The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance
Author(s): Milton Friedman

Source: Journal of the American Statistical Association, Vol. 32, No. 200, (Dec., 1937), pp. 675-
701

Published by: American Statistical Association

Stable URL: http://www.jstor.org/stable/2279372

Accessed: 08/07/2008 13:40

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/acti on/showPublisher?publisherCode=astata.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is anot-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

http://www.jstor.org


http://www.jstor.org/stable/2279372?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=astata

THE USE OF RANKS TO AVOID THE ASSUMPTION OF
NORMALITY IMPLICIT IN THE ANALYSIS OF VARIANCE

By MiLtoN FRIEDMAN
National Resources Committee

osT projects involving the collection and analysis of statistical

data have for one of their major aims the isolation of factors
which account for variation in the variable studied. The statistical tool
ordinarily employed for this purpose is the analysis of variance. Fre-
quently, however, the data are sufficiently extensive to indicate that
the assumptions necessary for the valid application of this technique
are not justified. This is especially apt to be the case with social and
economic data where the normal distribution is likely to be the excep-
tion rather than the rule. This difficulty can be obviated, however, by
arranging each set of values of the variate in order of size, numbering
them 1, 2, and so forth, and using these ranks instead of the original
quantitative values. In this way no assumption whatsoever need be
made as to the distribution of the original variate.

The utilization of ranked data is thus frequently a desirable device
to avoid normality assumptions; in addition, however, it may be ines-
capable either because the data available relate solely to order, or
because we are dealing with a qualitative characteristic which can be
ranked but not measured.

The possibility of using ranked data in problems involving simple
correlation and thereby avoiding assumptions of normality has re-
cently been emphasized in an article by Harold Hotelling and Mar-
garet Richards Pabst.! It is the purpose of the present article to out-
line a procedure whereby the analysis of ranked data can be employed
in place of the ordinary analysis of variance when there are two (or
more) criteria of classification. This procedure has two major advan-
tages. As already indicated, it is applicable to a wider class of cases
than the ordinary analysis of variance. In addition, it is less arduous
than the latter technique, requiring but a fraction as much time. The
loss of information through utilizing the procedure outlined below
when the analysis of variance could validly be applied may thus be
more than compensated for by its greater economy. This consideration
is likely to be especially important with those large scale collections of
social and economic data which have become increasingly frequent in
recent years and for which the funds available for analysis are limited.

1 “Rank Correlation and Tests of Significance Involving No Assumption of Normality,” Annals of
Mathematical Statistics, VII (1936) 29—43.
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THE PROCEDURE

The procedure, which I shall call the method of ranks, involves first
ranking the data in each row of a two-way table and then testing to
see whether the different columns of the resultant table of ranks can
be supposed to have all come from the same universe. This test is
made by computing from the mean ranks for the several columns a
statistic, x,%, which tends to be distributed according to the usual x2
distribution when the ranking is, in fact, random, i.e., when the factor
tested has no influence.

The details of the procedure can best be explained by presenting an
example. Table I gives the standard deviations of expenditures on
different categories of expenditure for seven income levels.? It is de-

TABLE I

STANDARD DEVIATIONS AT DIFFERENT INCOME LEVELS* OF EXPENDITURES ON
THE MAJOR CATEGORIES DURING 1935-36 OF 246 MINNEAPOLIS AND
ST. PAUL FAMILIES OF WAGE-EARNERS AND LOWER
SALARIED CLERICAL WORKERSt

Annual family income

Category of expenditure| g750 | g1,000- | $1,250- | $1,500- | 81,750~ | $2,000- | $2,250
1,000 1,250 1,500 1,750 2,000 2,250 2,500

Housing $103.3 $68.42 $89.53 $77.94 [$100.0 $108.2 $184.9

Household operation 42.19 44.31 60.91 73.90 43.87 61.74 102.3

Food 71.27 81.88 100.71 86.52 100.3 90.75 100.6

Clothing 37.59 60.05 56.97 60.79 71.82 83.04 117.1

Furnishings and equip-

ment 58.31 52.73 96.04 60.42 104.33 89.78 85.77

Transportation 46.27 82.18 129.8 181.0 172.33 164.8 246.8
Recreation 19.00 23.07 38.70 45.81 59.03 50.69 55.18
Personal care 8.31 8.43 9.16 14.28 10.63 15.84 12.50
Medical care 20.15 33.48 60.08 69.35 114.34 45.28 101.6
Education 3.16 4.12 12.73 18.95 8.89 41.52 66.33
Community welfare 4.12 18.87 8.54 12.92 25.30 19.85 16.76
Vocation 7.68 11.18 10.44 10.95 10.54 13.96 14.39
Gifts 5.29 10.91 11.22 25.26 42.25 48.80 69.38
Other 6.00 5.57 22.23 2.45 6.24 1.00 4.00

* In computing the standard deviations the influence of family composition (in terms of number
of members and their age) was eliminated by grouping the families at each income level into similar
family types and computing the sums of squares within such income-family type groups. These sums
of squares were summed for the family types at each income level and divided by the number of de-
grees of freedom. This gave the variance at each income level. It is the square roots of the variances
which are entered in the table.

t The figures in this table are based on schedules collected by the Cost of Living Division of the
U. 8. Bureau of Labor Statistics. These schedules were loaned to the National Resources Committee
for special analyses, of which this is one.

2 The figures given in Table I were obtained from schedules on the receipts and disbursements of
families of wage earners and lower salaried clerical workers during 1935-36 collected in Minneapolis
and St. Paul by the Cost of Living Division of the U. S. Bureau of Labor Statistics. These schedules
were loaned to the National Resources Committee for special analyses, several of which are used in this
article.
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sired to determine whether the standard deviations differ significantly
for the different income levels.

The first step is to form Table II from Table I by ranking the stand-
are deviations for each category, giving the lowest value a rank of 1,

TABLE II

RANKING OF INCOME LEVELS BY SIZE OF STANDARD DEVIATION FOR EACH
CATEGORY OF EXPENDITURE*

Annual family income
Category of expenditure | 750 | g1 000- | $1,250- | $1,500- | $1,750- | $2,000- | 82,250
1,000 1,250 1,500 1,750 2,000 2,250 2,500
Housing 5 1 3 2 4 6 7
Household operation 1 3 4 6 2 5 7
Food 1 2 7 3 5 4 6
Clothing 1 3 2 4 5 6 7
Furnishings and equip-
ment 2 1 6 3 7 5 4

Transportation 1 2 3 6 5 4 7
Recreation 1 2 3 4 7 5 6
Personal care 1 2 3 6 4 7 5
Medical care 1 2 4 5 7 3 6
Education 1 2 4 5 3 6 7
Community welfare 1 5 2 3 7 6 4
Vocation 1 5 2 4 3 6 7
Gifts 1 2 3 4 5 6 7
Other 5 4 7 2 6 1 3

a. Total 23 36 53 57 70 70 83
b. Mean rank 1.643 2.571 3.786 4.071 5.000 5.000 5.929
c. Deviation —2.357 | —1.429 —.214 .071 1.000 1.000 1.929

Sum of squared deviations =13.3692
Xr?=40.108

* The figures in this table are derived from Table I.

the next lowest rank of 2, etc.? Thus, in each row of Table II, we have
a set of numbers from 1 to 7, since there are seven income levels.

On the hypothesis that for any one category the value of the stand-
ard deviation is the same at all income levels, differences among the
values in each row of Table I will arise solely from sampling fluctua-
tions. The rank entered for a particular income level would then be a
matter of chance; in repeated samples each of the numbers from 1 to 7
would appear with equal frequency.*

8 It is, of course, immaterial whether the ranking is from the lowest to the highest or the reverse,
i.e., from the highest to the lowest.

4 This statement is strictly valid only if the different entries in the same row are assumed to come
from the same universe—no matter, of course, what its nature. In the present example it requires some
qualification since the standard deviationsin each row are not all based on the same number of cases.

In this case, while two entries in the same row of the original table (e.g., Table I) will have the same
expected value, one will exceed the other more than half the time. The reason for this is that the
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If, therefore, the standard deviation were independent of the income
level, the set of ranks in each column would represent a random sample
of 14 items (that being the number of categories of expenditure) from
the discontinuous rectangular universe—1, 2, 3, 4, 5, 6, 7. The mean
of this universe is 4, or, in general, 3(p+1), where p is the number of
ranks. The variance is also 4, or in general (p?—1)/12.5

The next step in the procedure is to obtain the mean rank for each
column. These are given on line b of Table II. In the absence of a rela-
tion between the standard deviations and income level, these means
are all estimates of the same thing, namely of the mean of the rec-
tangular universe. Moreover, the sampling distribution of the means
will be approximately normal so long as the number of rows is not too
small.6

The sampling distribution of the mean ranks (where 7; is the mean
rank of the j-th column) will have a mean value (p) of $(p+1) and a
variance o2 of (p?2—1)/(12 n), where = is the number of rows, i.e., the
number of ranks averaged.?

Since the true mean and true standard deviation of the chance
universe are known, the hypothesis that the means come from a single
homogeneous normal universe can be tested by computing

p—12 12n P
Xr2=~p~;(fi—ﬁ)2=m;{fi—%(p"l'l)}z.

sampling distribution of the ratio of two variances is not symmetrical unless both variances are based
on the same number of degrees of freedom. The mean value of the ratio is approximately unity, but the
median is not equal to one—it is less than one if the numerator is based on fewer degrees of freedom
than the denominator, and conversely. In ranking two standard deviations, therefore, the one based
on the smaller number of cases would receive a rank of 1 more than half the time. When more than two
standard deviations are ranked this tendency is somewhat compensated for by the greater probability
that those based on the fewest cases will receive relatively high ranks, and thus the average rank will
be less affected. This difficulty does not, however, affect the validity of theillustrative analysis presented
here, since the two highest income classes contain the smallest numbers of families but have the highest
average ranks.

More generally, when the entries in different columns of the same row come from symmetrical
universes with the same mean but different variances, the several ranks will have the same expected
value, but the probability distribution for each cell will not be exactly rectangular. This condition of
symmetry is a sufficient condition for the ranks to have the same expected value; it is, however, more
stringent than is necessary. This difficulty clearly calls for further analysis.

5 The sum of the numbers from 1 to p is $p(p+1). The mean is therefore 3(p+1). The sum of the
squares of the numbers from 1 to p is (2p+1)(p +1)p/6. The variance is, therefore, (2p+1)(p+1) /6
—i(p+1)32=(p*—-1)/12.

¢ That the sampling distribution of samples drawn from a rectangular universe approaches nor-
mality quite rapidly is, of course, well known. The distribution of means for samples of two is a tri-
angle; for samples of three it is made up of three parabolic segments, the first and third concave up-
wards, and the middle one concave downward. An empirical distribution for samples of ten is given by
Hilda Frost Dunlap, “An Empirical Determination of the Distribution of Means, Standard Deviations
and Correlation Coefficients Drawn from Rectangular Populations,” Annals of Mathematical Statistics,
II (1931), 66~81. The universe sampled was a discontinuous rectangular universe, including the integers
from 1 to 6. The empirical distribution shows extremely close conformity to the normal curve.

7 This follows from the fact that the variance of a mean of n observations of equal weight is 1/n
times the variance of an individual observation.
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So long as the number of rows and columns is not too small, x,? com-
puted in this way will be distributed according to the usual x? distribu-
tion with p—1 degrees of freedom.? If, now, x,? is significantly greater
than might reasonably have been expected from chance, the implica-
tion is that the mean ranks differ significantly, i.e., that the size of the
standard deviation depends on the income level.

The computation of x,? is extremely simple. The mean of the seven
mean ranks is, of necessity, equal to the true mean of 4. The difference
between the mean rank for each column and 4 is given on line ¢ of
Table II. The sum of the squares of these differences is 13.3692 and
x-2=40.1076.

This illustrative computation has been made using a formula that
makes clear the nature of x,2. In actual practice the following alterna-
tive formula which involves only integers and makes unnecessary the
computation of the actual mean ranks will be found more convenient:

12 » n 2
Xt =—2 (Zm) — 3n(p+1),

np(p+1) =t M=t

where r;; is the rank entered in the ¢-th row and j-th column.

The number of degrees of freedom on which this estimate is based
is p—1=6. For six degrees of freedom the value of x? which would be
exceeded by chance once in 20 times is 12.592, and once in a hundred
times, 16.812.° The probability of a value greater than 40 is .000001.1°
There can thus be little question that the observed mean ranks differ
significantly, i.e., that the standard deviation is related to the income
level. From the mean ranks it is seen that with but one minor exception
the standard deviations consistently increase with income.

Since the value of x,2 is invariant under transpositions of the
columns of ranks under their captions this information—that the ranks
increase with income—has not been utilized. Whenever the columns
themselves can be ranked, the additional information supplied by the
relationship between the order of the mean ranks and the order of the
columns can be used by computing a rank difference correlation be-
tween the two corresponding sets of ranks, determining the probability
that the correlation coefficient obtained would have been equalled or
exceeded by chance, converting this probability into the value of x?

8 For a justification of the formula for x,? and of the statement that x,? tends to be distributed
like x2, as well as for some indication of the number of columns and rows necessary, see pp. 687-694
and the mathematical appendix.

9 Fisher, R. A., Statistical Methods for Research Workers, Table III.

10 Pearson, Karl, Tables for Statisticians and Biometricians, 3rd Edition, London, 1930, Part, I
Table XII.
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which corresponds to it for two degrees of freedom, and pooling the
resultant value of x2 with x,2.1%% In the present illustrative example the
evidence is so clear that this additional information will obviously not
affect the conclusion. It will, however, serve to exemplify the pro-
cedure. The rank difference correlation between the mean rank and the
income level is .991. (In deriving this coefficient the tied ranks were
treated in the manner suggested below, i.e., they were assigned the
average value of the ranks for which they were tied.) The probability
of securing a value as great as or greater than this is between .00277
and .00040. The value of x? corresponding to the larger of these figures
for two degrees of freedom is —2 log, .0277 =11.77. Adding this to
x-2 gives 51.88 as the value to be entered in the x? table for 8 degrees of
freedom. The probability associated with this value is smaller than
that for x,? and, indeed, is so small that it cannot be determined from
the published tables.

In order to test whether the standard deviations are related to the
type of expenditure it is only necessary to repeat the above analysis;
this time, however, treating the columns is the way in which the rows
were previously treated, and vice versa. Thus the standard deviations
would be ranked for each income level, and the mean ranks obtained
for each type of expenditure.

It might appear offhand as if the procedure used to study the rela-
tion between standard deviations and income level does not make
use of all of the information provided by Table II, that it neglects the
distribution of the ranks within the columns, and that this supplies
additional information about the consistency of the ranking. This,
however, is not the case. Since Table II must contain n 1’s, n 2’s, . . .,
n p’s, the total sum of the squared deviations from the grand mean
is the same no matter what the arrangement of the ranks within the
table—it is, in fact, equal to np(p?—1)/12. The sum of squares within
columns plus the sum of squares between columns must add up to
this total. Knowledge of one of these sums of squares thus implies
knowledge of the other. In the above example we have used the sum
of squares between columns; no additional information is thus supplied
by the sum of squares within columns.

It should be noted that in testing the significance of the differences
among the columns no assumption whatsoever needs to be made as to
the similarity of the distribution of the original variate for the different
rows. The test takes the form of comparing the mean ranks for the
several columns; essentially, however, the null hypothesis tested is

18 See Hotelling and Pabst, op. cit., pp. 35 and 40, and Fisher, op. cit. art., 21.1.
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that the original entries in each row are from the same universe;
whether or not this universe is the same for the different rows is en-
tirely irrelevant to the validity of the test.

The method of ranks does not provide for testing “interaction.” It
is of the very nature of the method that it cannot do so. Without exact
quantitative measurement, “interaction,” in the sense used in the
ordinary analysis of variance, is meaningless.

It should further be noted that the method of ranks may not provide
a test of the influence of a factor if there is reason to suspect that this
influence is in a different direction for the different rows; if, for example,
the standard deviation increases with income for certain types of ex-
penditure and decreases with income for others. For in such a case the
mean ranks of the p columns may all have the same expected value,
although the p ranks for each of the rows do not. Thus, if x,? is signifi-
cant, the conclusion is that the ranking is not random. But x,2 may not
be significant, not because the ranking is random, or because the dif-
ferences in the mean ranks are too small for the observed sample to
display significance, but because the influence of the factor tested is
different in direction for the different rows. In this connection, however
the general point should be emphasized that non-significant results do
not establish the validity of the null hypothesis in the same way that
significant results tend to contradict it.

In some cases two (or more) of the values of the variate in a row will
be identical, i.e., there will be “tied” ranks. Two procedures can be
followed: first, the ranks tied for can be assigned to the two (or more)
values at random; or second, each value can be given the average
value of the ranks tied for (e.g., if two values are tied for the ranks 2
and 3 each can be given the rank of 2.5). In general, the second of these
procedures seems to be preferable, since it uses slightly more of the
information provided by the data.!! The substitution of the average
rank for the tied values does not affect the validity of the x,? test.!2

THE EFFICIENCY OF THE METHOD OF RANKS RELATIVE
TO THE ANALYSIS OF VARIANCE

It is evident that the method of ranks does not utilize all of the in-
formation furnished by the data, since it relies solely on order and

11 This alternative method of handling tied ranks and its advantages were brought to my attention
by Mr. W. Allen Wallis, who has developed a simple adjustment to the usual formula for the rank-
difference correlation to allow for the treatment of tied ranks in this fashion.

12 Tts only effect is to change very slightly the “true” value of the variance. In the extreme case
when tied ranks are as probable as untied ranks, the variance of an individual observation is changed
from (p?—1)/12 to p(p —1)/12,i.e.,it is reduced by (p —1)/12 or in the ratio of 1 to p +1. The reduction
is thus relatively small when p is moderately large.
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makes no use of the quantitative magnitude of the variate. It is this
very fact that makes it independent of the assumption of normality.
At the same time, it is desirable to obtain some notion about the
amount of information lost, that is, about the efficiency of the method
of ranks in situations where the analysis of variance provides the proper
test.1?

For the special case of p=2 (i.e., of two ranks) the method of ranks
is equivalent to the binomial series test of significance of a mean dif-
ference, that is, it is equivalent to testing whether the proportion of
positive differences between the pairs of values in each row of the 2Xn
table (the proportion of 2’s in the first column of the table of ranks)
differs significantly from }.* Now, W. G. Cochran recently showed's
that the binomial series test of a mean difference has an efficiency of
63.7 per cent. It follows that the method of ranks, for the special case
of p=2, likewise has an efficiency of 63.7 per cent.

13 By the “efficiency” of a statistic m used to estimate a parameter u is meant the ratio of the var-
iance of the maximum likelihood estimate of u to the variance of m. The difference between this ratio
and unity multiplied by 100 gives the percentage of “information” lost. (R. A. Fisher, op. cit., Chapter
IX.)

In the present instance, since the analysis of ranks and the analysis of variance provide estimates
of different parameters—in the one case, of x,?, and in the other, of the analysis of variance ratio—it is
first necessary to secure a relationship between the two parameters which can be used to estimate one
from the other. In this way both methods can be used to estimate the same parameter.

14 The analogous method for p greater than 2, while it provides a method for analyzing a table of
ranks and seems superficially closely related to the method of ranks, is essentially very different.

This alternative procedure involves the formation from the basic table of ranks of a p Xp contin-
gency table giving the number of ranks of each size in each column. Thus, one of the classifications is by
column number, the other by the value of the rank. Such tables can then be analyzed by computing x?
in the usual manner and testing its significance. Unless the number of rows is large relative to the number
of columns, the usual x? tables will, of course, not be applicable. Exact distributions can, however, be
obtained in the manner indicated by F. Yates (“Contingency Tables Involving Small Numbers and the
x? Test,” Journal of the Royal Statistical Society, Supplement, Volume I (1934), pp. 217-35).

This procedure does not, however, test the same hypothesis as the method of ranks. The reason
is that with the contingency table method the numerical values of the ranks in no way affect the
result, whereas in the method of ranks they do. Thus, consider the following 3 X3 tables of ranks:

A. 1 2 3 B. 1 2 3
1 2 3 1 2 3
3 2 1 1 3 2

It is clear that B indicates greater departure from the hypothesis that the ranking is random than does
A. Both tables contain one column in which all three ranks are identical and two columns in which
two out of three ranks are the same. But in B these latter two columns contain ranks which vary less
than for the corresponding columns of A. Stated differently, in B every rank in the last two columns is
greater than any rank in the first; no comparable statement is valid for A.

The contingency analysis would indicate, however, that A and B diverge equally from expectation,
since both will give contingency tables which, except for permutations of rows and columns, are
identical. The method of ranks, on the other hand, will indicate that B diverges more from expectation
than A; x,2is 43 for B, but only 2 for A.

For the purpose of determining whether one variable has a significant influence on another, it
seems clear that the method of ranks is definitely preferable to the contingenecy analysis just outlined.

The reason why the two methods are equivalent for p =2 is evident; when there are only two
ranks, there is no possibility of different ranks diverging by varying amounts.

15 “The Efficiencies of the Binomial Series Tests of Significance of a Mean and of a Correlation
Coeflicient,” Journal of the Royal Statistical Society, C (1937), 69-73.
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Moreover, this provides a measure of the minimum efficiency of the
method of ranks. When p=2, a classification in terms solely of greater
or smaller is substituted for the exact quantitative measurements;
as p increases a more and more finely subdivided scale is substituted
for the exact measurements. It seems reasonable, therefore, that the
loss in information through using ranks decreases as p increases.

For the special case of n=2, it is shown below that x,? and the rank
difference correlation are essentially equivalent. On the assumption
that the true correlation is zero, Hotelling and Pabst have shown that
the efficiency of the rank difference correlation approaches 91.19 per
cent as p increases. In their words, “the product-moment correlation
is approximately as sensitive a test of the existence of a relationship
in a normally distributed population with 91 cases as the rank correla-
tion with 100 cases.”16

For the more general case, when p and 7 are greater than 2 I have
not been able to determine the efficiency of the method of ranks. It
seems clear, however, that the loss of information is less than the 36
per cent lost when p =2 and probably greater than the 9 per cent lost
when n=2.

In the absence of the theoretical analysis there are presented here
the results of applying both the analysis of variance and the method
of ranks to the same data. A comparison of these results will, of course,
offer no conclusive evidence as to the relative efficiency of the two
methods; but it should at least suggest whether the loss of information
in using the method of ranks is so great as to vitiate completely its
usefulness.

The data analyzed are the same as those utilized in the illustrative
analysis summarized in Tables I and II above, i.e., they are data on
the expenditures and savings during 1935-36 of 246 Minneapolis and
St. Paul families of wage earners and lower salaried clerical workers.
In the present instance, however, the analysis is directed toward deter-
mining whether income and family composition have a significant in-
fluence on the expenditures for the various categories and on savings.
The analysis given above, it will be recalled, attempted to determine
whether income had a significant influence on the standard deviations
of expenditure.

The 246 families have been grouped into seven income classes,!?

16 Op. cit., pp. 42-43.

17 The total income of a family is defined as including not only money income, but also the imputed
value of gifts in kind, of food produced at home and of the use of a home owned by the family.
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each $250 in range, and five family composition types.'® This gives 35
groups in all.

For each of the major categories of expenditures, for savings, and
for certain sub-groups of items, three variances have been computed:
the variance (1) between income levels, (2) between family types, and
(3) within groups.?

For 14 major categories of expenditure, for 13 sub-groups of several
of these categories, and for savings, there was computed the ratios of
the variance between income levels and the variance between family
types to the variance within groups. These ratios, designated as F; and
F; respectively, are given in Table III.

To each of the 28 items considered, the method of ranks was also
applied to test the influence of income and family type.

In testing the influence of income, the seven mean expenditures for
each family type were ranked. This gave five sets of seven ranks. In
testing the influence of family type the procedure was reversed; the
five mean expenditures at each income level were ranked, giving seven
sets of five ranks.

The results of the method of ranks are likewise given in Table III.
This table gives the values of x,? computed in testing for the influence
of income, as well as those obtained in testing for the influence of
family type.

For both the analysis of variance and the method of ranks the values
which are significant at the .01 level are indicated with a double star;
those which are significant only at the .05 level, with a single star.

The two methods yield measures of the influence of income and
family type for 28 items. There are thus 56 independent analyses by
each method. In Table III these measures are classified into three

18 The family types are defined as follows:

Type 1 Husband, wife, and one child under 16

2 Husband, wife, and two children under 16

3 Husband, wife, one person 16 or over, and one or no other persons

4 Husband, wife, one child under 16, one person 16 or over, and one or two other persons
5 Husband, wife, and three or four children under 16.

19 There was also computed the variance due to interaction. Since the method of ranks can give
no measure of interaction, this variance is of no interest here. It is worth pointing out, however, that
interaction was significant for only three out of 28 cases; for one of those the probability was between
.05 and .01 and for two it was less than .01.

Since the numbers of items in the subclasses are neither equal nor proportionate, there is some
difficulty in decomposing the variation between groups. The variances between income levels and be-
tween family types were computed by the method of weighted squares of means. This method does not
give an estimate of interaction when there are more than two classes for both of the factors. Conse-
quently, the variance due to interaction was computed by the method of unweighted means.

For an excellent statement of the difficulties raised by disproportionate subclass numbers and of
the available methods of analysis, see G. C. Snedecor, and G. M. Cox, “Disproportionate Subclass

Numbers in Tables of Multiple Classification,” Research Bulletin 180, Agricultural Experiment
Station, Iowa State College of Agriculture and Mechanic Arts (March 1935).
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TABLE III
RESULTS OF ANALYSIS OF VARIANCE AND METHOD OF RANKS

Measures of the Influence of Income and Family Type on Expenditures for the Major Categories
of Expenditure and for Sub-Groups of Items, and on Savings, Based on Data on the Expenditures and
Savings During 1935-36 of 246 Minneapolis and St. Paul Families!

Analysis of variance Method of ranks
Ratios of variances? Xr?
Item
Income Family Family
Fi type Fy Income type
Major categories of expenditured
Food 15.33%% 5.75% 27.02%* 19.09%*
Household operation 9.95%* 1.01 24.24%* 4.94
Housing 9. 50%* 1.63 21.94%* 6.17
Clothing 9.40%* 1.38 25. 54%* 9.46
Recreation 4.25%% 1.98 23 . 83%* 11.89%
Personal care 4.10%* .80 21.11%* 4.14
Transportation 3.78%* 1.97 24.00%* 10.06*
Gifts 3.36%* .96 21.17%* 3.74
Community welfare 2.95%* .45 17.04%* .49
Education 2.93%* 1.79 17.31%* 8.11
Medical care 2.51% .80 18.69%* 6.51
Vocation .69 1.01 4.71 1.51
Furnishings and equipment .42 .37 6.96 3.69
Other .25 .30 5.74 5.40
Savings (or deficit) 2.50% 1.25 14.74* 4.57
Sub-groups of items
Food#:
Dairy products 6.71%* 9.41%* 23.66%* 21.83%*
Fruit 4 .87%% .38 12.69* 3.31
Food away from home 3.49%* 3.94%* 17 .34%* 10.09*
Meat 2.59% 2.02 9.34 3.77
Miscellaneous foods 2.01 1.21 15.00%* 5.49
Fish .98 2.43* 4.11 1.91
Vegetables .73 2.11 6.69 8.80
Grain products .71 4.76%F 3.26 9.71%
Sweets .20 1.05 3.96 9.94%
Poultry .20 .99 .30 1.89
Personal care:
Personal service 4,31k .70 19.80%* 4.71
Personal supplies 3.38%* .75 14.34% 1.49
Household operation:
Fuel and lights 7.26%* 1.56 23.25%* 6.74

* Indicates that observed figure is “significant,” i.e., greater than the value which would be ex-
ceeded by chance once in twenty times. For the ratios of variances this value is 2.14 for income and
2.42 for family type. For x,? it is 12.592 for income and 9.488 for family type. The difference between
the values for income and family type is a result of a difference in the number of degrees of freedom on
which the respective estimates are based.

** Indicates that observed figure is “highly significant,” i.e., greater than the value which would
be exceeded but once in a hundred times by chance. For the ratios of variances this value is 2.89 for
income and 3.41 for family type. For x,2 it is 15.033 for income and 13.277 for family type.

1 The figures in this table are based on schedules collected by the Cost of Living Division of the
U. 8. Bureau of Labor Statistics. These schedules were loaned to the National Resources Committee
for special analyses, one of which is presented here.

2: 8 4 5 See next page.
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groups: those which would have been exceeded by chance (a) in more
than five per cent of random samples, (b) in between five per cent and
one per cent of random samples, and (¢) in less than one per cent of
random samples. An indication of the relative efficiency of the two
methods is provided by Table IV, which gives a comparison of the two
classifications.

From the entries in the diagonal of Table IV, it is seen that for 45
out of the 56 analyses the two methods lead to similar conclusions. In
no case does one of the methods indicate a probability of less than .01
while the other indicates a probability greater than .05.

TABLE IV
COMPARISON OF RESULTS OF ANALYSIS OF VARIANCE AND METHOD OF RANKS
Analysis of variance
N f F’s with probabili
Method of ranks umber of F’s with probability Total
Probability of x.* Greater Between Less
than .05 .05 and .01 than .01

Greater than .05 28 2 0 30
Between .05 and .01 4 1 4 9
Less than .01 0 1 16 17
Total 32 4 20 56

In this example, it seems clear that the loss of information in using
the method of ranks is not very great. Indeed, on the basis of Table
IV alone, it would be difficult, if not impossible, to choose between the
two methods.

A comparison of the ranking of the 28 items by the size of F and by
the size of x,%, provides one further indication that the hypotheses
tested by the two methods are essentially the same except for the
inclusion of the normality assumption in that tested by the analysis
of variance. The rank difference correlation between F; and the
corresponding x,? is .88; between F; and the corresponding x.2, .66.
Both correlations are very large in comparison with their standard
error of .19.

% Fy is the ratio of the variance between income levels to the variance within classes. Fy is the
ratio of the variance between family types to the variance within classes.

3 Expenditures include not only money expenses but also the imputed value of gifts in kind. For
food, the imputed value of home produced food, and for housing, the imputed value of the use of an
owned home, are also included.

+ The original data give the expenditures on the sub-groups of food only for a seven day period. The
remaining ratios in the table are all based on data for annual expenditures.

5 Fuel and light is, of course, but one of the sub-groups under household operation.
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It should be noted that the illustrative comparison just presented
is to some extent weighted against the analysis of variance. The dis-
tribution of expenditure data departs considerably from normality.20
In addition, the analysis summarized in Tables I and II indicated
that the standard deviation of expenditures is related to the income
level; the assumption of uniform variance is, therefore, not justified.
However, the body of data analyzed represents no more extreme a de-
parture from the assumptions of normality and uniform variance than
is frequently met with.

THE RELATION BETWEEN THE DISTRIBUTION OF X, AND x?

The statement was made above without proof that x,? tends to be
distributed as x? with p—1 degrees of freedom. This statement requires
justification.

It is well known that the sum of the squares of m independent ob-
servations drawn from a normal universe with unit variance and zero
mean is distributed according to the x? distribution with m degrees of
freedom. In the present instance, when the number of rows is not too
small, the mean ranks can be treated as observations from a normal
universe with a true mean %(p+1). However, only p—1 of the p mean
ranks are independent, since the sum of the p mean ranks must equal
ip(p+1). If (p—1) of them were selected at random, the sum of the
squared deviations from the true mean of %(p+1) would seem to be
distributed as x®. However, to discard one of the mean ranks would
neglect some of the information; in addition, there is no criterion for
deciding which to discard. Instead we can compute the mean squared
deviation and multiply it by the number of degrees of freedom, (p—1).
This gives?

p—12
2 (7 — p)?

D =
as the numerator of x,2. The denominator must be ¢2, the variance of 7.

20 On the question of the effect of departure from normality on the analysis of variance, see Egon S.
Pearson, “The Analysis of Variance in Cases of Non-normal Variation,” Biometrika, Vol. 23, 1931, and
T. Eden and F. Yates, “On the Validity of Fisher’s z Test When Applied to an Actual Example of Non-
Normal Data,” Journal of Agricultural Science, Vol. 23, 1933. The conclusion of both papers is that
moderate departure from normality does not seriously affect the analysis of variance.

21 By analogy with x2 as ordinarily defined, the multiplier (p —1)/p seems unnecessary. The differ-
ence is this. In the ordinary case we have a sum of squares artificially lessened because the deviations are
computed from the observed rather than the true mean. Here, the observed mean is, of necessity, equal
to the true mean. We thus have the sum of p squared deviations from the true mean, one of these,
however, being essentially a duplication. This is evident when there are only two columns and the
two deviations must be equal in absolute value; it is less obvious when there are more than two columns
and the duplication is, as it were, spread among all of the deviations. A rigorous demonstration that
(p —1)/p is the multiplier needed to correct for this duplication is provided by the proof in the mathe-
matical appendix that the x;? distribution approaches that of x2
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This statement, of course, is not a rigorous proof that the distribu-
tion of x,* approaches the distribution of x? as n increases. A rigorous
proof has, however, been provided by Dr. 8. S. Wilks and is reproduced
in the mathematical appendix.

In addition, the exact values of the first three moments of x.? have
been derived.? The mean value is p—1; the variance, 2 (p—1) (n—1) /n;
and the third moment about the mean, 8 (p—1)(n—1)(n—2)/n2. The

TABLE V
EXACT DISTRIBUTION OF x,: FOR TABLES WITH FROM 2 TO 9 SETS OF THREE RANKS

(p=3;n=2,3,4,5,6,7,8,9)
P is the probability of obtaining a value of x-? as great as or greater than the corresponding value of X,

n=2 n=>5 n=7 n=8 n=9
Xr? P Xr? P Xr? I4 Xr? P Xxr? P
0 1.000 0.0 | 1.000 0.000 |1.000 0.00 |1.000 0.000 |1.000
1 .833 0.4 .954 0.286 | .964 0.25 967 0.222 | .971
3 500 1.2 .691 0.857 | .768 0.75 794 0.667 | .814
4 .167 1.6 .522 1.143 | .620 1.00 | .654 0.889 | .865
n=3 2.8 .367 2.000 | .486 1.75 | .531 1.556 | .569
X P 3.6 .182 2.571 | .305 2.25 | .355 2.000 | .398
0.000 | 1.000 | 4.8 124 3.429 | .237 3.00 | .285 2.667 | .328
0.667 944 5.2 .093 3.714 | .192 3.25 | .236 2.889 | .278
2.000 528 6.4 .039 4.571 | .112 4.00 | .149 3.556 | .187
2.667 361 7.6 .024 5.429 | .085 4.75 | .120 4.222 | .154
4.667 194 8.4 .0085 | 6.000 | .052 5.25 | .079 4.667 | .107
6.000 028 | 10.0 .00077| 7.143 | .027 6.25 | .047 5.556 | .069
- "8 7.714 | .021 6.75 | .038 6.000 | .057
8.000 | .016 7.00 | .030 6.222 | .048
Xr? P Xr? P 8.857 | .0084 7.75 | .018 6.889 | .031
0.0 1.000 | 0.00 [ 1.000 | 10.286 | .0036 9.00 | .0099 8.000 | .019
0.5 .931 0.33 | .956 | 10.571 | .0027 9.25 | .0080 8.222 | .016
1.5 .653 1.00 | .740 | 11.143 | .0012 9.75 | .0048 8.667 | .010
2.0 .431 1.33 | .570 | 12.286 | .00032 | 10.75 | .0024 9.556 | .0060
3.5 273 2.33 | .430 | 14.000 | .000021| 12.00 | .0011 10.667 | .0035
4.5 125 3.00 | .252 12.25 | .00086 10.889 | .0029
6.0 .069 4.00 | .184 13.00 | .00026 11.556 | .0013
6.5 .042 4.33 | .142 14.25 | .000061 | 12.667 | .00066
8.0 .0046| 5.33 | .072 16.00 | .0000036| 13.556 | .00035
6.33 | .052 14.000 | .00020
7.00 | .029 14.222 | .000097
8.33 | .012 14.889 | .000054
9.00 | .0081 16.222 | .000011
9.33 | .0055 18.000 | .0000006
10.33 | .0017
12.00 | .00013

corresponding values for the x? distribution with p—1 degrees of free-
dom are p—1, 2(p—1), and 8(p—1), respectively. It follows that x.?
and x* always have the same mean value, and that the variance and

2 ] am indebted to Mr. William C. Shelton for the derivation of the mean value and for suggesting
the method of deriving the other moments.
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third moment of x,2 approach the variance and third moment of x2 as
n increases.

For the special case of p=3, the exact distribution of x,? has been
derived for n from 2 to 9; and for p=4, for n equal to 2, 3 and 4.2
Table V gives the distributions for p =3, and Table VI for p=4. These
distributions give some empirical indication of how rapidly the x,?
distribution approaches the x? distribution; in addition, they can be
used to make exact tests for small values of n and p.

TABLE VI
EXACT DISTRIBUTION OF x;2 FOR TABLES WITH FROM 2 TO 4 SETS OF FOUR RANKS

(p=4;n=2,3,4)
P is the probability of obtaining a value of X2 as great as or greater than the corresponding value of X2

n=2 n=3 n=4
Xr? P Xr P Xr? P Xr? P
0.0 1.000 0.2 1.000 0.0 1.000 5.7 .141
0.6 .958 0.6 .958 0.3 .992 6.0 .105
1.2 .834 1.0 .910 0.6 .928 6.3 .094
1.8 .792 1.8 727 0.9 .900 6.6 .077
2.4 .625 2.2 .608 1.2 .800 6.9 .068
3.0 .542 2.6 .524 1.5 754 7.2 .054
3.6 .458 3.4 .446 1.8 .677 7.5 .052
4.2 .375 3.8 .342 2.1 649 7.8 .036
4.8 208 4.2 300 2.4 .524 8.1 .033
5.4 .167 5.0 207 2.7 .508 8.4 .019
6.0 .042 5.4 175 3.0 .432 8.7 .014
5.8 .148 3.3 .389 9.3 .012
6.6 .075 3.6 .355 9.6 .0069
7.0 .054 3.9 .324 9.9 .0062
7.4 .033 4.5 242 10.2 .0027
8.2 .017 4.8 200 10.8 .0016
9.0 .0017 5.1 190 11.1 .00094
5.4 158 12.0 .000072

The tables show that if we adopt .01 as a level of significance, then
for p=3, it is impossible to obtain a significant value for n less than 4,
and for n=4 only perfect consistency will yield a significant value; for
n=>5, two values will satisfy the criterion and for n=6, four values.
If .05 is adopted as a level of significance, only perfect consistency is
significant for n=3, while 2 values are significant for n=4, and four
values for n=35.

For p=4, the .01 criterion cannot be satisfied for n=2, is satisfied
by perfect consistency for n=3, and by 6 values for n=4. The .05

2 These distributions were derived by the rather laborious process of building up the distribution
for each value of n from the distribution for the next smaller value. The labor involved increases greatly
as nincreases, and even more rapidly as p increases.
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criterion is satisfied by one value for n=2, three values for n=3, and
11 values for n=4.

CHART 1
COMPARISON OF DISTRIBUTIONS OF x,2 AND x2 FOR TWO DEGREES OF FREEDOM
PANEL A: DISTRIBUTIONS OF X; FOR 3x9 TABLE AND OF X'
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The comparison of the x,? distribution with the x? distribution is
shown in Chart 1 for p=3 and in Chart 2 for p =4. In making this com-
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parison it is necessary to allow for the discontinuity of the x,? distribu-
tion. Only a discrete number of finite values of x,? are possible while
x? is continuous. The probability associated with any x,% in Tables V
and VI must thus be considered as corresponding to a value of x* inter-
mediate between that value of x,2 and the immediately preceding
value. This intermediate value has been arbitrarily chosen as halfway
between the two values of x.2. It is these intermediate values which
form the abscissas of the points plotted in the charts.

Panel A of Chart 1 compares the x,? distribution for a 3 X9 table with
the x? distribution for 2 degrees of freedom. For convenience, the dis-
tributions have been compared in cumulative form. The ordinate gives
the probability of securing a value of x? or x,% as great as or greater
than the abscissa. The solid line gives the x? distribution, the dotted
line, the x,? distribution. The agreement between the two distributions
is very close. The cumulative curve for the x,? distribution tends to
be somewhat above that for the x? distribution for low values of x,?
and below it for high values. This is to be expected since x,* must
be less than a fixed finite value (that corresponding to perfect consist-
ency) while x? is not so limited.

In utilizing tests of significance, it is the small values of P, i.e., one
of the tails of the distribution, with which we are ordinarily concerned.
In order to bring out more clearly the behavior of this part of the x,?
distribution, a logarithmic scale is used for the probability in Panel B
of Chart 1. This panel gives the cumulative distribution of x,? to the
right of P=.10 for p=3, and n=3, 5, 7, 9; as well as the corresponding
portion of the x? distribution. The chart shows the tendency of this
portion of the x,? curve to be below the x? curve. It also clearly indi-
cates the tendency for the x,? distribution to approach the x? distribu-
tion and suggests that it does so fairly rapidly.

Panels A and B of Chart 2 are similar to the corresponding panels
of Chart 1, but relate to p=4. Panel A compares the x,? distribution
for a 4X4 table with the x? distribution for three degrees of freedom.
The agreement is good, although, because of the smaller value of n, the
discrepancies are somewhat greater than in Panel A of Chart 1. It
indicates the same consistent tendency for the x,? distribution to be
above the x? distribution for small values of x,* and below it for large
values. Panel B gives the portion of the cumulative distribution of x,?
to the right of p=.10, for p=4 and n=2, 3, 4, as well as the correspond-
ing portion of the x? distribution. Once again the vertical scale is loga-
rithmic. The tendency for the x,? distribution to approach the x? dis-
tribution very rapidly as n increases, is plain.
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The tendency for the values of x,? adjusted for discontinuity to be
less than x? for small probabilities suggests that any errors resulting

CHART 2
COMPARISON OF DISTRIBUTIONS OF x,? AND x3 FOR THREE DEGREES OF FREEDOM

o PANEL A: DISTRIBUTIONS OF X! FOR 4x4 TABLE AND OF X'
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from using the x? distribution as an approximation to the x,* distribu-
tion are likely to be in the proper direction—that is, the significance of



-Tae Use or RANKS 693

results will be understated rather than exaggerated. This tendency
toward under-statement is compensated—indeed, in some cases over-
compensated—by the fact that the values of x,2 which can be observed
(i.e., the values of x,? not adjusted for discontinuity) are always greater
than the adjusted values. This factor is of minor significance, however,
since the number of possible values of x,2 increases very rapidly—and
hence the interval between them decreases very rapidly—as either p
or n increases. Even for p and n both as small as 4, the difference be-
tween the adjusted and unadjusted values of x,? is, for practical pur-
poses, negligible. It is .15 in all but four cases, .3 in three of these, and
45 in the remaining one.

A comparison of the x? and x,? distributions at the critical points
sheds further light on this problem. For p=3 the value of x? corre-
sponding to P=.05is 5.991. From Table V, the nearest value which
x-2 can have for p=3, n=9 is 6, and this has a probability of .057
associated with it. Thus, by using the x? distribution we should be led
to overestimate slightly the significance of a value of x,2=6. The next
higher value of x,? is 6.22, and its significance we should estimate prop-
erly, since the probability associated with it is .048. The value of x2
corresponding to P=.01 is 9.21. From Table V, the nearest values
which x.? can have are 8.67, with a probability of .0103, and 9.55 with
a probability of .0060. In this case, the use of the x? distribution would
yield the correct results; 8.66 would be attributed a probability greater
than .01 and 9.55 one less than .01.

For p =4, the value of x? corresponding to P=.05is 7.815. The near-
est values of x,? for p=4 and n=4, as given in Table VI, are 7.5 with
a probability of .052, and 7.8 with a probability of .036. The .01 value
of x? is 11.341. From the table, 9.3 has a probability of .012, 9.6 of
.0069, and 11.1 of .00094. Here, the use of x? would in each case under-
state the significance of x.2.

While no definitive conclusions can be drawn from these comparisons
they suggest that for p=3, the use of the x? distribution is likely to
give sufficiently accurate results for n greater than 9; while for p=4,
the use of the x? distribution is likely to understate the significance of
large values of x,? unless n is somewhat larger than 4. In view of the
apparent rapidity with which the x,? distribution approaches the x?
distribution when p=4, it seems reasonable that for n equal to or
greater than 6, the x? distribution will give sufficiently accurate results.
For p greater than 4 it is more difficult to make any general statement;
but it seems safe to say that the x? distribution will give fairly accurate
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results for n equal to or greater than 6.2¢ A procedure that seems appli-
cable when p is quite large and n less than 6 is discussed below.

RELATION BETWEEN X, AND THE RANK DIFFERENCE CORRELATION

When only two sets of ranks are available, the appropriate measure
of relationship is the rank difference correlation coefficient, r’. This
coefficient is computed by the usual product-moment formula with
the ranks serving as the variables, or by the equivalent, but more

convenient, formula
6Zd?

rr=1———-0:,
pP—p
where d is the difference between two paired values, and p, as above, is
the number of pairs of ranks.?

For n=2, x,® uses the same data as the rank difference correlation
and is designed to test the same hypothesis. The two are, therefore,
essentially equivalent. It is shown in the mathematical appendix that
the relation between them is

x*=@-1DA+r1).
For n=2 testing the significance of 7’ is thus equivalent to testing the
significance of x,2.

Under the hypothesis of homogeneity, the mean value of 7’ is zero,
and its variance, 1/(p—1).28 It follows from the last equation that,
for n=2, both the mean value and variance of x.? are (p—1). These
results agree, of course, with the more general formulae given above.

THE APPROACH TO NORMALITY

Hotelling and Pabst have shown that r’ tends to become normally
distributed as p increases. It follows that for n=2, x,? tends also to
become normally distributed as p increases.

When n is large the distribution of x,? approaches that of x? and the
latter approaches normality as the number of degrees of freedom in-
creases.

Since, for the smallest value of n as well as for large values, the dis-
tribution of x,? tends to normality as p increases, it seems reasonable
to assume that for intermediate values of n it behaves similarly. As-

2 It is worth recalling that the rapidity with which the variance of the x,? distribution approaches
the variance of the x? distribution depends solely on n and not at all on p. On the other hand, the
number of distinct values of x,? depends on both p and =.

2 This is the usual notation except that the number of pairs of ranks is ordinarily designated as n.

The present notation is used in order to preserve consistency with the preceding analysis.
26 Hotelling and Pabst, op. cit., p. 36.
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suming this to be the case, then for small values of n and large values
of p the significance of x,? can be tested by considering

Xr2 - (p - 1)

n—1
2—@-1
n

as a normally distributed variate with zero mean and unit standard
deviation.
Further study is clearly needed on this point, both in order to obtain
a rigorous proof that for small values of n the x,? distribution tends to
normality as p increases, and also to determine the rapidity with which
it approaches normality.
CONCLUSION

The method of ranks is a method which can be applied to data
classified by two (or more) criteria to determine whether the factors
used as criteria of classification have a significant influence on the
variate classified. Stated differently, the method tests the hypothesis
that the values of the variate corresponding to each subdivision by one
of the factors are homogeneous, i.e., from the same universe. The
method uses solely information on “order” and makes no use of the
quantitative values of the variate as such. For this reason no assump-
tion need be made as to the nature of the underlying universe or as to
whether the different sets of values come from similar universes. The
method is thus applicable to a wide class of problems to which the anal-
ysis of variance, designed to test a similar hypothesis, cannot validly
be applied.

The basic step in the application of the method of ranks is the com-
putation of a statistic, x.?, from a table of ranks. The sampling distri-
bution of this statistic approaches the x? distribution as the number of
sets of ranks increases. When the number of sets of ranks is moderately
large (say greater than 5 for four or more ranks) the significance of
x:2 can be tested by reference to the available x? tables. When the
number of ranks in each set is 3, and the number of sets 9 or less, or
when the number of ranks in each set is 4, and the number of sets 4
or less, the significance of x,2 can be tested by reference to the exact
tables given above. When, however, both the number of ranks and the
number of sets of ranks are very small, it is impossible to obtain signifi-
cant results.

When the number of ranks is large, but the number of sets of ranks
small, there is reason to suppose—though no rigorous proof is avail-
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able—that x,? is normally distributed about a mean of p—1 and with
a variance of 2(p—1) (n—1)/n, where p is the number of ranks and
n the number of sets of ranks. In such cases, then, the significance of
x:2 can be tested by reference to tables of the normal curve.

The theoretical discussion of the efficiency of the method of ranks
relative to the analysis of variance indicates that in situations when
the latter method can validly be applied and when the number of sets
of ranks is large the maximum loss of information through using the
analysis of ranks is 36 per cent. The minimum loss is probably 9 per
cent. The amount of information lost appears to be greatest when there
are only two ranks in each set, and decreases as the number of ranks
increases.

The application of the two methods to the same body of data pro-
vides further evidence as to their relative efficiency. The data employed
were classified into five groups by one of the factors and into seven by
the other. The results suggested that in this instance the loss of in-
formation through using the method of ranks was not very great, that
both methods tended to yield the same result.

The method of ranks requires less than one-fourth as much time
as the analysis of variance. In the light of the conclusions just stated
concerning their relative efficiency, this suggests that even though the
assumptions necessary for the latter method are known to be satisfied,
if the problem of computation is a serious one, the method of ranks
might profitably be used as an alternative to the analysis of variance
or, at least, as a preliminary method to suggest fruitful hypotheses
which might then be more accurately tested by the analysis of variance.

MATHEMATICAL APPENDIX
1. Proof that the x,? distribution approaches the x? distribution as n in-
creases.??
Let r;;=the rank in the ¢-th row and j-th column, (:=1, - -,
n;j=1,--+,p)

(1) i =ry;—3p+1)
and
1 n
2) =20
N =1
The characteristic function of the quantities 7,/ (j=1,---, p) is
given by
p—1
(3) b = E(exp lz 0,'1-‘]',>
j=1

27 This proof is adapted from one given by Dr. S. S. Wilks in a letter to the author.



-THE UskE oF RANKS 697

where E stands for expected value. Only p—1 of the #;s are included
because 7,’ is expressible in terms of #, - - -, #',_1. This in turn fol-
lows from the fact that, for each value of 7, r;; takes all the values from
1 to p as j varies. Substituting from (2) into (3) we have

,i n p—1
4) ¢ = E(exp — 22 oirlii) .
N =1 j=1

Since the set of ranks in each row is independent of the set of ranks
in any other row

(5) ¢ = [ (exp ~;— g 0,r; )]n

where r;’ stands for any of the sets of r’;;. Expanding,

0 = o S (Yo e

j=1 =1

or

7 21

¢ = {E[1+-—n—20,r,'
(7 =
p—2 p—1 1 n
(Zazr,'2+22 > 00,r,r,>+——R’:|} .
2n2 j=1 j=1 j'=j+1 ns
But since r;’ takes all of the p values differing by unity from

—3(—1) to 3(p—1) with equal probability
(8) Ery/ =0,

1 (p=1)/2
9) Eri’t = — ri't = (p* — 1)/12 .

P ry=—(-1/2

Further
(10) : ET,"T'," = - (p + 1)/12
since
(»—1)/2 2 (p—1)/2
( 2 "i/) = 2
(11) ri'=—(p—-1)/2 ri'=—{(p-1)/2
(312 (p—1)/2
+ 2 Z Z 7'7 it = 0
ri’'=—(p=1)/2 r'jr=r;'+1

and hence

(12) p(p — DErir'y = — pEr/’? = — p(p? — 1)/12 .
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Using these results in (7) gives
1 p2_1 p—1 p—2 p—1 1 n
(13) ¢={1——[ Z 2 0:; ]+~ R}
2n? 12 ,‘=1 j=1 j'=j+1 n3

where R is a bounded function of p, rl', ce,r'yaforn=1,2,3,- -
Allowing 7 to approach infinity, we have

p—2 p—1

2 p—
(14) qsgexp—p 1(20. —~———Z > oo)

24n =1 p—10 =
This, however, is the characteristic function for a multivariate normal
distribution. It follows that 7/, ---, 7,1 are asymptotically nor-
mally distributed with a matrix of variances and covariances given by
the matrix of the quadraticin 6y, - - - , 0,1

Taking the reciprocal of the matrix of the 6’s and associating it

with the 7,”’s we have as the distribution function of the 7,;"s:

LI (% 5
exp{—— (2 7.'2 4+ 2 7’7 >}
(15) 2 pp+ 1)\ =’ =507
di/dr’ - - - dF ey

where C is a constant

? 7=1
Since Y, 7,/ =0 it follows that 7,’= —Z 7;' and hence
j=1

-1 2 p—1 p—2 -1
(16) FP,z:(Zfi,)=Z /2+22 ZT,T,.

=1 i=1 =1 j'=j+1

Substituting (16) in the exponent of (15) we have, finally, for the
distribution funection

1 12n
C exp { S Z r,’z} di/dry - - - dF pa
2 plp+ 1) S

= C exp (—- —2vx,2)dr1'dr2' st df’p—l )

(17)

by the definition of x,2. It follows that for n large x.? is distributed like
x* with p—1 degrees of freedom.

2. Derivation of the exact moments®® of x,.
By definition
12n L] 12n
(18) x*=——— 3= ——— Z(
p(p+ 1) o p(p + 1) n* ;5

28 The derivation of the mean value of x,? is adapted from one communicated to the author by
Mr. William C. Shelton, who also suggested the method used for deriving the other moments. The
method employed is essentially that developed by J. Splawa-Neyman, “Contributions to the Theory
of Small Samples Drawn from a Finite Population,” Biometrika, Vol. 17, 1925, pages 472-79.

Zr,,).

i=1
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¥4 n
Expanding, replacing > > 72 by its value np (p2—1)/12, and re-

j=1 $=1
arranging the order of the summation signs we have

24 n—1 n D
— E Z E i’ .

19 A=@-D+
(19) X (P ) p(p + Dn g v 2

Taking the expected value of both sides gives

24 n=l 2 P
(20) EXr2 = (P - 1) +— Z Z Z E(T’,’jr’i’i) .
p(p + Dn i3 v—ih j=

But since one row of the table of ranks is entirely independent of any
other row, Er’;; v’y ;=Er';; Er's;=0.
(21) Ex2=p—1.

From (19) and (21)

24 n—1 n P
(22) Xt — Byt = —————— 20 20 Dorlir'u;.
p(p + n g i jo

The k-th moment of x,2 about its mean value can therefore be ob-
tained by evaluating the expected value of the k-th power of the right
hand side of (22).

?
To determine the variance of x.? first note that > r’;; 7'y, is in-
i=1
A
dependent of > r’;; r's.;. This can be proved by multiplying the two
i=1
expressions. The expected value of the resultant product is easily
b v
shown to be zero. Likewise, ), r";; 7’;/; is independent of D /s /3001,

i=1 j=1
It follows that

(23) E[ E f: Ep: r'si 7"1"1‘]2= "2_:1 i E( i s Tlt"i>2-

i=1 /=141 j=1 1=1 /=141 j=1

But

P 2 P p—1 D

E( 2 T'ii’""’”) - E( 2t et 230 2ttty TI"’")
j=1 =1 j=1 . j'=j41

24) '

( P p—1 P

= 2 Er Bt + 23 3 B v i )B@ eir'ep)

=1 j=l =il
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Substituting (9) and (10) into (24) and the resultant expression into
(23) gives

(25) E[ 'il i i:rlii 7";',-:'2= n(n — 1) p2(p — 1(p + 1)2 ‘

f=1 §'mitl j=1 2 122

Multiplying this by [p(p+1)n/24]2 gives, finally, the variance of
X

(26) =Tl 1y
n

To determine the third moment of x,2 about its mean note that the
only term in the expansion of

n—1 n ? 3
[Z 5 Srar]
f=1 i/=itl j=l
whose expected value is not zero is
n—2 n—1 n D D P
@n 62 X X [ Do i 2 it s D T'i"iJ .
i1 ifmmil § =il L = j=1 =1

Expanding the expression in brackets gives

P p—1 p
2P 3 20 A e i
i=1 =l it
(28)
=2 p-1 P

+ 6 Z Z Z r/ijr,"li 7',1'7'1 T,"nir T,i'i" 7',1'”)"' .
d=1 gmjtl §'=jr41
Taking expected values, and substituting from (9) and (10) gives
P*(p—1)(p+1)}/12® as the expected value of (28). Substituting this
in (27) gives

(29) ta=l /=il g=1
_bnn =D —2) plp — @ +1)°

1.2.3 123

Multiplying this by [p(p+1)n/24]-* gives as the third moment of
x-2 about its mean

_8(n = )(n — 2)

n2

(30) Ha -1.
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3. Derivation of relationship between x> and rank difference correlation
(r") when n=2.
From (19) we have, for n=2

P

(31) 2 = ( —1)+—L27‘/'7‘/~
o pp+ 1= T

But, using the product moment formula, the rank difference correla-
tion coeflicient is defined as?®

Xp:
’ !
715 T 25
12

32 r = e rhirle; .
#2) D D P —I)E A
DR D 1l
=1 7=1

Substituting in (31) this gives
(33) x*=(p— 1A+

as the relation between x,2 and the rank difference correlation coef-
ficient.

29 The notation used in (32) may be somewhat confusing. The symbol + which stands for the rank
difference correlation coefficient is to be distinguished from ’s; which stands for the deviaton of a
rank from its expected value.
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