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Abstract—Facility location problems aim to determine the best
position to place facility centers. This task is not easy since many
objectives may be taken into consideration to choose the best
possibility and the locations can be substantially different. This
paper presents a Scatter Search algorithm with Path Relinking
to decide where facility centers should be located depending
on the objective functions under consideration. The objectives
considered in this study are to minimize the distance between
demand points and their nearest facilities, to maximize the
number of demand points covered by a facility center and to
minimize the maximum distance between demand points and
their nearest facilities. Then, this problem is addressed as a three-
objective optimization problem and the algorithm proposed is
compared against other competitors obtaining promising results

according to three different performance metrics.

Index Terms—Scatter Search, Path Relinking, Multi-objective
optimization problems, Facility location problems

I. INTRODUCTION

It is not an easy task to locate facility centers since many

objectives may be taken into consideration to choose the best

possibility. Depending on the objective and the constraints

imposed by the decision-maker, the facility centers may be

located in different places. Hence, the best location may be

substantially different depending on the objective function

considered for optimization. Specifically, this work is focused

on three common objective functions: f1, with the aim of

minimizing the average distance between demands and their

nearest facilities; f2, focused on covering the maximum num-

ber of demand points; and f3, which minimizes the maximum

distance between demand points and their nearest facilities.

But what happens when the decision-maker wants to optimize

all the objectives at the same time? In such a case, the location

problem becomes a multi-objective facility location problem

(mo-FLP) in which the objectives are usually in conflict.

That is, there is not a single solution that simultaneously
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optimizes all objectives, or, in other words, the value of one

objective function cannot be improved without deteriorating

the value of at least another objective function. Those solutions

are known as efficient solutions, non-dominated solutions or

Pareto optimal solutions.

The mo-FLP that optimizes f1, f2, and f3, was recently

studied by Karatas and Yakici, see [10]. The authors devel-

oped an hybrid algorithm, named ITER-FLOC, that combines

branch & bound techniques and iterative goal programming.

In particular, authors proposed a different formulation for

each considered objective. Initially, lower and upper bounds

for each objective are evaluated. Then, for each iteration of

the ITER-FLOC algorithm, the location models are solved,

verifying if the termination criterion has been achieved. If

so, the algorithm ends, returning the Pareto front constructed.

Otherwise, the lower and upper bounds of each objective are

updated. Prior to executing the next iteration, the location

models are updated with additional constraints.

They are able to generate the Pareto optimal solutions

with high level of diversity and cardinality. However, the

drawbacks are the requirement of preference information since

goal programming is considered an a priori method and its

slowness because it an exact algorithm that needs to be solve

multiple times (one for each considered goal). Additionally,

the method requires from several input parameters that can

difficult the scalability of the algorithm for new datasets.

Here, the mo-FLP is addressed using a Scatter Search algo-

rithm combined with Path Relinking (SSPR). The output of the

algorithm is the approximation of the Pareto front containing

efficient solutions. A variety of optimization problems has

been solved and the computational results indicate that the

Scatter Search algorithm is able to find the Pareto set in a

simple run within short computational time.

This work is structured as follows. Section II describes the

problem. Section III gives details of the Scatter Search algo-

rithm with Path Relinking implemented to solve the problem

under consideration. Section IV presents the computational

results. Finally, Section V summarizes the paper and discusses
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future work.

II. LOCATION PROBLEM DEFINITION

Let I = {1 . . .m} be the set of available locations to host a

facility center and J = {1 . . . n} the set of demand points that

requires to be covered by a facility center. Each demand point

i ∈ I has an associated weight wi that represents the cost of

satisfying its necessity with a facility center. Additionally, let

dij ≥ 0 be the distance between a candidate location i ∈ I and

a demand point j ∈ J . The distance is evaluated as the length

of the shortest path that connects x with y. A solution S for

a facility location problem is then represented as the set of p
candidate locations to host a facility center, and the objective

of the problem is to find a solution with the optimum value

with respect to one or more objective function.

This work is focused on optimizing three different objective

functions simultaneously, becoming a multi-objective problem.

The first considered objective function, f1, is focused on

minimizing the average weighted distance between the demand

points and their nearest facility center, which can be found in

the literature as the p-Median Problem (pMP). Given a solution

S, the evaluation of f1 is formally defined as:

f1(S)←
1

n

∑

j∈J

wj · di⋆j , where i⋆ ← argmin
i∈S

dij

The second objective function, f2, tries to maximize the

number of demand points whose necessity is satisfied by the

selected candidate locations, which is usually referenced as

the Maximal Coverage Location Problem (MCLP). A demand

point is covered by a facility center if the distance between

them is smaller or equal than a predefined threshold r. More

formally,

f2(S)←

∣

∣

∣

∣

{

j ∈ J : di⋆j ≤ r, where i⋆ ← argmin
i∈S

dij

}
∣

∣

∣

∣

The third objective function, f3, is intended to minimize

the maximum distance between the demand points and the

facility centers, which result in the p-Center Problem (pCP).

This objective function is formally defined as:

f3(S)← max
j∈J

di⋆j , where i⋆ ← argmin
i∈S

dij

Some of the first studies dealing the previous location

problems were proposed by [2], [8], [9].

III. SCATTER SEARCH ALGORITHM WITH PATH

RELINKING

Scatter Search (SS), first proposed by Glover, see [5], is

a metaheuristic framework which generates, maintains, and

transforms a reference set of solutions, RefSet. It has been

successfully applied to a large variety of optimization prob-

lems [12], [13]. Figure 1 depicts the general scheme for Scatter

Search.
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Fig. 1. Scatter Search algorithm.

The method firstly generates an initial population P . These

solutions are generated using a diversification generation

method (Section III-A). Then, a local optimum for each

solution is found by an improvement method (Section III-B).

It is important to remark that there are not repeated solutions

in the initial population P .

Traditional implementations of Scatter Search constructs

the reference set RefSet with the β/2 best solutions of set

P in terms of objective function value. This work adapt

this criterion for a multi-objective approach, by dividing the

RefSet in three subsets, RefSet1, RefSet2, and RefSet3, with

|RefSet1| = |RefSet2| = RefSet3 = β. In particular, RefSet1
initially contains the best β/2 solutions with respect to f1,

while RefSet2 and RefSet3 contains the best β/2 ones with

respect to f2 and f3, respectively. The remaining β/2 solutions

for each RefSet are selected as the most diverse solutions

among the remaining solutions in P . Diversity between a

solution S and the RefSet under construction is measured as

the minimum distance between S and every solution in the

RefSet, considering the distance between two solutions as the

number of candidate locations that differs in both solutions.

Once the RefSet has been created, Scatter Search selects

the subsets of reference solutions that will be combined with

the aim of finding new trial solutions. The most common

implementation of the subset generation method consists of

combining all pairs of solutions included in the RefSet. Consid-

ering that we maintain three RefSet, this implementation would

be rather computationally demanding. Instead, we generate

all pairs of solutions (S, S′) such that S and S′ belong

to different RefSet (i.e., S ∈ RefSeti, S′ ∈ RefSetj , with

1 ≤ i, j ≤ 3 ∧ i 6= j).

The solution combination method (Section III-C) is de-

signed to combine all the subsets generated in the previous

step in order to generate new solutions that become candidate

for entering in the RefSet. Regarding that the moFLP considers
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three different objective functions, a local optimum is found

with respect to each one of the by using the improvement

method. Then, each improved solution is evaluated for being

included in its corresponding RefSet. In particular, a solution

enters in the RefSet if it is better than the worst solution already

in the RefSet. It is worth mentioning that the size of the RefSet

remains constant throughout the whole process. Therefore,

the new solution must replace another one. Specifically, the

new solution replaces the most similar solution already in the

RefSet that presents a quality smaller or equal than it.

Scatter Search iterates until a stopping criterion is met.

The algorithm proposed in this work stops when it has not

been possible to include new solutions in any of the RefSet,

returning the set of efficient solutions found during the search.

A. Diversification Generation Method

The diversification generation method (DGM) is designed

for creating an initial set of solutions P which will become

the source for creating the initial RefSet. On the one hand,

P should contain high quality solutions in order to guide the

search through promising regions of the search space. On the

other hand, solutions in P must be diverse enough to provide

different solutions for the combination stage, thus diversifying

the search.

We propose three different constructive methods in this

work, DGM 1,DGM 2, and DGM 3 each one of them focused

on generating promising solutions for f1, f2, and f3, respec-

tively. With the aim of increasing the diversity of the set

of solutions constructed, we propose a Greedy Randomized

Adaptive Search Procedure (GRASP). GRASP is a multi-start

methodology originally proposed by [4], that is conformed

by two stages: construction and improvement. The former

consists of a greedy, randomized, and adaptive construction

of a solution while the latter is designed for finding a local

optimum with respect to a predefined neighborhood.

The diversification generation method proposed in this work

follows a traditional GRASP construction scheme. The method

initially creates a candidate list CL with all the candidate loca-

tions available to host a facility. Then, each candidate location

is evaluated with a greedy function that estimates the relevance

of locating a facility in that candidate. For this problem, we

propose a different greedy function for each objective function

considered f1, f2, f3. In particular, the greedy function value

for each candidate location is calculated as the corresponding

objective value (f1, f2, and f3, respectively) if the location is

assigned to host a facility. After evaluating all the candidates,

the method calculates a threshold µ as follows:

µ← gmin + α · (gmax − gmin)

This threshold is used for constructing the restricted candi-

date list RCL, that contains the most promising candidates to

host a facility. In particular, the RCL is conformed with all the

candidate locations whose greedy function value is smaller or

equal than threshold µ. For each iteration, a random element

is selected from the RCL to host the next facility. Notice

that α ∈ [0, 1] is a parameter of the method that controls

the randomness of the constructive procedure. On the one

hand, if α = 0 then the RCL would contain the candidates

with the minimum greedy function value, being a totally

greedy procedure. On the other hand, when α = 1, the RCL

contains all the candidate locations in CL, becoming a random

procedure. Then, it is interesting to find a balance between

diversification and intensification by varying the value of the

α parameter. A new candidate is selected in each iteration

following this strategy until p candidate locations already host

a facility.

B. Improvement Method

The diversification generation method is designed to pro-

duce not only high quality solutions, but also diverse ones.

The increase in the diversity of the solutions generated usually

implies a decrease in the quality of those solutions. Therefore,

it is interesting to use a local improving method designed

to find a local optimum with respect to a previously defined

neighborhood.

Regarding the algorithmic proposal for the moFLP, the so-

lutions included in the set of initial solutions P can be further

improved using a local optimizer. Scatter Search is a versatile

methodology than allows using different types of optimizers,

from local search methods to complete metaheuristics like

Tabu Search or VNS, among others (see [REF AUTOCITA]

for some successfull application of complete metaheuristics in

the improving phase). For this problem, we propose a local

search method designed to improve the quality of the initial

solutions and of those resulting from the combination method.

The computational effort required to evaluate the solutions

makes the use of complete metaheuristics not suitable for the

problem under consideration.

Prior to define the local improvement method, it is necessary

to present the neighborhood of solutions considered by the

method. We define the neighborhood N(S) as all the solutions

that can be reached from an initial solution S by performing

a single interchange move, which consists of removing a

selected location and replacing it with any non-selected facility

location. More formally,

N(S)← {S′ : S′ ← S \ {v} ∪ {u} ∀ v ∈ S ∀ u ∈ V \ S}

Having defined N(S), the local search method proposed

visits all neighbor solutions in a random order and replaces

the incumbent solution with the first neighbor solution with a

better objective function value. It is worth mentioning that the

local search proposed follows a first improvement approach in

order to reduce the computational effort required to apply it.

Specifically, if an interchange move results in an improvement

with respect to the objective function being optimized, the

move is performed, restarting the search with the new best

solution. This strategy reduces the complexity of the search

since the opposite strategy, best improvement, requires the

complete exploration of the neighborhood in each iteration

to select the best solution in the neighborhood.
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In the framework of Scatter Search, the improvement

method is applied in two different stages, see Figure 1. First

of all, it is used for locally improving the solutions that

are included in the initial population. It is worth mentioning

that the set P is divided into three subsets (one for each

objective function), so the local search method improves each

solution with respect to the objective function considered for

its construction.

The local search method is also applied to those solutions

resulting from the combination stage. As it is described in

Section III-C, the combination stage does not produce local

optimum with respect to any neighborhood, so the resulting

solutions can be further improved with a local optimizer.

Specifically, for each solution derived from the combination

stage, three local optima are found, one for each objective

function of the moFLP, respectively. Then, each improved

solution is evaluated to be included in the RefSet.

C. Solution Combination Method

The solution combination method is responsible for gen-

erating new solutions in each iteration of the Scatter Search

algorithm by combining two or more solutions that are already

in the RefSet. The combination can be performed following

different strategies, from genetic operators to the generation

of paths between solutions.

In this work we propose using Path Relinking (PR) [6],

[7] as a combination method, which has been successfully

applied in several recent works [1], [3]. Given an initial and a

guiding solution, si and sg, respectively, PR constructs a path

of solutions that starts in si and finishes in sg . The objective of

PR is iteratively transform the initial solution into the guiding

one. The transformation is achieved by adding attributes of

the guiding solution into the initial one while removing those

attributes of the initial solution that are not present in the

guiding one, stopping when si becomes sg.

There exist several strategies for combining solutions in the

context of Path Relinking: Random Path Relinking, Greedy

Path Relinking, or Greedy Randomized Path Relinking, among

others. Most of the greedy variants require the exploration

of all the alternative solutions in each step of the path,

in order to select the most promising solution to continue

the path. However, these strategies are usually very time

consuming, increasing the required computing time to execute

the algorithm. We have selected the Random Path Relinking

variant in order to accelerate the proposed algorithm, thus

increasing the diversification of the search.

Starting from the initial solution si, Random Path Relinking

generates a random solution in the neighborhood defined in

Section III-B that inserts a new candidate location which is

already in the guiding solution, removing one of the candidate

locations currently in si that does not belongs to sg. Notice

that after a certain number of iterations, the initial solution

would become the guiding one, since in each iteration the

initial solution will have an additional candidate location in

common with sg .

IV. COMPUTATIONAL RESULTS

In this section the numerical results are shown in order to

prove the superiority of the Scatter Search algorithm with Path

Relinking in comparison to the algorithm proposed by Karatas

and Yakici in [10].

Since the original instances are not available, we request

the code from the previous work in order to have a fair

comparison. Additionally, 20 new instances of sizes were

generated following the instructions of the previous work. The

instances are divided into three sets depending on their size:

small, those with 20 candidate locations and 50 demand points;

medium, with 50 candidate locations and 100 demand points;

and large, with 200 candidate locations and 400 demand

points. Table I summarizes the following parameters of the

instances generated:

• m: number of candidate locations to host a facility

• n: number of demand points

• p: number of candidate locations that must be selected

• r: radius in which a facility is covering a demand point

We refer the reader to [10] for a more detailed description

on the instance structure.

TABLE I
PARAMETERS SETTING FOR THE INSTANCES.

Parameter Small Medium Large

m 20 50 200
n 50 100 400
p 5 10 15
r 20 15 10

All the algorithms proposed in this work have been imple-

mented using Java 8 and the experiments were performed on

an Intel Core i7 920 (2.67 GHz) with 8 GB RAM. It is worth

mentioning that the previous algorithm has been also executed

in the same computer in order to have a fair comparison.

Table II shows average results of both the Scatter Search

with Path Relinking algorithm proposed (SSPR) and the best

previous method (ITER-FLOC) the 20 instances. Regarding

the multi-objective nature of the problem under consideration,

we have considered using the following metrics: coverage, C;

hypervolume, HV; epsilon indicator, Eps; and CPU time. Re-

sults in Table II shows the superiority of the SSPR algorithm.

If we focus on the coverage metric, it can be hold that

the proportion of solutions covered by the SSPR algorithm is

larger than the proportion of solution covered by the ITER-

FLOC algorithm. Furthermore, the SSPR scales better thatn

the ITER-FLOC algorithm, as it can be seen with the increase

of the solutions covered by SSPR when increasing the size of

the instance, achieving a 100% of coverage when analyzing

the set of large instances.

Regarding the hypervolume (larger values are better) and the

epsilon indicator (smaller values are better), we can conclude

that SSPR consistently obtains better results thatn the ITER-

FLOC algorithm. Again, the larger the instance set, the better
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the results of SSPR when compared against ITER-FLOC. This

behavior suggests that SSPR is a more adequate algorithm for

real-life problems with a large number of candidate locations

and demand points.

Finally, if we consider the computing time, we can see that

ITER-FLOC is equivalent or even faster when considering

small or medium instances, but the performance does not scale

good with the size of the instance. Therefore, when solving the

largest instances the proposed SSPR algorithm is considerably

faster than the ITER-FLOC approach.

TABLE II
AVERAGE RESULTS.

C(SSPR,ITER-FLOC) C(ITER-FLOC,SSPR)

Small 0.61 0.17
Medium 0.82 0.00
Large 1.00 0.00

HV(SSPR) HV(ITER-FLOC)

Small 0.28 0.07
Medium 0.52 0.12
Large 0.81 0.20

Eps(SSPR) Eps(ITER-FLOC)

Small 0.44 0.78
Medium 0.14 0.70
Large 0.00 0.50

CPU(SSPR) CPU(ITER-FLOC)

Small 6.41 7.25
Medium 72.66 19.74

Large 1920.53 5920.34

V. CONCLUSIONS

A population-based metaheuristic with a method for com-

bining solutions have been proposed for a multi-objective facil-

ity location problem (mo-FLP) which considers three different

objectives of interest in real-life problems: to minimize the

average distance between demands and their nearest facilities,

to maximize the total number of demand points covered, and

to minimize the maximum distance between demand points

and their nearest facilities.

The computational experiments shows how Scatter Search

with Path Relinking is a suitable algorithm for solving large

scale instances, performing better in both quality and comput-

ing time than the best previous algorithm found in the state

of the art. The experiments have been performed in the same

computer in order to have comparable results, concluding that

SSPR outperforms the best previous method considering all

the metrics presented.
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