
XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

733

Creating Difficult Instances of

the Linear Ordering Problem

Aritz Pérez∗and Josu Ceberio†

∗Basque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
†Faculty of Computer Science, 20018 Donostia, Spain

University of the Basque Country UPV/EHU

email: aperez@bcamath.org, josu.ceberio@ehu.eus

Abstract—Generating random instances of a given problem
is a task that is addressed very frequently in combinatorial
optimization. Some times this task is motivated by the lack of
challenging instances, some other times practitioners have few
instances and need to generate large benchmarks to evaluate
their algorithms. Be that as it may, creating instances that are
challenging enough for the algorithm at hand is not trivial,
and implies other considerations such as defining the concept
of difficulty.

In this paper, we address the problem of randomly generating
difficult instances of the linear ordering problem for local search
algorithms. Based on the joint analysis of the problem and a
neighborhood structure, we conclude that one way to create
difficult instances is to organize its parameters in the way that
the variance of the fitness in the neighborhood is very low.
To this end, we propose a simple procedure that generates the
parameters matrix in such a way that for any row and column,
the sum of the parameters is constant. The experimental study
shows that the proposed method generates instances of higher
difficulty than the standard method, setting the parameters
independently and identically distributed according to a uniform
distribution.

I. INTRODUCTION

In the field of evolutionary computation, it is common to

use benchmarks of instances of a given problem in order to

evaluate the performance of existing and newly developed

algorithms. When the final goal is to solve a specific real-world

problem, real instances are used to carry out such comparisons,

and, thus, we are not interested in an extensive performance

evaluation. However, when the objective of the research is

to contribute with methodological developments, then large

benchmarks of instances are needed in order analyze the

behavior of the proposed algorithm under different scenarios.

In this sense, real-world benchmarks are usually limited in

size and variety of instances.

At this point, it is a usual practice, based on the knowl-

edge of the problem (limited in most cases), to create new

“challenging” instances artificially [1], [2], [3], [4], [5]. In this

sense, a recurrent option is to generate instances by sampling

their parameters uniformly at random (u.a.r) in some ranges.

The underlying assumption states that sampling u.a.r in the

space of parameters is equivalent to sampling u.a.r in the

space of instances and, thus, uniform in terms of difficulty.

Nonetheless, recent works on this line [6], [7] have shown

that such statement is not necessarily true.

In [6], the authors focused on the random generation of

artificial instances of combinatorial optimization problems.

Particularly, they stated that most of the algorithms take only

into account the ordering of the solutions (better, worse...)

during the optimization and, therefore, any instance can be

seen as a ranking of all the solutions in the search space.

In this context, the authors discovered that there exist classes

of equivalence of the mentioned rankings according to their

difficulty (in terms of number of local optima). Not limited to

that, conducted experiments demonstrated that when sampling

independently and identically distributed (i.i.d.) parameters ac-

cording to a uniform distribution, the majority of the instances

induce rankings that belong to ”easy” classes of equivalence

(have one or two local optima).

On that research line, in [7] the authors tried to go deeper

in the difficulty of instances for best improvement local search

algorithms when sampling the parameters u.a.r. Despite their

simplicity, local search algorithms permit easily tracking the

optimization process and, thus, it is possible to carry out an

exact study of the difficulty of the instance on the basis of

fitness landscape analysis [8]. The work in [7] focused on

three problems and four neighborhood structures, and tried to

answer the following question: are the artificially generated

instances uniform in terms of difficulty? The experimental

study revealed that (1) by sampling the parameters uniformly

at random the obtained instances are non-uniform in terms of

difficulty, (2) the distribution of the difficulty strongly depends

on the pair problem-neighborhood considered, and (3) given

a problem, the distribution of the difficulty seems to depend

on the landscape induced by the neighborhood structure and

its size.

However, what creates the difficulty for a specific algorithm

in each problem is unique and it is not clear. In this work, we

take as case of study the Linear Ordering Problem (LOP) [9],

[10] and best improvement local search algorithm (BI) under

the insert neighborhood. In that context, we approach the

problem of creating difficult instances.

Firstly, we defined the difficulty of an instance as 1 minus

the probability of reaching the global optimum solution after

performing a BI starting from a random solution. Secondly,

based on the joint study of the LOP and insert neighborhood,

we considered that one way to create difficult artificial in-

stances can be to sample a set of parameters that induces low

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

734

fitness variations in the neighborhood of a solution.

On that line, we propose a procedure for generating artificial

instances by defining a parameters matrix of the instance in

which every row and column sum a constant value. This type

of parameters matrix tends to induce low fitness differences

of the solutions in the insert neighborhoods.

In the experimental section, we generate thousands of

instances of the LOP for different sizes of the problem. The

instances have been generated by using i) the classical uniform

procedure, and ii) the proposed procedure. Then, we estimate

the difficulty of each instance generated for BI under the insert

neighborhood and we analyze the evolution of the difficulty of

the generated instances with respect to the size of the problem,

n. The results point out that the proposed procedure obtain

more difficult instances than the classical option.

The remainder of the paper is organized as follows: in

Section II the necessary background on combinatorial opti-

mization, LOP, local search and difficulty is introduced. In

Section III, the main contribution of the paper, a method

to create difficult instances of the LOP for BI is proposed.

Afterwards, the experimental study is presented in Section IV.

Finally, conclusions and research lines for future work are

summarized in Section V.

II. BACKGROUND

A combinatorial optimization problem (COP), denoted as

P = (Ω, f), consists of a finite (or infinite countable) domain

of solutions Ω, also known as search space, and an objective

function f which is formalized as

f : Ω → R

x 7→ f(x)

We call to the value f(x) the fitness of x. The definition of a

problem includes certain inputs that are known as parameters.

The collection of parameters that describe a particular case of

the problem is called the instance.

The aim in a COP is to, given an instance, find x ∈ Ω such

that f is maximized (or minimized). As the computation of

f(x) is closely tied to the instance, in the remainder of the

paper, we say that f is an instance or an objective function

indistinctly. The LOP is an example of a COP. In the following,

a brief introduction to it is presented.

A. The Linear Ordering Problem

Given a matrix B = [bi,j]n×n of numerical entries, the

LOP [9], [10] consists of finding a simultaneous permutation

σ of the rows and columns of B, such that the sum of the

entries above the main diagonal is maximized (or equivalently,

the sum of the entries below the main diagonal is minimized).

The equation below formalizes the objective function:

f(σ) =

n−1∑

i=1

n∑

j=i+1

bσi,σj
(1)

where σi denotes the index of the row (and column) ranked

at position i in the solution σ. The numerical entries bi,j

for i, j = 1, ..., n are the parameters of the problem and,

generally, bi,i = 0 for i = 1, ..., n. A particular assignment

of values to these parameters constitutes an instance. Fig. 1

introduces an illustrative example of an LOP instance in its

triangulation form. Gray background parameters are the only

22

12

13

9

0

11

1116

14

26

22

242530

21 15

26 23 0

0

28

0

0

15 7

54321

5

4

3

2

1

Fig. 1: LOP instance of size n = 5.

ones considered in the computation of the fitness function. The

search space of solutions Ω consist of all permutations of size

n, so its size is |Ω| = n!.

B. Local search on the LOP

Local Search algorithms (LS) optimize based on a neigh-

borhood system, a function that relates a set of solutions to

each solution x ∈ Ω. Formally a neighborhood is defined as

N : Ω → 2|Ω|

x 7→ N(x)

where 2|Ω| represents the power set of the domain Ω.

LS is a sequential optimization heuristic that progresses

by moving from a solution to a neighboring solution. Conse-

quently, the behavior of a particular LS is determined by the

neighborhood defined, and the criteria used to select a solution

from the neighborhood. Two of the most used strategies are

the best improvement (BI) and the first improvement selection

criteria. BI progresses by selecting, among the neighboring

solutions the solution with the best fitness, while the first im-

provement progresses by selecting a neighboring solution with

a better f(σ) value. Both algorithms are said to converge to

a (local) optimum solution when all the neighboring solutions

have equal or worse f(σ) value.

In local search optimization, a wide range of neighborhood

structures have been proposed in order to deal with combinato-

rial problems. Depending on the characteristics of the problem,

some neighborhoods show better performance than others [11].

According to [7], the insert neighborhood is the structure that

most favorable landscapes generates for the LOP. From our

perspective, this is probably motivated by its considerable

size and the few number of parameters exchanged between

neighboring solutions.

Let us now consider a permutation σ of size n. The insert

neighborhood considers as neighbors all the solutions that can

be obtained by moving any item from a position i to any

position j. The items between positions i and j are shifted.

As a result, the size of the neighborhood is (n− 1)2.

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

735

Fig. 2 presents an example of an LOP instance for two

different solutions: e and σ. The second solution is obtained

by performing an insert movement of item 2 to position 3.

In both cases, the pairs of parameters associated to item 2

are circled. As can be seen in the figure, due to the insert

22

12

13

9

0

11

1116

14

26

22

242530

21 15

26 23 0

0

28

0

0

15 7

54321

5

4

3

2

1

(a) e = (1, 2, 3, 4, 5), f(e) = 138.

22

9

13

12

0

22

1611

23

15

11

242830

26 26

21 14 0

0

25

0

0

15 7

54231

5

4

2

3

1

(b) σ = (1, 3, 2, 4, 5), f(σ) = 147.

Fig. 2: Two different solutions for an instance of n = 5.

Circled values denote the parameters associated to item 2.

movement, a pair of parameters, (14, 23) is swapped from

side, and thus, f(σ) increases from 138 to 147. Note that

the rest of the parameters, despite they are reallocated, they

remain in the same side with respect to the main diagonal. In

general, if we insert the i-th element in the j-th position we

swap |i − j| parameters [7]. The general effect of an insert

operation is illustrated in Figure 3.

Fig. 3: The parameters swapped by insert i-th element in posi-

tion j. Green lines and red lines represent the parameters that

are added and subtracted to the objective function, respectively

C. Measuring the Difficulty

As proposed in [7], we consider the difficulty of an instance

of the LOP as 1 minus the probability of reaching the global

optimum solution by using BI and by picking a solution of Ω
at random. In other words, the difficulty is 1 minus the size

of the basin of attraction of the global optimum divided by

the size of the search space, n!. In this work, we estimate the

difficulty of an instance by running 100 times BI initialized

with a random solution. The difficulty is estimated as 1 minus

the percentage that BI have reached the global optimum.

It is our intuition that if exists a solution in the neighbor-

hood whose fitness is quantitatively larger than the rest, then

decision to move to this solution by the BI tends to increase

the chance to reach to the global optimum. In this scenario,

we say that the decision is supported with strong evidence and

the neighborhood becomes more informative. In this sense, in

the next section, we propose a method to generate artificial

instances in which the solutions in the neighborhood have

small differences in the fitness.

III. CREATING DIFFICULT INSTANCES OF THE LOP

Usually, in the literature, in order to generate artificial

instances of LOP the parameters are sampled according to

a uniform distribution [7]. Using this procedure it is possible

to generate an instance B with unbalanced sums by rows and

by columns which can be easily exploited by heuristic opti-

mization algorithms, such as BI under the insert neighborhood.

Nonethelss, if we generate instances in which the independent

sum of rows and columns are equally weighted, then the insert

neighborhood tends to provide similar fitness variations in the

neighborhood of a solution, and it becomes less informative

(see Figure 3).

In this work, with the aim of generating more difficult

instances than the uniform approach, we propose a method

that produces a matrix B for which the sum of each row

and each column sum 1. Specifically, the scheme proceeds

as follows. First, two matrices R and C are created. In R,

the rows of parameters are obtained by sampling a Dirichlet

distribution. Similarly, in C, the sampled vectors correspond to

columns in the matrix. Next, once R and C are obtained, the

randomly generated instance is given as B = 1/2 · (R + C).
Finally, following the next iterative normalization procedure

we obtain a matrix B for which any row or column sum one.

The procedure works as follows, first, the parameters of every

row are normalized independently in order to sum 1. Next, the

same normalization process is applied to the columns. Both

steps are subsequently repeated until result converges to the

matrix with the characteristics above.

Note that in LOP, bi,i = 0 for i = 1, .., n. Thus the diagonal

of R and C have to be zero and, thus, we sample a Dirichlet

distribution with n−1 parameters for each row and column of

R and C, respectively. In this work, the parameters are equal

to one, that is α = αi = for i = 1, ..., n− 1.

IV. EXPERIMENTAL STUDY

In this section, we artificially generate LOP instances fol-

lowing two different schemes, and, we analyze the generated

instances in terms of the distribution of the difficulty.

For this purpose, we have artificially generated 104 in-

stances of the LOP for each problem size n = 8, ..., 20. The

parameters of the instances have been sampled by using i)

the classic uniform procedure in the [0, 1] interval and ii) the

proposed Dirichlet procedure with α = 1. Next, we have

obtained the global optimum of each instance by solving it

using the branch and bound algorithm proposed by Charon et

al. [12]. Finally, for each instance generated we have run a

BI under the insert neighborhood 100 times, and estimated its

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

736

Fig. 4: The evolution of the average difficulty (together with the first and third quartiles) for the uniform and the Dirichlet

with respect to the size of the problem n = 6, ..., 20.

difficulty by counting the percentage of times it reaches the

global optimum.

We have analyzed the evolution of the distribution of the

difficulty with respect to the size of the LOP, n. The results are

summarized in Figs. 4 and 5. The first illustrates the evolution

of the average difficulty (and the first and third quartiles) for

the compared schemes for the different n values. Figure 5

provides a more detailed view of the results showing the

distribution of the difficulty.

Results reveal that, as n increases, instances tend to be

more difficult using both procedures. In addition, we see

that the instances generated by the Dirichlet procedure are

more difficult. The dispersion of the generated difficulties

using the Dirichlet procedure is smaller than the obtained by

the uniform procedure, especially for the largest instances.

Moreover, as n increases the third quartile of the difficulty

for the Dirichlet procedure is higher than the fist quartile of

the uniform procedure.

V. CONCLUSION & FUTURE WORK

In this work, we have addressed the problem of generating

difficult instances of the linear ordering problem for the

best improvement local search under the insert neighborhood.

Based on the joint analysis of the LOP instances and the insert

neighborhood structure, we concluded that a possible manner

is to organize its parameters in such a way that the variance

of the fitness in the neighborhood is very low. To this end,

we propose a procedure for generating artificial instances as

a matrix of parameters in which the sum of each row and

each column is constant. Conducted experiments show that

the proposed method tends to generate instances of higher

difficulty than other standard methods such as setting the

parameters i.i.d. according to a uniform distribution.

However, there are a number of questions still pending. For

instance, results in Fig. 5 show small peaks in the distribution

of the difficulty, that are consistently repeated for the two

instance generation methods across the different n values. The

answer should be in the definition of the problem and the

structure of the neighborhood.

In addition, we aim to study the effect of the α parameters

of the Dirichlet procedure in the distribution of the difficulty.

It is our intuition that α parameter could be used in order to

further increase the difficulty of the generated instances.

Finally, we find interesting to extend this work to

other problem-neighborhood pairs. For instance, for the pair

Quadratic Assignment Problem (QAP) and interchange neigh-

borhood [11], [13], it is very probable that the same prin-

ciple of low variance fitness neighbors will produce difficult

instances. Nevertheless, the manner in which the instances are

generated for QAP is apparently much more complex as it

doubles the number of parameters of the LOP. Not limiting

to the domain of local search algorithms, it is possible to

extend the work to other algorithms, as the principle of low

variance fitness instances may produce difficult scenarios for

population-based algorithms as well.

ACKNOWLEDGMENT

This work has been partially supported by the Re-

search Groups 2013-2018 (IT-609-13), BERC 2014-2017, and

ELKARTEK programs (Basque Government), the projects

TIN2016-78365-R and TIN2017-82626-R (Spanish Ministry

of Economy, Industry and Competitiveness) and Severo Ochoa

Program SEV-2013-0323 (Spanish Ministry of Economy, In-

dustry and Competitiveness).

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

737

Fig. 5: The distribution of the difficulty of the instances generated by using the uniform and Dirichlet procedures for different

problem sizes, n = 8, 11, 14, 17, 20. The x axis is the difficulty and the y axis the frequency in which instances of a given

difficulty are generated. Each point corresponds to a difficulty and its area is proportional to the number of instances generated

with this difficulty.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

738

REFERENCES

[1] I. P. Gent and T. Walsh, “The TSP phase transition,” Artificial Intelli-

gence, vol. 88, no. 1–2, pp. 349 – 358, 1996.
[2] E. Taillard, “Benchmarks for basic scheduling problems,” European

Journal of Operational Research, vol. 64, no. 2, 1993.
[3] Z. Drezner, P. Hahn, and É. Taillard, “Recent advances for the quadratic

assignment problem with special emphasis on instances that are difficult
for meta-heuristic methods,” Annals of Operations Research, vol. 139,
no. 1, pp. 65–94, 2005.

[4] T. Schiavinotto and T. Stützle, “The linear ordering problem: Instances,
search space analysis and algorithms,” Journal of Mathematical Mod-

elling and Algorithms, vol. 3, no. 4, pp. 367–402, 2005.
[5] A. Duarte, M. Laguna, and R. Martı́, “Tabu search for the linear

ordering problem with cumulative costs,” Computational Optimization

and Applications, vol. 48, no. 3, pp. 697–715, 2011.
[6] J. Ceberio, A. Mendiburu, and J. A. Lozano, “Are we generating in-

stances uniformly at random?” in 2017 IEEE Congress on Evolutionary

Computation (CEC). IEEE, 2017, pp. 1645–1651.
[7] A. Perez, J. Ceberio, , and J. A. Lozano, “Are the artificially generated

instances uniform in terms of difficulty?” in 2018 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2018.

[8] M. Tayarani-N. and A. Prgel-Bennett, “On the landscape of combi-
natorial optimization problems,” IEEE Transactions on Evolutionary

Computation, vol. 18, no. 3, pp. 420–434, June 2014.

[9] R. Martı́ and G. Reinelt, The linear ordering problem: exact and

heuristic methods in combinatorial optimization. Springer, 2011, vol.
175.

[10] J. Ceberio, A. Mendiburu, and J. A. Lozano, “The Linear Ordering
Problem Revisited,” European Journal of Operational Research, vol.
241, no. 3, pp. 686–696, 2014.

[11] J. Ceberio, E. Irurozki, A. Mendiburu, and J. A. Lozano, “A review
of distances for the mallows and generalized mallows estimation of
distribution algorithms,” Computational Optimization and Applications,
vol. 62, no. 2, pp. 545–564, 2015.

[12] I. Charon and O. Hudry, “A branch-and-bound algorithm to solve the
linear ordering problem for weighted tournaments,” Discrete Applied

Mathematics, vol. 154, no. 15, pp. 2097 – 2116, 2006.

[13] J. Ceberio, A. Mendiburu, and J. A. Lozano, “Kernels of mallows
models for solving permutation-based problems,” in Proceedings of the

2015 Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’15. ACM, 2015, pp. 505–512.

