Lymphography data set 1: Description. This is a domain provided by the Oncology Institute that has repeatedly appeared in the machine learning literature. The task is to detect the presence of a lymphoma and its current status. 2: Type. Classification 3: Origin. Real world 4: Instances. 148 5: Features. 18 6: Classes. 4 7: Missing values. No 8: Header. @relation lymphography @attribute Lymphatics {normal,arched,deformed,displaced} @attribute Block_of_affere {no,yes} @attribute Bl_of_lymph_c {no,yes} @attribute Bl_of_lymph_s {no,yes} @attribute By_pass {no,yes} @attribute Extravasates {no,yes} @attribute Regeneration_of {no,yes} @attribute Early_uptake_in {no,yes} @attribute Lym_nodes_dimin integer [0,3] @attribute Lym_nodes_enlar integer [1,4] @attribute Changes_in_lym {bean,oval,round} @attribute Defect_in_node {no,lacunar,lac_margin,lac_central} @attribute Changes_in_node {no,lacunar,lac_margin,lac_central} @attribute Changes_in_stru {no,grainy,drop_like,coarse,diluted,reticular,stripped,faint} @attribute Special_forms {no,chalices,vesicles} @attribute Dislocation_of {no,yes} @attribute Exclusion_of_no {no,yes} @attribute No_of_nodes_in integer [1,8] @attribute Class {normal,metastases,malign_lymph,fibrosis} @inputs Lymphatics, Block_of_affere, Bl_of_lymph_c, Bl_of_lymph_s, By_pass, Extravasates, Regeneration_of, Early_uptake_in, Lym_nodes_dimin, Lym_nodes_enlar, Changes_in_lym, Defect_in_node, Changes_in_node, Changes_in_stru, Special_forms, Dislocation_of, Exclusion_of_no, No_of_nodes_in @output Class