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RANK METHODS FOR COMBINATION OF INDEPENDENT 
EXPERIMENTS IN ANALYSIS OF VARIANCE' 

BY J. L. HODGES, JR. AND E. L. LEHMANN 

University of California, Berkeley 

1. Introduction and summary. It is now coming to be generally agreed that in 
testing for shift in the two-sample problem, certain tests based on ranks have 
considerable advantage over the classical t-test. From the beginning, rank tests 
were recognized to have one important advantage: their significance levels are 
exact under the sole assumption that the samples are randomly drawn (or that 
the assignment of treatments to subjects is performed at random), whereas the 
t-test in effect is exact only when we are dealing with random samples from 
normal distributions. On the other hand, it was felt that this advantage had to be 
balanced against the various optimum properties possessed by the t-test under 
the assumption of normality. It is now being recognized that these optimum 
properties are somewhat illusory and that, under realistic assumptions about 
extreme observations or gross errors, the t-test in practice may well be less 
efficient than such rank tests as the Wilcoxon or normal scores test [6], [7]. 

Rank tests were naturally developed first for the simple two-sample problem,2 
but in practice experiments for the evaluation of population or treatment differ- 
ences are seldom of this form. To secure the advantages of increased homogeneity 
and the resultant increased precision, it is more customary to stratify the popu- 
lations or to divide the experimental subjects into blocks, using a (generalized) 
randomized block design. In other experiments where additivity of certain effects 
is assumed, a design of the Latin square type may be appropriate. 

It is the purpose of the present paper to provide a method for constructing 
rank tests for such designs. The basic idea of the method is described in Section 3. 
The main bbdy of the paper is concerned with the application of the method to 
the comparison of two treatments using a Wilcoxon-type test statistic. The 
exact distribution of this statistic is discussed in Section 4, and its asymptotic 
distribution in Sections 5 and 6. Some remarks concerning the efficiency of the 
test are given in Section 7. Finally, Section 8 illustrates the application of the 
method to the comparsion of more than two treatments, for such designs as in- 
complete blocks and Latin squares. 

2. Tests based on independent rankings. A simple method for dealing with at 
least some cases of the problem described in the introduction is based on separate 
rankings of the observations in each block. 

Received January 30, 1960. 
1 This paper was prepared with the partial support of the Office of Naval Research (nonr- 

222-43). This paper in whole or in part may be reproduced for any purpose of the United 
States Government. 

2 And for the case of paired comparisons, which also turns out to lend itself particularly 
well to a rank analysis. 
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To fix ideas, let us consider the generalized randomized block design for com- 
paring two treatments. Suppose that N subjects are available for the experi- 
ment. They are divided into n blocks, each block consisting of subjects thought 
to be homogeneous with regard to the response to be observed. The Ni subjects 
in the ith block are then randomly divided into groups of sizes si and ti (si + ti = 
Ni), and the groups are given treatments A and B respectively. We want a test 
of the hypothesis that the treatments do not differ, which will be sensitive to the 
shift alternatives that the response to treatment B tends consistently to be 
higher than the response to A. 

A rank test for this problem was proposed by Wilcoxon [10]. The observa- 
tions in each block are ranked separately, a Wilcoxon statistic (for example, 
the sum of the B-ranks) W") is formed for the ith block, and the test statistic 
is the sum of these W's. In a recent investigation [3], van Elteren has con- 
sidered the more general statistic 1:=, ciW(') and has shown that in a certain 
sense the optimum constants are 

(2.1) ci = 1/(si + ti + 1). 

What is the efficiency of this test relative to the appropriate t- or normal 
test, which is based on the statistic 

(2.2) Si ti (Yi -X )/Z Si ti 
Si + tiSi+t 

where Xi. and Yi. denote the average of the A- and B-responses in the ith 
block? To answer this, suppose that the Wilcoxon experiment consists of rt 
replications of some given set of blocks (si, ti), and that the t-experiment con- 
sists of r" = g(r') replications of the same set where r" will be determined below. 
Suppose that the X's and Y's in the ith block are normally distributed with 
means ti and ti + Av respectively and with common variance 1. For fixed values 
of a and ,B, let Av = A (r') be determined so that the power of the Wilcoxon- 
van Elteren level a test tends to #3 as r' oo. Let r" = g(r') be determined, 
so that the power of the level a t-test (based on r" replications) against the 
same sequence of alternatives tA(r') also tends to #3. We then say that the rela- 
tive asymptotic efficiency of the Wilcoxon-van Elteren test to the t-test is e if 

limr',- (r'/r") = e, 

independent of a and j3. 
THEOREM 1. For block siizes (si , ti) the relative asymptotic efficiency of the Wil- 

coxon-van Elteren to the t-test based on the statistic (2.2) is 

(2.3) e = 3 E Si ti / Si ti 

PROOF. Since the method of proof is well known (see for example [7]), it 
will be enough here to sketch the proof. The statistic (2.2) (and therefore asymp- 
totically as E si and E ti > oo also the corresponding t-statistic) is normally 
distributed with mean Av and variance [ siti/(si + ti)]'. 
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Analogously, the Wilcoxon statistic in the ith block, for small A has approxi- 
mately mean siti(l + -A/V/r) and null variance siti(si + ti + 1)/12 and the 
linear combination of these statistics with weights (2.1) therefore has approxi- 
mately mean (I + A/Vr) 5 sit l(si + ti + 1) and null variance 

E siti(si + ti + 1)/12. 

If the Wilcoxon statistics are based on (s', t') and the t-test on (sf", t') ob- 
servations, and if E si, E ti are sufficiently large for the normal approxima- 
tion to be close, the power of the two tests for small A will be approximately 
the same if 

/ ,s ,i \ 

t2 E sittit A2 i+ t +)2, 

Si + ti 4r1 si t$ 
12 s+ t + 1 

that is, if 

(2.4) t 3 S t' 
Si + t ir s+ +1 

Suppose now that the Wilcoxon experiment consists of r' replications of some 
given set of blocks (si, ti); and that the t-experiment consists of r" replications 
of the given set. Then (2.4) becomes 

r"ZE Si ti 3r-Z Si ti 
Si + ti r Si + ti + 1 

and this completes the proof. 
We note two interesting special cases of (2.3). If the block size Ni = si + ti 

is constant, Ni = k say, then (2.3) reduces to 

3 k 
(2.5) ek k + 

regardless of how the numbers si, ti are chosen in each block. Table 2.1 gives 
this efficiency for a number of different values of k. 

Another case of interest is that of a single block. The test then is the ordinary 
Wilcoxon test, and as s + t- oo, the efficiency (3/ir)(s + t)/(s + t + 1) 
tends to the value 3/7r, ordinarily given as the asymptotic relative efficiency of 
the Wilcoxon to the t-test in this case. 

For the comparison of more than two, say c + 1, treatments in a randomized 
block design (c + 1 subjects in each block to which the c + 1 treatments are 
assigned at random), an analogous rank test was proposed by Friedman [5],3 
and his test was generalized to balanced incomplete randomized blocks by 
Durbin [2] and to general blocks by Benard aind van Elteren [1]. In these tests, 

3 For other rank procedures for this problem see Walsh [9]. 
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TABLE 2.1 

k 2 3 4 5 10 15 0o 

ek - = .637 .716 .764 .796 .868 .895 - = .955 

the ranking is done separately within each block, and the test statistic is a suit- 
able quadratic form in the sum of the ranks for the various treatments. When 
the block size is k, it was shown by van Elteren and Noether [4] that the asymp- 
totic relative efficiencies of Friedman's and Durbin's tests relative to the appro- 
priate F-tests is also given by (2.5). 

For the case of two treatments and blocks of size k = 2, the efficiency 2/wr 
is not surprising since the Wilcoxon sum and Friedman's test then reduce to the 
one- or two-sided sign test for matched pairs. It is seen from the table of ek 
that the efficiency remains unpleasantly low as long as the blocks are small. 
This is unfortunate since it is often desirable to use rather small blocks either 
because the natural blocks are small (for example, litters) or because small 
blocks are required to achieve within-block homogeneity. In such cases, tests 
based on independent rankings leave much to be desired. 

There are of course situations in which separate rankings are all that can be 
obtained. An example is the case in which the blocks correspond to different 
observers, each of whom makes a comparison of the different treatments as- 
signed at random to different sets of subjects. If this comparison can be made 
only in the form of a ranking, the basic data are just the separate rankings and 
the over-all evaluation must be based on these data. However, if instead each 
observer assigns scores to the different treatments, even if the method of scoring 
is not the same for each observer, the method to be outlined in the next section 
can be applied. 

3. Ranking after alignment. While in the case of a matched pairs experiment 
(si = ti = 1), the efficiency of the Wilcoxon-sum test is only 2/r, there does 
of course in this case exist a rank test, Wilcoxon's one-sample test, whose effi- 
ciency is 3/7r in normal populations. In this test the absolute differences in 
response are ranked for the n pairs, and with each rank is associated the sign 
of the corresponding response difference. The test statistic is the sum of the 
ranks corresponding to the positive (or negative) differences. 

It seems natural to ask why this test has efficiency 3/r as compared with 
the efficiency 2/r for the Wilcoxon-sum test. The reason appears to be essen- 
tially that the former test pays attention to certain interblock comparisons 
which are entirely ignored by the latter test. The main objective of the present 
paper is to find rank procedures for more general designs that will preserve the 
interblock comparisons in the hope that this will lead to higher efficiency. 

We can best introduce the method by continued consideration of the com- 
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TABLE 3.1 

Block Treatment A Treatment B Mean 

1 98, 169 28, 113 102 
2 259 168, 128 185 
3 81, 120 24, 102, 8 67 

parison of two treatments. Suppose that treatments A and B are compared by 
random assignment to the subjects in three blocks with s = t = 2; S2 = 1, 
t2 = 2; S3 2, t3 = 3, and that the results are observed as given in Table 3.1. 
From each observation we subtract the block mean, arrange the residuals in 
order of increasing size, and rank them: 

Residual -74 -59 -57 -43 -17 -4 11 14 35 53 67 74 
Rank 1 2 3 4 5 6 7 8 9 10 11 12 

The ranks corresponding to treatment A are underlined; their sum 

6 + 8 + 10 + 11 + 12 = 47 

is the value of a test statistic which will be denoted by W. 
Let us first observe that W provides an exact test of the null hypothesis that 

the treatments do not differ. Under that hypothesis, the labels A and B are 
meaningless and could as well be assigned at the end of the experiment, after 
the data are recorded. Each block has certain ranks, as tabulated below. 

Block Ranks 
1 1, 6, 7, 11 
2 3,5, 12 
3 2,4,8,9, 10 

The random assignment of two A-labels to the four ranks of Block 1 produces 
two A-ranks, whose sum will be denoted by W1. W1 is equally likely to have any 
of the values 1 + 6 = 7, 1 + 7 = 8, 1 + 11 = 12, 6 + 7 = 13, 6 + 11 = 17 
or 7 + 11 = 18. Similarly W2, the rank labeled A in Block 2, takes on the 
values 3, 5, 12 with probability 3 each, while W3 is equally likely to have any 
of the 10 values 2 + 4 = 6, 10, 11, 12, 12, 13, 14, 17, 18, 19. The statistic 
W = W1 + W2 + W3 is the sum of three independent integer-valued random 
variables. The maximum value of W is 49, and one sees by inspection that the 
only value of W1, W2, W3 for which W > 47 are W1 = 17 or 18, W2 = 12, 
W3 = 17, 18 or 19. Thus 

P(W_ 47)= =4 3 - = - 1 

We can now state the idea of the procedure. The first step is to bring the ob- 
servations in the various blocks into alignment with one another. In the ex- 
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ample above this was done by subtracting from each observation the mean ob- 
servation in its block, but in some cases other methods for alignment might be 
better, such as subtracting a trimmed or Winsorized mean.4 The important point 
is that the treatments must be ignored when the alignment is made. 

Once the observations are aligned they are pooled and ranked without re- 
gard to their blocks. Then the ranks are labeled according to the treatment given 
to the corresponding observation. Under the null hypothesis of no treatment 
effect, the assignment of labels to the ranks pertaining to each block is done 
at random, and may be thought of as having been done after the ranks for each 
block are determined. The partition of the ranks in each block into label-groups 
is independent, and has in each block a known distribution that depends only 
on the design employed at the beginning of the experiment in assigning treat- 
ments to subjects. 

Finally, we may compute from the labeled ranks any rank statistic appropri- 
ate for the alternatives against which it is desired to test the null hypothesis. 
In the example we used the Wilcoxon statistic and computed its one-sided sig- 
nificance probability, but one may in other cases want a two-sided test, or use 
the normal scores test statistic, or indeed whatever statistic seems appropriate. 
In any case, the statistic will have an exact null distribution whose computation 
depends on the known distribution of the labels among the block ranks. 

The procedure is thus very flexible. We have already mentioned that the 
method of alignment and the choice of test statistic may be adjusted to the 
problem. Still another possibility is that of first transforming the data, where a 
different transformation may be used in each block. None of these devices affects 
the exactness of the null distribution. They do however influence the power of the 
test, and the choices should be made with the view of providing large power 
against the alternatives of interest. 

The null distributions of all the tests suggested above are based on the in- 
dependent random assignment of treatments in each block. One can of course 
also apply the tests to a different experimental situation, in which the subjects 
in the different blocks are randomly sampled from different populations, but in 
this case the null distributions discussed above are conditional distributions, 
given the responses of the sampled subjects. 

4. Rank sum analysis of two treatments in a block design. The computation of 
significance probability in the example considered above was carried out by 
inspection. The various equally likely samples were examined to determine the 
number of them at least as significant as the one observed. While such a pro- 
cedure can be employed quite generally with small designs or with highly signifi- 
cant results, it is not feasible for hand computation in other cases. Fortunately 
the method readily adapts to automatic machine computation, and it would be 
easy to write programs for the routine calculation of exact significance proba- 
bilities. 

4For Trimming and Winsorizing see Sect. 14 of "The future of data analysis" by John 
W. Tukey (1962). Ann. MIath. Statist. 33 1-67. 
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In the special case of the comparison of two treatments, enumeration by 
hand can be organized so that it is applicable in designs considerably larger than 
that considered in Section 3. Suppose that the subjects are divided into several 
blocks, that there are two treatments A and B applied with unrestricted ran- 
domization within blocks, and that the test statistic W is the sum of the ranks 
after alignment associated with, say, treatment A. (This is the situation illus- 
trated by the example in Section 3.) Let n denote the number of blocks, let 
there be Ni subjeevts in the ith block of which si are allocated to the first treat- 
ment, and let Wi be the sum of the ranks after alignment of these si subjects. 
Then W = W + *-- + Wn. 

Under the null hypothesis the Wi are independent random variables. The 
possible values of Wi are integers, and its null distribution can easily be written 

down by considering the (Ni) equally likely choices of ranks of the first treat- 

ment. The calculation of the null distribution of W now requires the convolu- 

tion of the k independent integer-valued random variables. There are II (Ne) 

equally likely cases, and we have only to count those giving W = w to find 
P(W = w). A convenient layout for this count essentially like that required 
in the exact use of the Wilcoxon sum statistic W8 , may be presented through an 
example. 

Suppose there are k = 5 blocks whose sizes, allocations, and ranks after align- 
ment are as given in Table 4.1. The ranks of subjects receiving treatment A 
are underlined, and the observed value of W is 79, which is 22 greater than its 
smallest possible value 57. To compute P(W ? 79) it will only be necessary to 
consider the lower tail for a range of 22 units at each step. 

We first write down by inspection the distribution of W - min Ws- Ui 

for each block, multiplying each probability by (si) so that only integers need 

be written. The results are shown in the top section of Table 4.2. For example, 
when two ranks are chosen from those in Block 1, the six equally likely values 

TABLE 4.1 

i Ni si (Ni) Ranks after alignment Wi min Wi 
Si 

1 4 2 6 4 5 17 20 21 9 
2 5 3 10 6 7 12 13 15 25 25 
3 3 1 3 9 10 16 10 9 
4 4 2 6 2 8 11 21 19 10 
5 5 2 10 1 3 14 18 19 4 4 

N (N) 
- 

10800 W=79 min W = 57 
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for W1 are 4 + 5 = 9, 4 + 17 = 21, 5 + 17 = 22, 4 + 20 =24, 5 + 20 =25 
and 17 + 20 = 37. Therefore the values of U1 are 9 -9 = 0, 21 - 9 = 12, 
22 - 9 = 13, 24 - 9 = 15, 25 - 9 = 16 and 37 -9 = 28. The last of 
these is outside the range of interest; the other five are represented in the row of 
Table 4.2 corresponding to i = 1. 

The convolution of the five random variables Ui is displayed in the remainder 
of Table 4.2. The second section shows the convolution of U1 and U2. The 
rows correspond to values of U2, the columns to values of U1 + U2 . Thus, the 
first row of the second section gives for each possible value of u1 + u2 the num- 
ber of cases for which u1 = 0; the second row those for which u1 = 1 (these are 
obtained from the first row by shifting it to the right by one unit); etc. By 
adding the number in each column, we obtain the distribution of U1 + U2 

(with each probability multiplied by (Ni) (N2)) which is given in the top 

line of the third section. Similarly, the third section represents the convolution 
of U1 + U2 with U3, etc. The final results are in the next to last line, so that 
P( Ui = 22) = P(W = 79) = 47/10800. Cumulating, the last line gives 
P(W < 79) = 297/10800 = .0275. 

The computation requires only additions and proceeds quite rapidly. If 
desired a check is provided by the row sums as shown on the right. The method 
will be effective so long as the observed value w of W is not too much larger than 
its minimum value (or too much smaller than its maximum, if P(W _ w) is to 
be computed). 

In principle, the exact joint distribution of the rank sums could be similarly 
handled if there are more than two treatments, but the labor is much greater. 
For example, if there are treatments A, B, C, with rank sums W, X, Y, we may 
regard (W, X) as the sum of n independent vectors (Wi, Xi) each of which is 
integer-valued and has a distribution whose terms when multiplied by the 

multinomial coefficient Ni 1t ) are integers. However, each step in the con- 

volution requires a double summation, so that the layout is less simple than 
that shown above. 

5. Normal approximation to the null distribution of W. With designs much 
larger than that used for illustration above, exact hand computation becomes 
excessively lengthy. Fortunately, in such cases a simple normal approximation 
may serve. Recall that W = W1 + * + W, is the sum of n independent ran- 
dom variables Wi. . Each Wi , as the sum of a sample drawn from a fixed set 
of integers, has easily calculated moments, so the low order moments of W may 
be readily obtained. The Wi will usually have variances of about the same mag- 
nitude; thus, if n is reasonably large one may expect W to be approximately 
normal. This hope is reinforced by a theorem proved in the next section. 

Let us illustrate the method on the example of the preceding section. If the 
Ni ranks in Block i are denoted byrij, j = 1, ,Ni , then EWi = siE rij/Ni 
while 
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TABLE 5.1 

i Ni si Ranks EWi var Wi 

1 4 2 4 5 17 20 23 67 
2 5 3 6 7 12 13 15 31.8 18.36 
3 3 1 9 10 16 11.67 9.56 
4 4 2 2 8 11 21 21 63 
5 5 2 1 3 14 18 19 22 85.8 

E(W) = 109.47 var(W) = 243.72 
u(W) = 15.61 

TABLE 5.2 

w P(W ?;:_ w) Normal approximation Error 

79 .0275 .0274 .0001 
78 .0231 .0236 .0005 
77 .0199 .0203 .0004 
76 .0168 .0173 .0005 
75 .0137 .0148 .0011 
74 .0117 .0125 .0008 

var (Wi) - Si ti [(Z r )/Ni - ( rij/Ni)2], 

where in each case the summation is for j from 1 to Ni . Finally EW = E EW, 
and var(W) - Evar(Wi), as shown in Table 5.1. As W is integer-valued, 
it is natural to use a continuity correction. We approximate P(W _ 79) by 

(79.5 - 109.47) - 

I-(-1.9199) = .0274. 

The excellent agreement of this value with the correct .0275 is something of an 
accident, as the following table shows. However, even with only 5 blocks the 
approximation would be accurate enough for most purposes (see Table 5.2). 

We remark that the third and fourth moments of W are also easily available 
if it is thought desirable to use an approximation based on more than two mo- 
ments. 

6. Asymptotic null distribution of the blocked Wilcoxon statistic. In the 
preceding section we have discussed the exact null distribution of the blocked 
Wilcoxon statistic, as well as the normal approximation. In the present section we 
shall show that this distribution when normalized in the usual way tends to the 
standard normal distribution. In the present section, we shall consider the limit- 
ing behavior of this distribution as the number of blocks becomes large. As before, 
we shall consider the responses in each block (without regard as to which belongs 
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to treatment and which to control) as fixed, and we shall refer to the totality of 
these responses as the configuration. The only randomness is that resulting from 
the independent random assignments of treatments in each block. We shall 
prove below under certain assumptions that the null distribution of the blocked 
Wilcoxon statistic when normalized in the usual way tends to the standard 
normal distribution and that the convergence is uniform in the configurations. 

This is proved by means of the Berry-Esseen theorem (cf., Theorem B on p. 
288 of [8]) which may be stated as follows: 

Let W1 , W2, * be independently distributed, with means IA, ,2 X * 

and let 
n 

E(Wi - G)2=2( ElWi- = - 
n = E ?i 

i=1 

Let Fn denote the c.d.f. of 1 (Wi - psi)/Sn , and 4 the standard normal 
c.d.f. There exists a constant c < oo such that for all x: 

n 

(6.1) Fn (X) - )(X)I < c . 
=Sn i=l 

We are concerned with the comparison of a treatment with a control in n 
blocks. As before, suppose that the ith block contains Ni experimental subjects, 
of which ti are selected at random to receive the treatment, with the remaining 
si serving as controls (si + ti = Ni, i = 1,.**, n). We shall assume that 

(6.2) Ni ? k for all i. 

LEMMA 1. Let Wi denote the sum of the ranks (after alignment) of the control 
responses in the ith block and let fi denote the absolute 3rd moment of Wi. Then 
under assumption (6.2) there exists a constant 0 < b < oo independent of the 
configuration such that 

n 

(6.3) Z ?bn4. 

PROOF. Note that 

EIWi - ,uil < si max irij -i13 < k-N3 

where ril, ** , riNi denote the ranks in the ith block and where N = E N . 
Since N < kn, it follows that 

n 

E 3i < n*k4n3 = k4n4 

as was to be proved. 
We note that (6.3) is valid without any assumptions regarding the method of 

alignment, and that it does not require complete randomization within each 
block but would be equally valid under any method of restricted randomization. 
On the other hand, to obtain a lower bound for S2 we make the assumption: 
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(A) After alignment, each block contains at least one observation above and 
one below the origin. 

This assumption is satisfied for all reasonable methods of alignment such as 
alignment on the mean, on a censored or Winsorized mean, or on the median. 

In addition, we shall suppose that: 
(B) Within each block, complete randomization is employed. 
LEMMA 2. Let S2 be the sum of the variances of the variables W* of Lemma 1. 

Under assumption (6.2), (A) and (B), there exists a constant 0 < a < oo in- 
dependent of the configuration such that 

(6.4) Sn _ an. 
PROOF. Under assumption (B), it is well known that 

2 Ni 
- 2 where r2 = 

= N - 5'r whreir (rij -;2Ii 
Ni 

- 
si j~~~~~~=1 

Since this is a minimum when si = 1, in which case (J* = , it is enough to 
prove that 'i-=1 Tr > an3. Now 

r*2 > (1/Ni) minj (rij - f)2 > (l/k) minj (rij -)2 

since of the rij at least one lies on either side of f and hence at least one must be 
closer to r than to fi.. Since the N ranks rij are distinct integers, it follows that 

i? m (ij_ j;)2 > 12 + 2 + ...+ [n - 2]2 

and since the right-hand side is of the order n3, this completes the proof. 
THEOREM 2. Under assumptions (6.2), (A) and (B), the distribution Fn of 

Z?f==1 (Wi - ,u4) /Sn tends to the standard normal distribution as n -? oo, and 
the convergence is uniform in the configuration. 

PROOF. Combining (6.3) and (6.4) with (6.1), we see that 

IFn(x) - 1(x) I < (bc/al)(1/n1), 

which proves the desired result. 
In order to apply (6.1) it is of course not necessary that (6.3) and (6.4) 

be satisfied but only that 
n 

(6.5) fli/Sn- 0 as n - .oo 

If for example, the ranks in the first block are 1, N , N1; those in the second 
block N1 + 1, .. , N1 + N2; etc., both Sn and ?=1 fi are of order n, and 
hence (6.5) holds without (6.4) being satisfied. 

On the other hand, although assumptions (A) and (B) are certainly not 
necessary for the validity of Theorem 2, some conditions on the method of 
alignment and randomization are required as the following two examples will 
show. 
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EXAMPLE 6.1. Suppose N = 2n and the ith block consists of the ranks (2i, 
2i + 1) for i = 1, , n - 1 while the nth block consists of the ranks 1 and 
2n. Within each block, let one of the ranks be assigned at random to treatment, 
the other to control. 

EXAMPLE 6.2. Suppose N = 4n and the ranks in block 1 are 1, 2, 4n - 1, 
4n; those in block 2 are 3, 4, 4n - 3, 4n - 2; etc., and suppose that in each 
block except the first one, the probability is 1 that the two outside ranks belong 
to treatment and 2 that the inner two ranks belong to treatment. 

In the first of these examples, condition (B) is satisfied but not (A); in the 
second example, condition (A) is satisfied but not (B). For both examples, it 
is clear that E Wi does not tend to be normally distributed as n -? oo. 

7. Efficiency. Some indications regarding the efficiency of the W-test discussed 
in the preceding sections can be obtained by considering the special case of paired 
comparisons (si = ti = 1).5 Let W be the rank sum oe the treated subjects, 
after each block (of two) has been aligned on the midpoint between the two 
observations X (control) and Y (treated) in this block. To determine the effi- 
ciency of the W-test, we shall obtain a relation between W and the Wilcoxon 
one-sample statistic W'. 

Suppose without loss of generality that the n blocks are numbered in order 
of increasing absolute difference Y - X between treated and control response. 
Let 

ri = i, si = 0 if in the ith block Xi < Yi, 

ri = 0, si = i otherwise. 

Further, let r* denote the rank of the Y-observation in the ith block after align- 
ment. Then if we have Xi < Yi, clearly 

ri = n + i=n + ri, 

since after alignment Yi exceeds all n negative observations and is the ith small- 
est of the positive observations. 

Similarly, if Yi < Xi, it is seen that 

ri = n + 1-i = n + 1 - s. 

The Wilcoxon statistic after alignment is then 
n 

W E r* = (n + ri) + EZ12) (n + 1 -si) 

where (1) and E(2) extend over all blocks with Y > X and Y < X respec- 
tively. If S is the number of blocks in which Y > X, that is, the sign statistic, 

5 In this case the efficiency computation is very much simpler than it is in general since 
the conditional null distribution of the test statistic given the configuration is independent 
of the configuration. 
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we have 
n n 

W = r + nS + (n + 1) (n-S) - si 
i=l1= 

n n 

= ,r,- si - S + n(n + 1). 
j=1 i=l 

Finally, since 
?=iri 

+ Zn='si 
= 1 + 2 + n =n(n + 1), we get the 

relationship 

W = 2W' -S + 2 [n(n + 1)] 

where W' = En 1 ri is the one-sample Wilcoxon statistic. 
Since the variance of W' is of order n3 and the variance of S only of order n, 

it is seen that W and W' are asymptotically equivalent, and that the two asso- 
ciated tests have the same Pitman efficiency. In particular, the asymptotic 
efficiency of W relative to the corresponding t-test is 3/7r. 

Suppose now that the block sizes are even but larger than 2 and that si = ti 
for all i. We can then obtain a test of asymptotic efficiency 3/wr relative to the 
t-test by pairing control and treatment observations within each block at ran- 
dom and applying the W'-test to the resulting pairs. It seems plausible that an 
efficient method of alignment of the block as a whole followed by an application 
of the W'-test should be more efficient than this rather arbitrary procedure,6 
and preliminary work for the case of normal distributions with alignment on the 
block mean suggests that this is indeed the case. 

This slight gain in efficiency appears however to decrease and tend to zero 
if instead of a large number of small blocks we are dealing with a small number of 
large blocks. As the block size tends to infinity, the additional information 
gained from intrablock comparisons above that provided by interblock com- 
parisons, seems to tend to zero, with the efficiency of the W'-method tending to 
the efficiency 317w found in Section 2 as the limiting efficiency for the Wilcoxon- 
van Elteren method based on independent rankings. 

We hope to amplify these remarks, which are based partly on heuristic reason- 
ing and partly on preliminary computations, in a later paper. 

8. Several treatments. We conclude with two examples which indicate how the 
technique of aligned ranks may be applied when more than two treatments are 
to be compared. 

EXAMPLE 8.1. Incomplete block design. Suppose three treatments are compared 
on three matched pairs, with these results 

6 Another interesting possibility would be to replace random pairing by a pairing of the 
smallest control with the smallest treatment observation, of the second smallest control 
with the second smallest treatment observation, etc., and then to compute the one-sample 
Wilcoxon statistic for these pairs. 
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Treatment 
Block A B C 

1 131 115 
2 151 141 
3 131 105 

If we align on block mean, the ranks are as follows 

Treatment 
Block A B C 

1 5 2 
2 4 3 
3 6 1 

Let us use the Kruskal-Wallis statistic, which tests against unspecified differ- 
ences in the treatments. The treatments A, B, C have rank sums 11, 6, 4 re- 
spectively, and the sum of squared differences from the mean of 7 is 

(11 - 7)2 + (6 - 7)2 + (4 - 7)2 = 26. 

There are 23 = 8 equally likely ways to label the ranks in the three blocks, 
and the actual labeling is seen by inspection to give the largest value of the statis- 
tic. Thus the significance probability is 1. 

EXAMPLE 8.2. Latin squares. To illustrate the application of our method to 
Latin squares, suppose that three treatments A, B, C are compared in two 3 X 3 
squares, yielding these observations 

B 4.461 C 2.798 A 7.402 C 5.424 B 9.670 A 9.669 
A 3.412 B 2.405 C 5.227 B 5.062 A 9.368 C 5.710 
C 3.454 A 2.169 B 6.717 A 6.605 C 7.786 B 7.427 

Square 1 Square 2 

When the row and column effects have been removed from each square in the 
usual way, these residuals are obtained: 

B .025 (10) C -.319 (5) A .293 (13) 
A .182 (12) B .494 (15) C -.676 (4) 
C -.208 (6) A - .174 (7) B .382 (14) 

Square 1 
C -1.114 (2) B -.112 (8) A 1.226 (18) 
B .065 (11) A 1.127 (17) C -1.192 (1) 
A 1.049 (16) C -1.014 (3) B -.034 (9) 

Square 2 

After each residual is written its rank in the residual pool. The rank sums of 
treatments A, B, C are respectively 

U = 32 + 51 = 83 V = 39 + 28 = 67 W = 15 + 6 = 21 

According to the null hypothesis of no treatment effect, the 18 ranks are fixed 
numbers to which the labels A, B, C were attached in a pattern of restricted 
randomization. In a 3 X 3 square there are only two basic patterns, but in addi- 
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tion the labels may be arranged in 3! = 6 orders, giving 2*6 = 12 cases in all. 
As each square has 12 cases, there are 122 = 144 cases, which are equally likely 
in the usual design. Whatever test statistic may be used, its null distribution 
may be obtained by calculating its value for each of these cases. 

For example, suppose we again use the Kruskal-Wallis statistic, 

T = (U - 57)2 + (V - 57)2 + (W - 57)2. 

With the actual data, T = 2072. To determine the significance of this value, 
notice that in Square 1 the three rank sums must be either 15, 32, 39 or else 
21, 31, 34, depending on which basic pattern is used. Similarly, in Square 2 we 
should have either 25, 28, 32 or 6, 28, 51. Now T is symmetric in U, V, W, 
which means that we may attach the labels A, B, C arbitrarily in one square. 
There are 24 equally likely values of T, according to the four choices of pattern 
and the six orderings in Square 2. Inspection shows that only one of these ar- 
rangements, 

U = 32+28 = 60 V= 39+51 = 90 W= 15+6 = 21 

yields a larger value of T than that actually observed. Thus the experiment has 
significance probability 2/24 = 0.083. 

If there are many blocks or squares, direct enumeration would have to be 
done on an automatic computing machine. Fortunately there is a relatively 
simple normal approximation. In Block i or Square i, the sums of ranks of treat- 
ments A and B gives a vector Ui, Vi whose early moments are easy to compute. 
From these the moments of U = E Us, V = E Ui may be obtained. If 
one uses as test statistic an appropriately chosen quadratic function of U and 
V, the null distribution would be approximately x2. This method readily ex- 
tends to blocks or squares with more than three treatments. 
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