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We investigate in this paper approximate operations on sets, approximate 
equality of sets, and approximate inclusion of sets. The presented approach may 
be considered as an alternative to fuzzy sets theory and tolerance theory. Some 
applications are outlined. 

KEY WORDS: Artificial intelligence; automatic classification; cluster analysis; 
fuzzy sets; inductive reasoning; learning algorithms; measurement theory; 
pattern recognition; tolerance theory. 

Apart from the known and the unknown, what else is there? 
HaroM Pinter (The Homecoming) 

1. INTRODUCTION 

The aim of this paper is to describe some properties of rough sets, introduced 
in Ref. 7 and investigated in Refs. 1, 2, 4, 5, 6, 8, 9, and 11. 

The rough set concept can be of some importance, primarily in some 
branches of artificial intelligence, such as inductive reasoning, automatic 
classification, pattern recognition, learning algorithms, etc. 

The idea of a rough set could be placed in a more general setting, 
leading to a fruitful further research and applications in classification theory, 
cluster analysis, measurement theory, taxonomy, etc. 

The key to the presented approach is provided by the exact 
mathematical formulation of the concept of approximative (rough) equality 
of sets in a given approximation space; an approximation space is 
understood as a pair (U, R), where U is a certain set called universe, and 
R c U X U is an indiscernibility relation. We assume throughout this paper 
that R is an equivalence relation. 
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Some ideas underlying the theory outlined here are common to fuzzy set 
theory, (13) tolerance theory, (14) nonstandard analysis. (12) However, we are 
primarily aiming at laying mathematical foundations for artificial 
intelligence, and not a new set theory or analysis. 

Some applications of the presented ideas are given in Refs. 1, 4, 5, 6. 
The ideas given in this paper have been inspired by the results of 

Michalski (see Ref. 3) concerning automatic classification. 
We use throughout this paper standard mathematical notations, and we 

assume that the reader is familiar with basic set theoretical and topological 
notions. 

Thanks are due to Prof. E. Odowska and Prof. W. Marek for fruitful 
discussions, and to the reviewer for valuable comments and remarks. 

2. APPROXIMATION SPACE; APPROXIMATIONS 

2A.  Basic Notions 

Let U be a certain set called the universe, and let R be an equivalence 
relation on U. The pair A = (U, R) will be called an approximation space. 
We shall call R an indiseernibility relation. If x, y E U and (x, y) E R we say 
that x and y are indistinguishable in A. 

Subsets of U will be denoted by X, Y, Z, possibly with indices. The 
empty set will be denoted by 0, and the universe U will also be denoted by 1. 

Equivalence classes of the relation R will b e  called elementarY sets 
(atoms) in A or, briefly, elementary sets. The set of all atoms in A will be 
denoted by U/R. 

We assume that the empty set is also elementary in every A. 
Every finite union of elementary sets in A will be called a composed set 

in A, or in short, a composed set. The family of all composed sets in A will 
be denoted as Corn(A). Obviously Com(A) is a Boolean algebra, i.e., the 
family of all composed set is closed under intersection, union, and 
complement of sets. 

Let X be a certain subset of U. The least composed set in A containing 
X will be called the best upper approximation of X in A, in symbols 
Apr,(X); the greatest composed set in A contained in X will be called the 
best lower approximation of X in A, in symbols AprA(x ). 

If A is known, instead of AprA(X ) (Apr,(X)) we shall write Apr(X) 
(apr(X)). 

The set BndA(X ) = AprA(X ) --AprA(X ) (in short Bnd(X)) will be called 
the boundary of X in A. 
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Fig. 1 

X 

Sets E d g ~ ( X ) = X - A p r A ( X  ) (in short Edg(X)) and EdgA(X)= 
AprA(X)--X,  (in short Edg(X)) are referred to as an internal and an 
external edge of X in A, respectively. 

Of course BndA(X ) = EdgA(X ) U EdgA(X ). 
Fig. 1 shows the notion of an upper and lower approximation in a two- 

dimensional approximation space consisting of a rectangle partitioned into 
elementary squares. 

Let us define two membership functions --~A, ~ (called strong and 
weak membership, respectively), as follows: 

x _C A X iff x ~ Apr~ (X) 

x ~ A X  iff x ~ A p r  A(X) 

If x -~A X, we say that "X surely belongs to X in A," while x ~A X is to mean 
that "X possibly belongs to X in A." Thus we can interprete approximations 
as counterparts of necessity and possibility in modal logic. 

Of course, 

Apr4 (X) = {x :x  C A X} 

Apr A (X) = {x :x  ~A X} 

Thus we can develop our theory in terms of strong and weak 
membership functions or in terms of approximations. For the sake of 
simplicity we shall use here the approximational approach. 

2.2. Approximation Space and Topological Space 

It is easy to check that the approximation space A = (U,R) defines 
uniquely the topological space T(A) (in short TA), where T A = (U, Corn(A)), 
and Com(A) are the family of all open sets in TA, and U/R is a base for T A . 

It follows from the definition of (lower and upper) approximations that 
Corn(A) is both the set of all open and closed sets in T A . Thus, ApL4(X ) and 
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Apr A (X) can be interpreted as an interior and closure of the set X in the 
topological space T A, respectively. 

If AprA(X ) = AprA(X ) for every X c  U, then A = (U, R) will be called a 
discrete approximation space. 

One can easily check that if A is a discrete approximation space, then 
all atoms in A are unity sets. 

Of course a discrete approximation space A generates the discrete 
topological space T~. 

2.3. Properties of Approximations 

It follows from the topological 
operations that for every X, Y c U and every 
A = (U, R) the following properties hold: 

Apr(X) ~ X D Apr(X) 

Apt ( l )  = Apt ( l )  = 1 

Apr(0) = Apr(0) = 0 

Apr(Apr(X)) = Apr(Apr(X)) = Apr(X) 

Apr(Apr(X)) = Apr(Apr(X)) = Apr(X) 

A p r ( X U  Y) = Apr(X) U Apr(Y) 

Apr(XC3 Y) = Apt(X) N Apr(Y) 

Apr(X) = --Apr(--X) 

npr(X)  = --Apr(--X) 

where - X  is an abbreviation for U - X .  Moreover we have 

Apr(X N Y) c Apr(X) V3 Apr(Y) 

A p r ( X U  I1) D Apr(X) U Apr(Y) 

Apr(X - I1) D Apr(X) - Apt(Y) 

The following 
imations: 

interpretation of the approximation 
approximation space 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Apr(X -- Y) c Apr(X) - Apr(Y) (13) 

are counterparts of the law X U - X =  1 for approx- 

Apr(X) U Apr(--X) = 1 

Apr(X) U Apr(--X) = 1 

(14) 

(15) 
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Apr(X) U Apr(-X) = 1 (16) 

Apr(X) U Apr(-X) = -Bnd(X) (17) 

The law X N- -X  = 0 has the following analogues for approximations: 

Apr(X) n a p r ( - X )  = 0 (18) 

apr(X) N Apr(--X) = Bnd(X) (19) 

Apr(X) N ap r ( -X)  = 0 (20) 

Apr(X) n Apr(--X) = 0 (21) 

De Morgan's laws have the following counterparts: 

- (Apt(X) U Apr(Y)) = Apr(-X) N apr(--Y) (22) 

--(Apr(X) U apr(Y)) = Apr(X) n apr(Y) (23) 

-(Apr(X) U apr(Y)) = Apr(-X) N ap r ( -Y)  (24) 

--(Apr(X) U Apr(Y)) = Apr(-X) N apr(--Y) (25) 

-(Apr(X) N Apr(Y)) = Apr(-X) U Apr(-Y) (26) 

--(Apr(X) N Apr(Y)) = Apr(-X) U Apr(--Y) (27) 

--(Apr(X) N Apr(Y)) = Apr(--X) U Apr(--Y) (28) 

- (Apr  (X) N Apr (X))= Apr ( -X)  U Apr (-Y) (29) 

Moreover we have 

If X c 17., then Apr(X) c Apr(Y) and Apt(X) c Apr(Y) (30) 

Note that X =  AprA(X ) and X =  AprA(X ) i f fX is a composed set in A. 

2.4. Accuracy of an Approximation 

In order to express the "quality" of an approximation we introduce 
some accuracy measure. 

Let A = (U,R)  be an approximation space, and let X c  U. 
By _#A(X) (/2A(X)) we denote the number of atoms in Apr,(X) 

(Apr A (X)), and we call (A(X) (~TA(X)) the internal (external) measure of Y in 
A. 

If #_A(X)=~A(X) we say that X is measurable in A. 
Thus the set X is measurable in A if and only if X is a composed set in 

A. 



346 Pawlak 

Let A = (U, R) be an approximation space and let X c U. 
By the accuracy of approximation of X in A we mean the number 

i"/A (X) = ~A (X) where fiA (X) r 0 g.(x)' 

Obviously, 0 ~ tIA(X) ~< 1 for any approximation space A = (U, R) and 
any X c U. 

For any measurable set X in A, tlA(X) -- 1. I f X  is not measurable in A, 
then 0 ~ qA(X) < 1. In particular rlA(X) = 0, iff Apr4(X ) = 0. 

For any set X in a discrete approximation space A = (U, R), tlA(X)-~ 1 
and this is the greatest possible accuracy. 

2.5. Examples 

In this paragraph we illustrate the notions introduced previously with 
simple examples. 

Example 1. Let R + be the set of nonnegative real numbers, and let S 
be the indiscernibility relation on R § defined by the following partition: 

(0, 1), (1, 2), (3, 3) .... 

where ( i , i +  1), i = 0 ,  1,2 .... denotes a half-opened interval. The 
corresponding approximation space will be denoted as A = (R +, S). 

Let us consider approximations of an open interval (0, r), where n ~< r 
n + 1 for a certain n ~> 0. 

By definition we have 

t / - - I  

Apr]0, r) = U (i, i + 1) -- (0, n), for n >/1, and 0 for n = 0 
i = 0  

Apr(0, r ) =  G ( i , i + l ) = ( 0 ,  n +  1) 
i = o  

The internal and external measures of (0, r) in A are 

_~(0, r) = n 

f i ( O , r ) = n +  1 

and the accuracy of (0, r) in A is 

n 
r )  - 

n + l  
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Thus, we can interpret the approximation space A = (R +, S) as a 
measurement system, where 

fiA(i,i+ 1 } = ~ A ( i , i +  1}=  1, i = 0 ,  1,... 

is the unit of measurement in A, and r/(0, r) is the accuracy of (0, r) in A. 
For more detail see Ref. 6. 

Example 2. Let V be a finite set called a vocabulary and let V* be 
the set of all finite sequences over V. Any subset of V* will be called a 
language over V. 

Let R ~ V* X V* be an indiseernibility relation, and let A = (V*,R) be 
an approximation space defined by V* and R. 

A language L c V* is recognizable in A if AprA(L ) = AprA(L ). 
The family of all recognizable languages in A, denoted as Rec(A), is the 

topology induced by A = (V*, R) and the base of the topology is V*/R. 
That is to say that if the language L is not recognizable in A we are 

able to recognize only the lower and upper approximations in A. 
This property can be used in speach recognition, pattern recognition, 

fault tolerant computers, etc. 

Example 3. Let S = (X,A, V,p) be an information system (see 
Ref. 10), where 

X is the set of objects 

A is the set of attributes 

V =  U va, va is the set of values of attribute a C A 

p: X XA ~ V is an information function, Px: A ~ V 

x C X is called an information about x in S, where 

px(a) = p(x, a) 

for every x ~ X and a E A. 
We define the binary relation S over X in the following way: 

X ~ s y  iff Px=Py 

Obviously S is an equivalence relation and A = (X, S) is the approx- 
imation space induced by the information system S. 

Any subset Y c X  is called describable in S iff Apr4(Y ) = AprA(Y ). The 
set of all describable sets in S, denoted as Des(S), is a topology induced by 
S on X, and the base of the topology is X/S. 
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That is to mean that if we classify some objects according to some 
attributes, in a general case we are unable to define an arbitrary subset of 
objects by these attributes; only those subsets which are describable in S, 
can be defined by means of the attributes of the system S. 

This property must be taken into consideration, in any classification 
system in which objects are classified by means of attributes. 

3. ROUGH EQUALITY OF SETS 

Basic Definitions 

Let A = (U,R) be an approximation space and let X, Y c  U. We say 

3.1. 

that 

(a) 

(b) 

(c) 

The sets X, Y are roughly bottom-equal in A, in symbols X ~  A Y, iff 
Apr.(X) = aprA(Y ). 

The sets X, Y are roughly top-equal in A, in symbols X ~  A Y, iff 
AprA(X ) = AprA(Y ). 

The sets X, Y are roughly equal in A, in symbols X ~A Y, iff X ~A Y 
and X ---A Y- 

It is easy to check that ~ -~ ~ are equivalence relations on P(U). 
A~ A~  A 

(P(U) denotes the powerset of U.) 
In what follows we shall omit the subscript A if the approximation 

space A is understood--  and write ~, ~-, ~,  instead of if, if, A" 

3.2. Properties of Rough Equality 

For any approximation space A = ( U , R )  
following properties are true: 

If X ~ Y, then 

If X ~- Y, then 

If X ~ X '  and 

If X ~ X '  and 

and any X, Y c U  the 

X A Y ~ X ~ Y  

X U  Y~_X~- Y 

Y-~ Y', then X U  Y ~ X '  U Y' 

Y ~ Y', then X n Y ~ X '  N Y' 

If  X ~  Y, then X -  Y ~  0 

X -  Y ~ O  iff X =  Y 

If X ~ Y, then - ( - - X ) ~  Y 

If  X ~-- Y, then - ( - - X )  ~ Y 

(31) 

(32) 
(33) 
(34) 

(35) 

(36) 

(37) 

(38) 



Rough Sets 349 

If X m  Y, then - ( - X ) m  Y (39) 

IfX~_ Y, then X U - Y ~ _  1 (40) 

I fX~-  Y, then X ~ - Y ~ - O  (41) 

Set X will be called dense in A if X---A 1. Set X will be called codense in A if 
X ~A 0. Set X will be called dispersed in A if X is both dense and codense 
in A. 

One can easily show the following properties: 

If X ~ Y and Y ~  0, then X ~-, 0 (42) 

I f X c  Y and X ~  1, then Y~- 1 (43) 

If X--- 1, then - X  ~ 0 (44) 

I f X ~  O, then --X-~ 1 (45) 

If X is a dispersed set, then so is - X ,  i.e., X ~ - X  (46) 

and X ~_ - X ,  and hence X ~ -X .  

If X, Y are both dense, then X ~_ Y (47) 

If X, Y are both codense then X ~  Y (48) 

If X, Y are both dispersed then X ~ Y (49) 

X ~ 0 iff Apr(X) = 0 (50) 

X~-O iff X =  0 (51) 

X ~ I  i f f X = l  (52) 

X ~ I  i f f A p r ( X ) = l  

AprA(X ) is the union of all sets Y such that X~--A Y (54) 

Apr.(X) is the intersection of all sets Y, such that X~. A Y (55) 

4. ROUGH INCLUSION OF SETS 

4.1. Basic Definitions 

Let A = (U,R) be an approximation space and let X, Y c  U. We 
introduce the foll6wing definitions: 

(a) we say that X is roughly bottom-included in Y, in A, in symbols 
C ~A Y, if AprA(X ) c AprA(Y ). 
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(b) We say that X is roughly top-included in Y, in A in symbols X ~A Y, if 
Apr A (X) c Apr A (Y). 

(c) We say that X is roughly included in Y, in A, in symbols X ~A Y, if 
X ~A Y and X ~A Y" 

If A is understood then instead of X ~A Y, X ~A Y, and X ~A Y, we 
shall write X ~ Y, X ~ Y, X ~ Y, respectively. If X ~A Y, X is called a rough 
upper-subset of Y in A ; If X ~A Y, X is called a rough lower-subset of Y in A; 
If X,~A Y, X is called a rough subset of Y in A. 

One can easily check that all rough inclusions ~,  ~, and ~ are ordering 
relations. 

The family of all rough (lower, upper) subsets of X in A will be denoted 
by P A(X) (P A(X), P~X) ) and will be called rough (lower, upper) powerset of 
X in A. Thus, 

P~(X)---- {Y: U~AX} 

P~X) ---- { Y: Y ~A X} 

PA(X) = {Y: Y~AX} 

It is easy to see that 

and 

P(x) c P (x) 

P(X) c e x) 

P(x) ceA (x) 

If X ~  Y, then PA-(.X)= PA_(Y) 

If X -~ Y, then P~X) = PA-(.Y) 

If X ~  Y, then PA(X) = PA(Y) 

If X ~ Y then PA(X) C P~_(Y) 

If X ~ Y, then PA-(X) C P~Y) 

I f X ~  Y, then PA(X)CPA(Y) 

4.2. Properties of Rough Inclusions 

It is easy to prove by simple computations that the following properties 
are true: 

I f X c  Y, then X ~  Y, X ~  Y, X ~  Y (56) 
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If X ~ Y, and Y ~ X, then X ~ Y 

I f X ~ Y a n d  Y ~ X ,  t h e n X ~ - Y  

If X ~ Y and X ~ Y, then X ~ Y 

X ~  Y i f f X ~  Y ~  Y 

X ~ Y iff X ~  Y ~ X  

I f X c  Y and X ~ X ' ,  Y ~  Y' then X' ~ Y' 

I f X c  Y and X~_X', Y ~  Y', then X' ~ Y' 

If X c Y, and X ..~ X', Y ~ Y', then X' ~ Y' 

I f X % X '  and Y ~  Y', then X U  Y ~ X '  U Y' 

' Y ~  Y ~ X '  Y' I f X ~ X  and Y ' , t h e n X ~  

X ~ Y ~ X ~ X U Y  

I f X ~  Y and X ~ Z ( Y ~ Z )  then Z ~  Y ( X ~ Z )  

I f X ~  Y and X~_Z(Y~-Z), then Z ~  Y ( X ~ Z )  

I f X ~  Y and X. .~Z(Y~Z) ,  then Z ~  Y ( X ~ Z )  

(57) 

(58) 

(59) 

(6o) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

5. ROUGH SETS 

5.1. Basic Notions 

Let A = (U,R) be an approximation space, and let ~A, --A, ~A, be 
equivalence relations on P(U). 

Every approximation space A = (U, R) defines three following approx- 
imation spaces: 

_A * = (P(U), ~A) 

Y* = (p(u), ~_~) 

A* = (P(U), ~A) 

in which objects are subsets of U and the relations ~A, re_A, and ~A are the 
indiscernibility relations in the corresponding spaces _A *, A *, A * 

The approximation space A*(d. *,~T*) will be called the (lower, upper) 
extension of A. 

Equivalence classes of the relation ~A(~A,"~A) will be called rough 
(lower, upper) sets. 

828/11/5-5 
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Thus, a rough (lower, upper) set is a family of subsets of U, which are 
equivalence with respect to the indiscernibility relation ~A(~A,--~A)" 

Every approximation space A *, sT*, A * induces a topology Com(_A_ *), 
Com(~T*), and Com(A *), respectively, and hence the topological spaces 

~ ,  = (P(U), Com(.A_ *)) 

= ( P ( U ) ,  Corn(X*)) 
TA, = (P(U), Corn(A*)) 

and P(U)/mA, P(U)/'-, A , and P(U)/~ a are the bases for the corresponding 
topological spaces. 

In other words, P(U)/mA, P(U)/"-'A, P(U)/~A, are families of 
equivalence classes of the relations ~A, ~A, ~A, respectively, i,e., families of 
elementary classes in the corresponding approximation spaces _A *, iT*, A *. 
Thus, sets which are in the same equivalence class of an approximation 
space A *(A *, iT*) are in sense similar and we are unable to distinguish them 
in the approximation space A * ~  *,.4"). 2 

5.2. Rough Sets and Classifications 

In artificial intelligence the following problem is of great importance: 
given a family F of subsets of a certain universe U, the task is to classify 
members of F, so that the sets in the same equivalence class are similar 
according to a certain criterion. 

In our approach we can formulate the problem as follows: Let 
A = ( U , R )  be an approximation space and let F ~ P ( U )  be a certain 
(nonempty) family of subsets of the universe U. 

By ~A (-~FZ(~A (-') F2, ~A (-3F2) we mean the restriction of the relation 
~A(~A, ~A) to the family F. Then, F/'~ A ~FZ(F/~A CqF 2, F / "  A A F  2) is to 
mean the family of equivalence classes of ~A(~A, --A) restricted to F. That is 
to say that each approximation space A = (U,R) induces on the family 
F c P(U) three "natural" classifications F/~ A ~ F 2, F/~  A ~ F 2, Flea N F z, 
denoted by CA(F ), CA(F ), and C~F), respectively. 

Thus in each equivalence class of the classification CA(F) all sets have 
the same lower approximations; in C~F), the same upper approximation; 
and in Ca(F), the same lower and upper approximations. 

We can consider the suggested approach to clustering as an alternative, 
to cluster analysis based on distance, or similarity functions--in which the 
indiscernibility relation plays the role of the distance (or similarity) function. 

2 We can also introduce approximation spaces of higher orders but we shall not consider that 
problem here. 
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6. EXAMPLES 

6.1. Characteristic Symptoms 

Let us consider an information system S --- (X, A, V, p) as in example 3, 
section 2.5, and let us assume that X is a set of patients in a certain hospital, 
A- - i s  the set of attributes like temperature, blood preasure etc., V =  U Va, 
a E A, is the set of values of attributes, and the function Px : A -~ V describes 
the symptoms of patient x. 

Obviously, patients belonging to the same equivalence class of S have 
the same symptoms. 

Thus, each information system S-= ( X , A ,  V ,p )  induces an approx- 
imation space A = (X, 0~). Suppose we are given the set Y c X of patients 
suffering from a certain disease (the set Y can be indicated by an expert) and 
we are interested in finding the characteristic symptoms of that disease. 

It follows from the previous considerations that we can give those 
characteristic symptoms only if Y is a composed set in S, otherwise we can 
give only symptoms of lower or upper approximation of Y in the approx- 
imation space A = (X, S). In other words, if Y is not a composed set in S we 
are not able to give the characteristic symptoms of Y, but we can give only 
the symptoms of patients who surely suffer from the Y (symptoms of patients 
belonging to the lower approximation of Y) or the symptoms of patients who 
possibly suffer from the Y (symptoms of patients belonging to the upper 
approximation of Y). Note that we identify here the disease with the set of 
patients suffering from this disease according to the opinion of a certain 
expert. Another expert can, of course indicate a different set of patients 
having the disease in question. 

6.2. Learning 

Suppose we are given an information system as in section 6.1, and 
suppose that an expert, on the basis of his knowledge, chooses the set Y c  X 
of patients suffering from a certain disease. The question arises whether a 
student can obtain the knowledge of that expert on the basis of symptoms of 
the disease Y? In other words, whether the student can define the set Y by 
means of symptoms of the patients belonging to the set Y. 

In the general case the answer is, of course, in the negative; the student 
can describe the set Y pointed out by an expert in terms of symptoms only if 
Y is a compo~d  set in S. Otherwise, the student can only give an approx- 
imate description of the disease Y, i.e., symptoms of lower and upper approx- 
imations of Y in S. 

We understand that if Y contains patients suffering from a certain 
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disease, then the set - Y ,  does not contain patients suffering from this 
disease. This is to say that the expert classifies all patients into two classes, 
Y and - Y, such that Y contains all patients suffering from a certain disease, 
and - Y ,  those not suffering from that disease. 

Sometimes an expert may be unable to classify patients in two classes, 
as before, since in some cases he may be unable to include a patient in Y or 
- Y .  That is to say that sometimes an expert does not know how to classify 
some objects. In fact in this case he may classify patients into three classes, 
y +  y -  yO, such that Y+ contains patients who are ill, Y- are those who 
are not ill and in y0 there are patients about which an expert is unable to 
decide whether they are ill or not. 

The question arises how this incomplete classification influences the 
process of learning? 

It follows from the previous consideration that if yo ~A 0, the process of 
learning is not affected be the incomplete knowledge of an expert, and a 
student can obtain exactly the same results as when the expert classification 
is complete. Otherwise, i.e., if yO is not bottom equal to zero, a sutdent is 
unable to properly learn (even approximately) the classification. 

That is to say that if the incompleteness of the knowledge of an expert 
is small enough it does not affect learning, otherwise the learning process is 
affected. 

6.3. The Case of Many Experts 

Let us consider an information system as in the previous sections, and 
let us suppose that we employ k experts to pick up all the patients suffering 
from a certain disease. Thus we obtain a family F =  {XI,X 2 ..... X,} of 
subsets of X such that X i contains all the patients suffering from the disease 
in question according to the opinion of the expert i. 

The question arises what is the difference between opinions of experts, 
or, in other words, how to classify opinions of experts so that similar 
opinions are in the same class and widely different opinions are in different 
classes. 

To do that we use the three natural classifications, Ca(F), CA(F), and 
CA(F), which in this case have the following meening: 

Each equivalence class of the classification C_~(F), contains all subsets 
of F having the same lower approximations, i.e., sets which are similar with 
respect to symptoms that certainly occur in the patients in all sets in each 
equivalence class. 

Each equivalence class of the classification CA(F) contains all subsets 
of F having the same upper approximations, i.e., sets which are similar with 
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respect to symptoms that possibly occur in the patients in all sets in each 
equivalence class. 

Eeach equivalence class in the third classification CA(F ) contains those 
sets which have the same certain and possible symptoms, 

We can thus cluster opinions (or experts) into natural similarity classes. 

6.4. Classification 

Let us again consider an information system as before and a family F = 
IX~, X 2 ..... Xn} of subsets of X. Suppose that F has been given by an expert 
and each X i represents, according to his knowledge, a different disease, so 
that all the patients suffering from the disease i, belong to the subset X i. 

The question is whether we are able to distinguish all subsets of the 
family F by symptoms, or, in other words, whether we are able to classify all 
subsets of F into similarity classes so that in each similarity class we have 
all the subsets of F which are undistinguishable in the approximation space 
A = (X, S). 

To solve this problem we can use the three natural classifications 
C A (F), CA(F ), and CA (F) as in the previous section. 

The meaning of the classification CA(F ) is that in each equivalence class 
of C4(F) we have all subsets of F (or diseases) which we are unable to 
distinguish by means of symptoms available in our information system, and 
which certainly occur in each disease in the same equivalence class. 

The meaning of the classification CA(F) and CA(F ) is obvious. 
Thus, we can cluster diseases (subsets of the family F) into classes such 

that each equivalence class induces diseases which we are not able to 
distinguish by means of symptoms available in the information system S. 

6.5. Diagnosis 

Suppose again that we are given an information system as previously 
and the" family F =  {X1,Xz,. . . ,Xk} of subsets of X, determined by an expert, 
such that each X i contains all the patients suffering from a certain,disease. 

The problem is the following: given a symptom p, (a) what diseases 
certainly have the symptom p, (b) what diseases possibly have the 
symptom p. 

Let Ep denote an equivalence class of the relation S, defined by the 
symptom p. 

Of cours~ all diseases Xij E F such that AprA(Xti ) ~ E o certainly have 
the symptom p, and all diseases Yi~ C F such that Aprn(Yil ) D E o possibly 
have the symptom p. 

If we classify diseases F according to the classifications CA(F ) and 
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C ~ F ) ,  instead of  checking whether the lower (upper) approximat ion  of  each 

subset X i of F contains E o, we can simply check whether the corresponding 
classes contain E o or not, which considerably simplifies the algori thm. 
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