, then for LN = o(N), X[LN](x,N) P

x as N -+ oo.

Convergence After Editing

Editing of the preclassified samples for the modified
nearest neighbor rule proceeds by determining whether the
indicated decision for the K-nearest neighbor rules agrees

with the actual classification for each of the preclassified
samples. After all of the preclassified samples are con-

sidered, those samples for which the decision does not
agree with the true classification are deleted.

Let XEK"11(X,N) be the sample which is nearest to X
after editing. Also, let Df1 and Df2 be the set of discon-
tinuities off1(x) andf2(x), respectively.

Theorem 3

If P[XE Df1] = Oand P[XE Df2] = 0, then

XEK[1](X,N) A X as N oo.

The proof of the theorem is long and tedious, so in spite
of its importance it has been relegated to Appendix III. At
first glance, the proof of the theorem seems easy, and would
be very easy if the editing of the preclassified samples
occurred independently. Finding preclassified samples which
are edited independently constitutes most of the proof. In
the same way that the proof of Theorem 2 involved the
proof of Theorem 2' the proof of Theorem 3 involves
the proof of a theorem concerning the convergence of
the edited nearest neighbor to a sample to be classified.

Theorem 3'
If there does not exist a neighborhood S(x) such that

P[S] = 0 and iff1(x) and f2(x) are continuous at X = x,
then XEK'1](X,N) A x as N -X co.
Most of the important asymptotic properties of the nearest

neighbor rules can be developed from the preceding six
theorems. The basic asymptotic properties are summarized
in the theorems to follow. In order to state the theorem
carefully it is necessary to define a few terms.

A Generalized Convergent Sample
The theorem will be stated in terms of a generalized

sample X*(X,N) which converges to the sample to be
classified, X. Theorems 2 and 3 have shown that for LN =
o(N), X[LNI(X,N) P X as N -+ oo and that XEKE13(X,N) P

X as N -+ oo. Both X[13(X,N) and XEKE'1(X,N) qualify as
random variables that can be represented by X*(X,N).

Dependence of the Decision
With each preclassified sample there is associated a class

Oi. The preclassified samples have been viewed in terms of
their ordering according to their distance from a particular
point x. This ordering led to defining X1'I(x,N), the ith
distant sample from x when there are N preclassified
samples. Let 01'(x,N) be the classification associated with
the sample XtI'(x,N). The nearest neighbor rules can be
described in terms of dependence on the sample values of
O0'3(x,N) whose indices i lie in a set IN(X).

Definition: A decision is said to depend directly on the
values of O0i"(x,N)i E IN(X) if XE'3(x,N) remains after edit-
ing, the decision can be determined when the values of
O0'3(x,N)i e IN(x) are known, and the decision cannot be
determined when any of the values of 0'1(x,N)i E IN(X) are
unknown.

Theorem 4
If P[XeDf1] = 0, P[XeDf2] = 0, and X is bound

with probability one, then for X*(X,N) such that
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X*(X,N) -P X as N -- oo,
a) fi(X*(X,N)) APpfi(X)

f2(X*(X,N)) PAf2(X).
b) pi(X*(X,N)) P p1(X)

P2(X*(X,N)) P p2(X).
c) For all rules which depend upon 0(i), i E IN such that

for i E IN(X)IIXi-X 11 < IIX*- X 11,

001 X, Xi, i C_ IN(X) P 0-o(I X)
where 0k(l X) is obtained by substituting p,(X) for
Pi (Xi, i E IN(X)) wherever necessary in 'PN(l X, Xi, i E IN(X)).

d) rN(X) P r,(X), where r,(X) is obtained by substitut-
ing p,(X) for pl(X,, i e IN(X)) wherever necessary in the
expression for rN(X) for the rules specified in c).

e) RN - ROOfor the rules specified in c).
Proof:

a) Direct application of Theorem 1.

b) p1(X(LNJ) = I ) +1(X[LNl)
Il1f1(X(LNJ) + fl2f2(X[LN])

by definition. Thus by inspection P1(XELN]) is a continuous
function of the random variables f1(X(LN]) and f2(X[LN]).
Direct application of Theorem 1 using the results of a)
yields the desired result.

c) Lemma:

P[A(x) x, (x[11(x,N),x 21(x,N), * * * [N](x,N))]
is a continuous function of

P[E)'k(x,N) = O'1(x,N) Xl'](x,N) = xti](x,N)]
Proof:- Conditioned on the values of X = x and

Xl'](x,N) = xl'](x,N) the values of the O0i"(x,N) are in-
dependent. Therefore,

P[A(x) x,(x[1](x,N)x 2N(x,N), . EN](x,N))]

J{x = ,e[iI

I(A(x)) Hl dP[01'(x,N) xl'](x,N)]

where I(.) is the indicator function. Furthermore, the space
{1,2}N has only 2N members. Thus

P[A(X) x,(x1k](x,N),x[2](x,N), . ,x*N](x,N))]
- 2 I(A(x)) H P[0'1(x,N) xl'](x,N)].

xN letiJ i

The probability being examined is seen to be a simple
weighted product of the P[01'1(x,N) xlil(x,N)] which is
continuous by a simple exercise in elementary analysis.

Q.E.D.
The probability P[AN(X) I x, (x'1](x,N),. ..* ,xN](x,N))] is

defined as 4(1 x, (xtl (x,N), *. . ,x[N]1(x,N))). The link be-
tween the lemma and the description of the decision is
provided. Having proved continuity we can complete the
proof of c) by using the result of b) and Theorem 1.

d) The expression for the local risk from Section II is
a simple continuous function of random variables which
have been shown in a)-c) to converge in probability. Direct
application of Theorem 1 yields the desired conclusion.

e) The Asymptotic Risk: The application of the
dominated convergence theorem shows that the average
of the asymptotic local risk developed in Section II is the
same as the asymptotic risk. At each point x the local risk
is bounded since all of the components of the local risk
except the losses are probabilities which are, of course, less
than or equal to one. (We assume that the losses are also
finite.) Let U be the bound on the local risk so that
IrN(X)I < U. U is integrable:

U dF(x) = U {dF(x) = U < cc.

We have shown that the local risk rN(X) A r.(X) as
N -a cc. Application of the dominated convergence theorem
[11, p. 152] shows that E(rN(X)) converges to E(r0,(X)).
But E(rN(x)) = RN and E(r.(x)) = R0 for all of the types
of rules under discussion. Therefore, it has been shown that
RN - R0. Q.E.D.
A theorem similar to Theorem 4 can be stated showing

that for any sample value X = x all of the parameters of
the rule will converge in probability.

Theorem 4'

If there does not exist a neighborhood S(x) such that
P[S] = 0, and iffi(X) and f2(X) are continuous at X=x,
then for X*(x,N) such that X*(x,X) A Xas N -s co,

a) fi(X*(x,N)) A fi(x)
f2(X*(x,N)) P f2(x).

b) p,(X*(x,N)) A p,(x)
P2(X*(x,N)) Pp2(X).

c) For all rules which depend upon O[i], i E I(x,N) such
that for i E I(x,N)

lixi - Xii < IIX* - xll

o(I X, Xi, i c- I(x,N)) ±) OJ(1 x)
where 401(l x) is obtained by substituting p,(x) for
p,(Xj, ieI(x,N) whenever necessary in 'N(O x, Xi, i s
I(x,N)).

d) rN(x) A rO>(x) where r,(x) is obtained by substituting
p1(x) for pi(Xi, i E I(x,N) whenever necessary in the expres-
sion for rN(x) for the rules specified in c).

Proof: The proof is the same as the proof of Theorem 4
using Slutsky's theorem (Theorem 1') instead of Theorem 1.

Asymptotic Probability of Deciding that Class I is the True
Class
For the K-nearest neighbor rule, the asymptotic value of

the probability of deciding that class I is the correct class,
4ooK(I x), is given by the following expression:

K
4r (1 x) = :

i=(K+ 1)/2

(,K) pi(1 _ pl)K- ,

=
, p AI 1 _p )K- i

i=K/2 i

- I P K/2(1 _ p,)KI2,

for K odd

for K even
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where Pi = p1(x). The probability O.K(1 x) is simply the
probability that more than one-half of the K-nearest pre-
classified samples will be from class 1 when the probability
of one of the samples being from class 1 is p1(x). Ties are
broken randomly.
For the modified K-nearest neighbor rule, the probability

of deciding that class 1 is the correct class 0oKM(1 x) is

O. (1 I x) = plqoo (1 x)
P1 K,(1 x) + (1 - pOO( - p0K(1 x))

00K( 1 I x)
00 (1 x) [(1 l- )/PI](, - X(K(1Ix))

Applying the K-nearest neighbor rule to each of the pre-
classified samples results in a probability equal to q5K that
a sample from class 1 is retained. The probability that a
sample is from class 1 is p1(x). Normalizing by the prob-
ability that the sample was retained regardless of its class
yields the probability that any of the nearby preclassified
samples is from class 1, given that it is retained. In par-
ticular, this probability applies to the nearest remaining
neighbor to the sample to be classified.
The asymptotic local risk is obtained by substituting one

of the expressions for 4(1 x) in the expression for the
local risk in Section I. From Section I

r(x) = L(2 l)pl(x)(l - 4(l x))

+ L(1 2)(1 -p,(x))4(l x).

The comparison of the probabilities of deciding that a
sample is from class 1 as a function of p1(x) and the com-
parison of the local risk as a function of p1(x) are shown in
Figs. 5-10. Several facts should be noted from the com-
parison.

1) The performance of the K-nearest neighbor rule when
K is even is the same as the performance of the K-nearest

BAYES
-- 1-NEAREST NEIGHBOR

--- K-NEAREST NEIGHBOR
-- -- MODIFIED K-NEAREST NEIGHBOR

0 O 0.2 0.4 0.6 0.8 1.0
P1(X)

Fig. 6. Comparison of 0(1 x) and local risk as function of p1(x)
when losses are zero or one and number of preclassified samples is
large. K = 3, 4.
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-- K-NEAREST NEIGHBOR

- MODIFIED K-NEAREST NEIGHBOR

0.8
0(1 Ix)

0.6

RISK X

P1i)
Fig. 7. Comparison of q(1 x) and local risk as function of p1(x)
when losses are zero or one and number of preclassified samples is
large. K = 5, 6.

neighbor rule for the next smallest value of K, an odd value
of K. As a consequence, the same result holds true for the
modified K-nearest neighbor rule.

2) For K small the use of the modified K-nearest neighbor
rule instead of the K-nearest neighbor rule reduces the risk
by about half of the total amount that it can be reduced.
For larger values of K the advantage is not so great.

3) At any value ofp1(x) the probability of deciding that a
sample is from class 1 rapidly approaches the Bayes'
decision as the number of neighbors used increases. Also,
the risk at any value of p1(x) rapidly approaches the Bayes'
risk as the number of neighbors used increases.

4) However, the maximum value of the ratio of the risk
of a nearest neighbor rule to the Bayes' risk does not
decrease very rapidly. For the modified nearest neighbor
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Fig. 8. Comparison of #(l x) and local risk as function of p1(x)
when losses are zero or one and number of preclassified samples is
large. K = 9, 10.
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Fig. 9. Comparison of O(1 x) and local risk as function of pl(x)
when losses are zero or one and number of preclassified samples is
large. K = 19, 20.

rule and K = I the maximum value of the ratio is 1.20.
For the modified three-nearest neighbor rule the maximum
value of the ratio is 1.149. For the modified twentieth-
nearest neighbor rule the maximum value of the ratio has
decreased only to 1.066. This result suggests that perhaps
the additional complexity required to use a larger number of
neighbors than three is not warranted due to the small
decrease in the error rate when more than three are used.
(Cover and Hart [7] developed an expression for the
maximum value of the asymptotic local risk compared to
the Bayes' risk for the K-nearest neighbor rule.)

IV. CONCLUSIONS

The results presented here have demonstrated that for a
large class of problems the nearest neighbor rules form a
set of very powerful decision rules. The modified three-
nearest neighbor rule which uses the three-nearest neighbor
rule to edit the preclassified samples and then uses a single-
nearest neighbor rule to make decisions is a particularly
attractive rule. The results shown here have indicated that
the modified three-nearest neighbor rule has an asymptotic
performance which is difficult to differentiate from the per-
formance of a Bayes' rule in many situations. The modified
three-nearest neighbor rule improves considerably on the
performance of the single-nearest neighbor rule and the
modified single-nearest neighbor rule. On the other hand,
it has been suggested that only a few preclassified samples
are required to approach the asymptotic performance quite
closely for the modified three-nearest neighbor rule, many
fewer samples than are required to approach the asymptotic
performance for using five or more nearest neighbors.

APPENDIX I

CONVERGENCE IN PROBABILITY

The convergence properties of random variables is one
of the major branches of statistics. Loeve [11] discusses
many different kinds of convergence for random variables

BAYES
-1-NEAREST NEIGHBOR

- - - - K-NEAREST NEIGHBOR
-- - MODIFIED K-NEAREST NEIGHBOR

'A

0
!i

I=

0.6 0.8 1.
P1iX

Fig. 10. Comparison of O(I x) and local risk as function of pl(x)
when losses are zero or one and number of preclassified samples is
large. K = 49, 50.

and random functions. The type of convergence that will
be considered here is convergence in probability. Simplifica-
tion of the concept of "in probability" was begun by Mann
and Wald [ 12] in 1943 with the development of the relation-
ship of the operations that could be performed in determin-
ing convergence of sequences to the operations that could
be performed in determining convergence of sequences of
random variables. Chernoff [13] continued this develop-
ment in his consideration of large sample problems.
Chernoff's ideas were simplified and generalized by Pratt
[14]. Using Pratt's concept of "in probability" leads to
simple proofs of theorems. In particular, Theorems 1 and 1'
of Section III, which were conveyed to the author along with
an outline of the proofs by Chernoff in his classes on large
sample theory, are proved in this very simple manner.

Suppose, for n = 1,2, , Pn is the distribution of the
random variable Xn in the set X". That is, Pn[Xn e Sn] =
P,[S,] is a probability measure on the measurable sets Sn
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of X,. If S, is a measurable subset of X", the event X, E Sn
will be called an "X,-event" E, If S is any subset of the
product space X = x n I X,, the event (X1,X2, ) S will
be called an "(X1,x2,X2 )-event" E.

Definition: The (X1,X2,. )-event E will be said to occur
"in probability," written .4(E), if for every positive e, there
exist X,-events En of probability at least I - E such that E
occurs whenever all En occur.

Pratt [14] discusses the advantage of this definition and
shows the relationship of the foregoing definition to the
standard definition of "in probability."

Suppose {x.},{r.} are sequences of points on the extended
real line.

Definition: xn = o(r,) if, for every positive i, for some N,
for every n > N, IxI/r,l < t1.

Definition: x = O(r") if for some q and N, for every
n > N, Ixn,/rnl < 1

Using Pratt's definition of "in probability" convergence
in probability is defined as follows.

Definition: Xn = op(rn) if Y(S), where S = {x: xn = o(rj).}
Definition: X. = Op(r,) if Y(S), where S = {x: xn =

O(r)}.
Pratt uses these concepts to prove a number of theorems

about convergence in probability. The theorem of interest
here is as follows.

In the next theorem identify (Y,', Y") with Xn of Theorem
5, where Y,' = f.(X.), Yn" = f(X) establishes the relation-
ship to the original measurable space. Let Y, = f,(X,,),
Y = f(X).

Theorem 1

If Y,, A Y, Y is finite with probability one and
P[YE Dg] = 0, where Dg is the set of discontinuities of
the function 9, then g(Y,) A g(Y).

Proof: Y finite with probability one implies Y,," = °rml
P[Ye Dg] = 0 implies Y," is restrained from the dis-
continuities of g. It remains to show that g(yn') -+ g(yn")
at points of continuity of g whenever y,,' -- y,,", with y,"
bounded and Yn," is restrained from Dg. For finite values of
Yn" the proof is an exercise in elementary analysis. Counter-
examples are easily devised which show that it is not neces-
sary that g(yn') -. g(yn") when y,," is not bounded. The
conclusion of the theorem follows directly.

APPENDIX II

CONVERGENCE OF NEAREST NEIGHBORS BEFORE EDITING

Let (X1,Oj), i = 1,2,* ,N, be independent random vari-
ables identically distributed as in Section I. Let XE'3(X,N)
be the neighbor which is the ith distant neighbor from X
when there are N preclassified samples. Let LN = o(N).

j=1, ,J

k I, ,K

j= 1, ,J

"(k)( = o(Sn(k)), k = 1, * ,K.

Then it follows that h.(X,) = Op(tn). Furthermore, if O(tj)
is replaced by o(tn) in the hypothesis, the conclusion is
h.(X.) = op(tn).
With a few additional definitions Theorem 5 can be used

to prove two theorems central to the development of the
asymptotic properties of nearest neighbor rules.

Definition: A sequence {y,} is restrained from a set D if
there is an open set U v D such that yn E U' for n suffi-
ciently large.

Definition: Y,, is restrained from D if p(S), where S =

{x: yn = f"(x) is restrained from D}.
Definition: Y,, = fn(Xn) converges in probability to c

(Yn c) if 2P(S), where S = {x:f(x,) -4 c}.

Theorem I' (Slutsky's Theorem)

If Yn = fj(X") c and g is continuous at c, then g(Y,) p

g(c).
Proof: Yn c implies Yn- c = op(l) from the defini-

tions. Let gn"l(Xn) =-J(Xn) - c. Applying Theorem 5, it
is only necessary to show that for a nonrandom sequence

y- c implies g(y,) -4 g(c). That g(y.) -4 g(c) for c, a

point of continuity of g is a simple proof from elementary
analysis. The conclusion of the theorem follows directly.

Theorem 2

For LN = o(N), X[LN](X,N) X as N -+

Proof: To show X[LNI(X,N) X show for E> 0 (we have
dropped the explicit indication of the dependence of
X(LN](X,N) on the X and N since the context indicates the
dependence),

PIIX X[LN]II -2 0 as N oo (definition of

where llx - ylI is the distance between x and y. For random
variables defined on Ed,

P[IIX - X[LNII E] = P[Z[LN]* E]

by definition of Z[LN]*. Consider a point X = x for which
there does not exist a neighborhood S(x) such that P[S] =

0. Let

Y , when Zi(x) s

(1, when Zi(x) < E.

Then

P[Z( P[i
N

LN 1P[Z[LN] >- E X = X] = P [N E < N ]v

Let

P FZ(E X) = q1Fz(1'(8 X) + 12FZ(2)(6 | X).

That there does not exist a neighborhood S such that
P[S] = 0 implies FZ(£ x) > 0. Thus p > 0. There exists
b, 0 < b < p since p > 0. The Yi(x) are independent
identically distributed binary random variables. The
Chernoff bound [13] for

[N < b] when O< b < p

Theorem 5 (Pratt [14, theorem 5])
Suppose that

fn(j(Xn) = °p(rn ())s
gn(k)(Xn) = op(Sn (k)),

and that hn(Xn) = O(tj) whenever

fn(j(Xn) = 0(rn (i)),
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has been developed in [12, p. 102]. This reference shows

p [1
N Yi < b] . exp [-N(Tp(b) - H(b))]

where

Tp(b) = -b In p - (I -b) In (I - p)

H(b) = -b In p - (I -b) In (I - b).

Both Tp(b) and H(b) are well-known functions. It is known
that Tp(b) - H(b) . 0. (See [12].) Since LNIN -. 0, for N
larger than some No,

LN-1 < b.
N

Therefore,

[ NE LN- I] _ Y . ]

for N greater than No. But

exp [-N(Tp(b) - H(b))] -O 0 as N -o.

Therefore,

p tEY.< L nIOasN uo

We have shown that for a sample value X = x, the
nearest neighbor converges. It remains to show that the
random variable X has this property with probability one.
We shall do this by showing that the set T of points which
do not have this property has probability zero.

Let S(x,r.) be a sphere of radius rx centered at x, where
rx is a rational number. Let T be the set of all x for which
there exists a rational number rx sufficiently small that
P[S(x,rx)] = 0. The space Ed is certainly a separable space.
From the definition of separability of Ed there exists a
countable dense subset of A of Ed. For each x E T, there
exists a(x) E A such that a(x) E S(x,rx/3) since A is dense.
By a simple geometric argument, there is a sphere centered
at a(x) with radius rx/2 which is strictly contained in the
original sphere S(x,rx) and which contains x. Thus
P[S(a(x),rx/2)] = 0.
The possibly uncountable set T is contained in the

countable union of spheres Ux TS(a(x),rx/2). The prob-
ability of the countable union of sets of probability zero is
zero. Since T c UXETS(a(x),rX/2), P[T] = 0, as was to
be shown.

APPENDIX III

CONVERGENCE OF NEAREST NEIGHBOR AFTER EDITING
Let (Xi,O,), i = 1,2, ,N, be independent random vari-

ables identically distributed as in Section I. Let (Xi,Oi) be
edited as for the modified nearest neighbor rule. That is,

I) find the K-nearest neighbors to Xi among

{XX,X2, * * * ,X - I *Xi + I I* *XN }

2) find the class 0 associated with the largest number of
points among the K-nearest neighbors, breaking ties ran-
domly when they occur;

3) edit the set {(Xj,Oj)} by deleting (Xi,Oi) whenever Oi
does not agree with the largest number of K-nearest
neighbors as determined in the preceding.

Let there be M classes, m = 1,2, X,M. In particular,
consider M = 2. (The proof is general enough to cover any
finite value of M, but for consistency with the remainder of
the paper M is considered to be 2.) Then

M

f(x) = S llmfm(X)
m= 1

Pm(X) = P(O = m X = x) = uZmfm(X)f(x)
Let XEK 1](xo,N) be the nearest neighbor to xo after editing
has been performed as outlined in the foregoing.

Theorem 3

If P[Xe Dfm] = 0, m = 1,2, *,M, where Dfm is the set
of discontinuities offm(x), then XEKI1](X,N) P.-÷ Xas N o.

Proof: The proof is carried out by first examining points
xo such that the fm(x) are continuous at xo and f(xo) > 0.
For these points the following statements are proved.

I) There is anfsuch thatf(x) . f > 0 for all x lying
within a hypersphere of radius e centered at xo.

2) N"2 nonintersecting hyperspheres of radius e/2N i/2d
can be placed within the hypersphere of radius E centered
at xO.

3) As N grows large, the probability that a sample
point may be found within a hypersphere of radius &I4N 1/2d
concentric to each of the hyperspheres of radius 8I2Ni/2d
for all N"I2 such spheres approaches one. (The fact that
N1/2 may not be an integer will be ignored since it makes
no difference to the proof, and the details necessary to find
an integer near to N'i2 will obscure an already complicated
problem.)

4) As N grows large, the probability that at least K
neighbors to such a sample point are located within a radius
EI4NIl'2d of the sample point approaches one.

5) When the K neighbors of one sample point are
within a hypersphere not intersecting a similar hypersphere
containing another sample point with its K neighbors, the
probability of retention in the edited set is independent for
the two sample points.

6) As N grows large, the probability of at least one
point being retained in the edited set approaches one.

7) Finally, the set of points which do not have this
property is shown to have probability zero.

Details of Proof: (In what follows XEK'1 will be used for
XEK(I](xo,N) and XEK['I(X,N) depending upon the context.)
From the definition of convergence in probability XEK[1] P

xo whenever for every E > 0

P[IXEK'1 - xo1 > E] - 0 as N -. oO.

1) The continuity Offm(x), m = 1,2, ,M implies that
M

f(x) = E tlmfm(X)
m I

is continuous. Also, pm(x) is continuous since pm(x) is a
simple continuous function offm(x) and f(x). (The proof is
trivial.) Continuity implies that for every E > 0 there exists
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6 > 0 such that for m = 1,2, *M,

Ifm(x) -fm(X)I < E, whenever Ix - xol < am

Pm(x) -Pm(xo)I < E, whenever Ix - xol < 3M+m

If(X) -f(x)I < £, whenever Ix - xol < 32M+1l
Select 3 = min(61,62,- *,32M+1) Then whenever Ix-xo <
3, all of the preceding quantities are less than E. Select E
such that 0 < E <f(xo) and 0 < E < 1/2M. This selec-
tion can be done since f(xo) and 1/2M are positive. Let
f = f(x0) -~E. Then Ifl = f > 0 since E < f(xo). But
If(x) - f(xo)I < E whenever Ix - xol < 3 implies that
f(x) > f whenever Ix - xol < 3. Thus f> 0 is a lower
bound on f(x) whenever Ix - xol < 3. Similarly, =
f(x0) + E is an upper bound. Since

IXEK[ ] - XOI > E, E > 3

implies that

IXEK"1] - XOI . e

when E < 3, proving that

P[IXEK"1 XOI2>] -O 0 as N - oo

for every E such that 0 < E < 3 is adequate to prove that

P[IXEK['] - XOI > E] -O 0 as N -- oo

for any E. The proof is continued on that basis.

2) The region Ix - xol < E defines a hypersphere with
a volume in d dimensions of

id/2 d
Vd(E) =E.r'(d/2 + 1)6

Lemma: At least N1/2 nonintersecting hyperspheres of
radius eI2N 1/2d can be placed within a hypersphere of
radius E.

Proof: When as many nonintersecting hyperspheres as
can be packed in randomly have been placed in the hyper-
sphere of radius E, there is no point in the E-radius hyper-
sphere such that a small hypersphere cannot be found within
a distance equal to the radius of the small sphere. If there
were such a point, another small hypersphere could be
placed within the large one by centering a new small hyper-
sphere at the point so located. But if there is no point such
that a small hypersphere cannot be found within a distance
equal to the radius of the small hypersphere, then con-
centric spheres having twice the radius of the small spheres
will cover all of the points of the large hypersphere. These
double-radius hyperspheres may be intersecting. However,
the total volume covered by the double-radius hyperspheres
cannot be more than the sum of the volumes of each of the
individual double-radius hyperspheres. The sum of the
volumes of N1/2 hyperspheres of radius 1/N1/2d is

N 1/2 ____d/2 ( Ed d/26d

r(d/2 + 1) \N1/2d = F(d/2 + 1)

The last quantity is identified as the volume of the hyper-
sphere of radius 6. ,Thus N1/2 hyperspheres of radius
E/N 1/2d have a combined volume at most equal to the

volume of the hypersphere of radius £, and at least N112
hyperspheres of radius s12N1/2d can be placed within the
hypersphere of radius E. Q.E.D.

Let U(j) = 0 when there is not a point Xi in the hyper-
sphere with radius e/4Nl12d concentric to the jth hyper-
sphere of radius sI2Nl/2d. Let U(j) = 1 when there is a
point in the hypersphere. When U(j) = 1 select one of the
points within the hypersphere of radius &14N1/2d, and let
that point be X(i). Let

,

Yi(j) =

1,

when Xi - X /

when Xi - X < 1

Let E1 = 1 whenever

a) for all j, U(i) = 1;
b) for all j, EN= 1 Yi(i) > K + 1; and
c) at least one X(i) has an associated O(i) which agrees

with the largest number of the K-nearest neighbors
to X(i.

Let E1 = 0 otherwise. When El = I at least one point is
retained in the hypersphere of radius E after the editing
process. (There is an i for which Xi = X(i). For that i,
Yj(j) = 1, but X(i) is not one of the K-nearest neighbors to
X(j) used in the editing process. Thus it is required that

I Y1(j) > K + I in order that the K-nearest neighbors
to X(j) lie within a radius E/4NlI2d of the point X(j).)

Also, when

a) for all j, U(j) = 1; and
b) for allj, _ IY(j) > K + 1

none of the K neighbors used in editing one point X(j) is
used in editing any other point X(i ) since the conditions on
U(i) and the sum of the Y1(i) imply that at least K of the
nearest neighbors to each point X(i) lie within the hyper-
spheres of radius c/2NlI2d which are nonintersecting.

3) Developing inequalities and using them in the proof:

P[IXEK['] - XOI . 6] < P[E1 = 0]
since the one event implies the other. Continuing:

P[E1 = 0] = P[E1 = 0 for allj, UU) = 1]

P[for allj, U(i) = 1]

+ P[E1 = 0 1 for some j, U(i) = 0]

P[for somej, UO) = 0]
< P[E1 = 0 1 for all j, U(i) = 1]

+ P[for somej, U(i) = 0]

since probabilities are less than or equal to one.
Lemma:

P[for some j, U() = 0] -O 0 as N oo.

Proof:
= 0]= i- SjE4N/)f()xN

P[U Mj = O] I f-f(x) dx
S(j,E4NI /2d)
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where S(j, c/4Nl/2d) indicates that the integral is taken over
the volume of a hypersphere with radius eI4Nl/2d con-
centric with the jth hypersphere of radius 612N 1/2d
(P[U(j) = 0] is the probability that no sample lies within
the jth hypersphere from the definition of U(J)). This is
true since each of N independent samples Xi may be within
the specified volume with equal probability. But f(x) 2 f
in the region occupied by the hypersphere implies that

f(x) dx . T f dx.
S(j,el4NI1 2d )fJ,£/4N1/2d)

Thus

( - ff(x) dx) < (1 - f dx)

= (1 - fv(, )d4N 1/2d

where Vd(a) is the volume of a hypersphere with radius a.
Then

P[for some j, U(j) = 0]
= P[either U(') - 0 or U = 0 or * or U(NI/2) = 0]

N112

< E P[U(j) = 0]
j=l

. N'/ (1 -I Vd (4N 1/2d))

But

7rd/26d
(4N /2d) =J(d/2 + 1)4dN/2

Let

,td/2Ed
J(d/2 + 1)4d

Note that Cd > 0 since it is the product of strictly positive
quantities:

N2[1/2 Cd N
and P[U(j) = O] < N 1 -

and

N 12 (i - Cdp N

N 1/2J

= exp ( In (N) + N In (I -N1/2))

= exp ( ln (N) + N ( _2 + (I)))

= 0(1) exp ({ In (N) - N/2cd)
-+ 0 as N -+ oo.

Therefore, P[for somej, U(i) = 0] -O 0 as N oo.

Q.E.D.

4) Continuing with the main theorem and recalling
that ', = 1 Yi(i) . K + 1 implies that K neighbors lie within
the hypersphere of radius sI4Nl/2d centered at X(i),
P[El = 0 1 for all j, U (i) = 1]

= P [E1 = Of for all j,

N

Y Yi(j) > K + 1 and for allj, U(J =
i=1

-for a] y>lN
p for all j, E Yi(J) > K + I for allj, U (J) =-

= 1

1]

1]

+ P [E1 = 0 1 for some j,

N

Yi() < K + l and for all j, U(U) = I
i= 1

* P [forsome]j, Y,(i) < K + I for allj, U(i) = 1]

. P [El = 0 for all j,

N

Yi(j) K + 1 and for allj, U) = 1]i= 1J

+ P [for somej, Y5(j) < K + I for allj, U(3) = 1]

since probabilities are less than or equal to one.
Lemma:

N
P for some, (J) < K + 1I for all j, U(J) = I

i= 1I

0 as N -- oo.

Proof: Note that Y1(i) = 1 for the point which is x(i).
Thus we must show that there are not K other points within
a distance E/4Nl/2d of X to show that i = <
K + 1. Note also that since Xi, i = 1,2,' ,N, are drawn
independently from one population, the Yi for one j are
also independent. Considering only one j,

P 1o < K + If U (j)I

Let

f(x) dx
S(X(i),t14NI12d)

where S(X(j), s/4N1/2d) indicates that the integral is to be
taken over the volume of a hypersphere with radius
e14Nl1l2d centered at X(j). p has an upper and a lower bound:

0< = f dx < p < P
'(X(j),E/4Nl12d)

= I S(X(J),e d f dx
S(X ( }),e14Nl12d)
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since 0 < f f(x) < f for x such that Ix -xol < e.
Evaluating

P = jf dx = fJdx = fVdK,2d)

and

p = f dx = f dx = f Vd (4j12d)
For N large enough

0 < K+ 1 < P = idl2gdf < P = E(Yi(j))
N - 1 - If(d/2 + l)4dNhI2< ,=EY)

except for the i for which Xi = X(i). Thus for N large
enough Chernoff's bound can be applied:

P[N_11 y (j) K + 1 U M = 1

< exp [-(N - 1) (Tp (N ) - H (NK ))1

where

Tp(a) = -alnp -(1 - a)ln(l -p)

H(a) -a In a - (1 - a) ln (1 - a).

Let
7mdl2edf

F(d/2 + 1)4d

and Cd be similarly defined by substituting f for f in the
definition. Using the upper and lower limits developed,

exp [-(N -1) (TP (N 1) (N 1))
< exp (N - 1) {K (In (Cd) + l N -I

+ (1 N- 1) (ln(1 K N1

ln(1 K I)))]

Observing that for y > 0 and y small ln (1 - y) = -y +
0(y2) and carrying out some algebra, we modify the last
expression to

exp [-(N - 1) (T (Nl- 1) H(N- ))]

= 0(1) exp [K In (N) -N 1/2Cd]

Thus

P [ Y(j) < K + I I U=(j) 1]

< 0(1) exp [K ln (N) - N1/2Cd]

_ ~~N
P for some j, Yi(i) < K + I I for every j, U (j)=

= P[ Yi(') < K + 1 or y(2) < K + 1 or *.
or

,
yiN"'2) < K + I I for all j, U() = 1]

N112

<- P[Y Yi(i) < K + 1 U (i) = 1]
j=l
N112 K

<- 0(1) exp - ln (N)-N12-Cd

= N112 0(1) exp [- ln (N) -N1/2Cd]

= 0(1) exp [K + 1ln (N) -N1/2Cd]

0 as N -+ oo.

Therefore,
N

P for some j, , Yi(j) < K + 1 t for every j, U (i) =
i= 1

-+ 0 as N -+ 0o.

Ii

).E.D.

5) Continuing with the main proof, let

when X() is retained
otherwise.

Let V = (V(1), V(2) .V(Nf12)
_ ~~~~N

P [E1 = Olfor all j, Yy.(i) > K + 1
L ~~~~~~~i= 1

and for allj, U(j) = I

= P[V = (0,0, * ,0) for all j, E Yj(j) > K + 1

and for all j, U(j) = 1].
But under the conditioning all of the V(j) are independent
since each V(j) depends only on the values of 0 associated
with sample points within the jth hypersphere of radius
s/2N1/2d, and none of these hyperspheres intersect another
such hypersphere. Therefore,

P[V = (0,0, ,0) for all j, E Yj(j) > K + 1

and for allj, U(j) = 1]
N112

= l P[V(j) = 0 for all j, Y.(j) > K + 1
j=1
and for all j, U (j) = 1].

6) Lemma:

P[V(j)= 0 for all]j, Yi(j) > K + 1

and for allj, U(j) = 1] < 1 -, y > 0.

Proof: The lemma states that when there is a sample
in every one of the j hyperspheres and when the K-nearest
neighbors to each of the samples also lie within the respec-
tive hyperspheres, the probability that X(j) is not retained
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is less than one. The equivalent statement that the prob-
ability of retaining X(j) is greater than zero will be proved.

Let CG be the event that L Y.(j) > K + 1 and U(j) = 1.
Also, let

E2(m) =

kO,

when the plurality of the K-nearest

neighbors is from class m
otherwise

and
M

P[V(U) = 1 C] = P[V( = 1 C}
m =1

and E2(m) = 1] * P[E2(m) = 1 C].

Let mi be the class that has the largest probability of having
a plurality. (Ties are broken randomly.) Then

P[Vj) = 1 Cj] P[V(J) = Cj
and E2(iz) = 1] P[E2(M) = I CJ]

since the sum is a sum of positive quantities. But

P[EAfh) = 1 C] M.

Since probabilities sum to one, there are M classes, and ih

is the class with the greatest probability. Therefore,

P[V(U) = 1 Cj] P[V(M) = 1 C,

and E2(h) = 1]3-.
But

P[E20h) = 1 Cj]

implies that for some x in the hypersphere of radius
s/4Nl/2d centered at X(j)

P,h(x) -P(O = m X = x) > M

since P[E2(mh) = 1 Cj] is an average of p,;(x). However,
p,j(x) is a continuous function of x. In particular, the
selection of a in step 1) guarantees

Ip,h(x) - ph(xo)l
I

for Ix - xol < &.

Therefore, p,&(x(i)) > 0 since

Jp,h(x) PR(X j))l IPh(X) ph(xO) + p,m(XO) - Ah(XUN

< Ip,(x) -p,(xo)I + Ip,W(xO) - P,(x ('))

1 1 1

2M 2M M

Thus there exists a y > 0 such that

P[V(j) = 11 Cj and E2(Qh) = 1] My > 0

since this probability is an average of p,(X(J)) over the
possible values of x(i) and prn(x(i)) > 0. This implies

P[V() = 1 C3] My * = y > 0

M

and finally
P[V(J) = 0 Cj] < 1 - y. Q.E.D.

Completing the main proof by using the results of the
lemmas,

P[V = (0,0, *,0) for all j, Ci]
N1/2

= H P[V(J) = 0 c3]j= 1

N112
< 17 (1 - y= (1 - ,)NI/2

j=1

0 as N -.

Combining all of the inequalities,

P[DXEKI] - xol > E]

. P[for some j, U(J) = 0]
N

+ P for some j,N

< K + Il for all]j, U = 1]

N
+ P V = (0,0, * ,O) for all j, YyU)

< K + land for allj, U() = 1]

0 as N -+oo

since each of the three components on the right approaches
0 as N -- oo.

7) Finally, we must argue that the set of points for
which the edited nearest neighbor does not converge to the
sample to be classified has probability zero. The argument
is very similar to the argument of a theorem of Cover and
Hart [7]. We have shown that for point of continuity of
f(x) for which f(x) is greater than zero the edited nearest
neighbor converges in probability. It remains to consider
points for which f(x) is not continuous or for which
f(x) = 0. The set of discontinuities has measure zero by
hypothesis. The set for whichf(x) = 0 is more complicated.

Let S(x,r.) be a sphere of radius r. centered at x, rx a
rational number. Let V be the set of all x such that there
does not exist an rx sufficiently small that P[S(x,rx)] = 0,
but for which f(x) = 0 and f(x) is continuous. For x E V
the edited nearest neighbor converges in probability. Since
the set of discontinuities off(x) has probability zero and x
is a point of continuity of f(x), there must be a point t
within E/3 of the point x for which f(t) > 0 and which is
a point of continuity off. If not, P[S(x,rx)] would be zero
for some rx small enough. If there remains a preclassified
sample within a distance E/3 of the point t, there will be a
preclassified sample within a distance e of the point x by a
simple geometric argument. We have shown that for points
with the property of the point t, the probability of there
being a preclassified sample within an arbitrarily small
distance e/3 approaches one as the number of preclassified
samples approaches infinity. Therefore, the probability that
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there will be at least one preclassified sample within a
distance s of the point x approaches one as the number of
preclassified samples approaches infinity. If at least one
preclassified sample is within s, then the nearest preclassified
sample is within , and the nearest preclassified sample after
editing converges in probability to the point x.

Let T be the set of all x for which there exists an rx
sufficiently small so that P[S(x,rx)] = 0. The set Thas prob-
ability zero. Duplicating the argument of Theorem 2 we
begin by observing that the space Ed is a separable space.
From the definition of separability, there exists a countable
dense subset A of Ed. For each x E T there exists a(x) E A
such that a(x) e S(x,rJ/3) since A is dense. By a simple
geometric argument there is a sphere centered at a(x) with
radius rJ/2 which is strictly contained in the original sphere
S(x,rx) and which contains x. Thus P[S(a(x),rx/2)] = 0.
The possibly uncountable set T is contained in the countable
union of spheres U x e T S(a(x), rx/2). The probability of the
countable union of sets of measure zero is zero. Since
T c UXET S(a(x), rx/2), P[T] = 0, as was to be shown.
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End Points, Complexity, and Visual Illusions
DAVID J. PARKER, STUDENT MEMBER, IEEE, AND DOUGLAS J. H. MOORE, MEMBER, IEEE

Abstract-One aspect of a new theory of feature perception is con-
sidered. An algorithm is presented which can perceive and locate various
features of a pattern by analyzing a statistic of the "chords" of the
pattern. The procedure is illustrated by applying the algorithm to a
pattern containing the Muller-Lyer figures. In measuring the length of
the figures it is found that the algorithm has a visual illusion. A machine
capable of executing the algorithm is described.

I. INTRODUCTION
A LARGE NUMBER of proposals for computers that,

in at least certain senses of the phrase, "recognize
patterns" have been published in the past ten years. In spite
of this the pattern recognition problem can still be said to
be in-its infancy. Levine [12], in his survey on feature
extraction, stated that "the literature overwhelmingly con-
centrates on the various aspects of classification," even
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though David [4], in his review of the book by Sebestyen,
raised the objection, "Is not the more significant part of
the problem that of characterizing the world by a set of
properties that provide the desired discrimination?" It
would therefore seem that the problems of feature percep-
tion and extraction must be solved before any headway can
be made with the pattern recognition problem. Nilsson [16],
commenting on the subject of feature extraction, made the
point that there exists no general theory which allows us to
choose what features are relevant for a particular problem.
He also pointed out that the design of feature extractors is
empirical and uses many ad hoc strategies. It would seem
from these comments that a completely new approach to
feature extraction is necessary.
Moore [13] described a theory of feature perception and

extraction. It was shown that the features of two-dimen-
sional plane patterns could be perceived and extracted by
analyzing the statistics of the chords of a pattern. The types
of features that could be extracted included metric, angular,
and topological structure. A two-dimensional retinal com-
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