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Abstract—This paper deals with the problem of evolving
geographically-embedded randomly generated complex networks
aiming at fulfilling the scale-free property: the fraction of nodes
in the network having degree k (ki = number of links in node
ni) follows a power law probability distribution P (k) ∼ k

−γ .
Intuitively, this means that most nodes have only a few connec-
tions and only a few nodes (“hubs”) have a high number of links
(or connections). The scale-free property is well-known in very
large complex networks (with a huge number of nodes and links)
but it has received much less attention for small geographically-
embedded networks, in which the study of networks’ properties
is much more difficult. Regarding this, we explore the feasibility
of generating geographically-embedded complex networks even
in the case of small networks (those with only hundred of nodes)
by means of considering a simple model for network generation
based on distances among nodes. We state the problem as an
optimization task, in which each node of the network has a link
radius assigned to conform its links to other nodes in the network.
The idea is to evolve these link radius for all the nodes in the
network, aiming at finally fulfilling the scale-free property, when
possible. Our machine learning approach for network evolution
is based on the recently proposed meta-heuristic called Coral
Reefs Optimization algorithm with Substrate Layer (CRO-SL).
Our experimental work shows that the proposed model is able to
generate geographically (or spatially) embedded networks with
the scale-free property. Specifically, we test the performance of
the CRO-SL approach in two different, randomly generated,
geographically-embedded networks with 200 and 400 nodes,
respectively.

Index Terms—Geographically-embedded complex networks;
Scale-free networks; Meta-heuristics; CRO-SL.

I. INTRODUCTION

What do systems as different as power grids and ecosystems

have in common? Both can be described in terms of graphs:

a node represents an entity (generator/load in a power grid,

or a species in an ecosystem) that is linked with others (by

electrical cables in the power grid or trophic relationships in

an ecosystem). These and other dissimilar systems are called

complex systems because it is extremely difficult to deduce

their emerging collective behavior from only the components

of the system [1]. Their topological and dynamical features can

be studied using the Complex Network (CN) Science [1]. The

interested reader is referred to [1], which clearly explains of
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CN concepts with a profuse variety of examples in both natural

(metabolic networks, gene interactions, food webs, etc.) and

artificial systems (the Internet, transport networks, or power

grids). In particular, the feasibility of using CN concepts in

power grids have been recently discussed in [2] and [3] in

combination with evolutionary algorithms in smart grids. More

profound technical details about CN can be found in [4], [5],

[6], [7] and the references there in.

Most recent studies reveal that many CNs –such as some

power grids or the Internet– have a heterogeneous topology

[1] as the one represented in Fig. 1 (a). Note that most nodes

have only a few connections and only a few nodes (“hubs”)

have a high number of links. This is why the network is said

to have “no scale”, so it is called “scale-free” [1]. As shown

in Fig. 1 (b), the fraction of nodes having degree k (ki =
number of links in node i) exhibits a power law distribution

P (k) ∼ k−γ .
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Fig. 1. (a) Example of a scale-free complex network with 400 nodes. (b) Node
degree probability density function of a network similar to that represented
in (a).
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In many of these CNs (for instance, citation networks) the

position of nodes in the physical space plays no role at all

[8]. However there are other CNs (such as transportation,

infrastructure and wireless communication networks) in which

nodes and links are embedded in space. In this particular

kind of CNs, called “spatial networks” (spatially-embedded

or geographically-embedded networks), nodes are located in

a space associated to a metric, usually the Euclidean distance

[8], [9], [10]. The interested reader is referred to [8] for further

details about spatial networks, which can be classified into two

categories [8]. The first one, called planar networks, are those

that can be drawn in the plane in such a way that their links

do not intersect. The second one involves spatial non-planar

networks (for instance airline networks, cargo ship networks,

or power grids) where links (which can intersect in the plane)

have a cost related to their length. Although the scale-free

property is well-known in very large, non-spatial complex

networks (with a huge number of nodes), however it is not

the case in small geographically-embedded networks. This is

because, in spatial networks, when geometric constraints are

very strong or when the cost associated to the addition of

new links is large (water and gas distribution networks, power

grids, or communication networks), the appearance of hubs

and the scale-free feature become more difficult [8].

In this paper we show that any randomly generated network

can be constructed to very approximately follow a scale-free

distribution. This result has only been previously proven for

geographically-embedded network in a regular lattice [10].

To show this result, we first propose a very simple model

for randomly constructing geographically-embedded networks,

which consists in assigning a link radius to each new node of

the network. The proposed model for network construction es-

tablishes that each link radius may be different for each node,

and it is fully related to the network construction: when a node

is randomly generated, it is linked with all other existing nodes

in the network which are at a distance smaller than its link

radius. In order to show that the network follows a scale-free

distribution, we evolve it, i.e. we use an evolutionary-based

algorithm in order to assign link radius to all the nodes in the

network. The objective is that, eventually, the network follows

(approximately) a scale-free distribution. We state this problem

as an optimization task, with discrete-based encoding, in which

a meta-heuristic search must be applied (since brute-force

schemes are discarded due to excessive computational cost).

Specifically, we evaluate the performance of the Coral Reefs

Optimization algorithm with Substrate Layer (CRO-SL) in this

problem of complex networks evolution. We will show that the

CRO-SL is able to lead to randomly generated geographically-

embedded complex networks fulfilling the scale-free property,

and we show it in two cases with randomly generated network

of 200 and 400 nodes.

The remainder of the paper has been structured in the

following way: next section presents the model we consider

to construct geographically-embedded complex networks with

randomly-distributed nodes. Section III describes the evolution

of the network as an optimization task, defining the encoding,

search space and objective function of the problem. Section

IV shows the main characteristics of the CRO-SL considered

in this paper. Section V describes the experimental part of the

paper, with computational results over two randomly generated

networks with 200 and 400 nodes. Section VI gives some final

conclusions and remarks to close the paper.

II. GROWING GEOGRAPHICALLY-EMBEDDED COMPLEX

NETWORKS OVER RANDOM-DISTRIBUTED NODES

Let us consider a model for growing geographically-

embedded complex networks using randomly-distributed

nodes. The idea is to grow the network as the random

nodes are being generated. Note that since we consider a

random location for the new generated nodes, the network is

completely constructed from scratch. We can consider many

different random ways of generating the network nodes, but in

any case, a constraint of maximum distance from a neighbor to

others node must be fulfilled. In order to do this, we consider

an extremely simple model for nodes generation, in which the

new appearing node must be located at a minimum distance

from another neighbor node, Ra (attachment radius), to be

attached to the network. Otherwise it will be discarded. Note

that this radius may be characteristic of the node i currently

being generated so that, in this case, we will denote it as Ri
a.

However, in the general case, all the nodes in the network

will be generated with the same Ra, this simulation parameter

being thus equal for all nodes. As previously mentioned, the

network will be grown while random nodes are being gener-

ated. Aiming at doing this, we propose a simple mechanism for

links generation for a new node i: let Ri
l be the link radius

associated with the recently generated node i, and let L be

the link matrix, in which Lij stands for a binary variable

describing whether or not there is a link between node i and

an alternative node j. Then, each time a node i is generated,

it establishes links to other nodes already attached, in the

following way:

Lij =

{

1, if d(i, j) < Ri
l

0, otherwise
(1)

where d(i, j) stands for the Euclidean distance (not the

geodesic one used in non-spatial networks [8]) between node

i and any other existing node (j). It is important to note that

the number of links established when the node i is finally

generated attached, not discarded) will only depend on Ri
l .

Moreover, if we want to ensure that all the nodes are connected

with at least one other node in the network, then Ri
l ≥ Ra.

To illustrate this, let us consider the examples shown in

Fig. 2. The first one, in Fig. 2 (a), shows a random network

generated with parameters Ra = 10 and Ri
l = 10 (in this

case the same value of Ri
l for all the nodes generated in

the network). Note that, since Ri
l = Ra, each node will be

attached to a very reduced number of other existing nodes in

the network. If we keep Ra = 10 in the node generation,

but Ri
l takes values in [10, 15, 20, 30], depending on the node
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generated, then we obtain the network represented in Fig. 2

(b).
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Fig. 2. Example of geographically embedded complex networks generated
with the proposed simple model considering Ra and Ri

l
; (a) Example of

complex network with Ra = 10 and Ri
l
= 10; (b) Example of complex

network with Ra = 10 and Ri
l
∈ [10, 15, 20, 30].

III. QUASI-SCALE FREE GEOGRAPHICALLY-EMBEDDED

NETWORKS WITH RANDOM NODES

Let us consider a random-based geographically-embedded

network with N nodes (“network order” = N ). This means

that, after the node generation process, there will be N nodes

in the network. Recall that the network is being constructed

dynamically, so each time a node i is generated and fulfils

the Ra condition, then matrix L is modified to include the

new node links. Let us consider a given Ra for the complete

network construction and specific Ri
l radius for each node, and

Ra ≥ Ri
l . Let r = [R1

l , . . . , R
N
l ] the link radius associated

with the N nodes finally forming the network. The idea is to

obtain a vector r∗ which makes the network have a scale-free

behavior, i.e., such that it minimizes the following objective

(fitness) function:

f(r) =
N
∑

k=2

(pk(r)− k−γ) (2)

where pk stands for the degree distribution of the random

network obtained with a vector r. Note that we aim to find out

whether or not there is a r
∗ leading to a power law distribution

with a given γ.

This problem is therefore stated as an integer optimization

problem, in which the final network degree distribution will

completely depend on r. The problem is discrete, highly non-

linear, and the search space size is huge when the network

order N grows, which discards exact solutions via brute

force algorithms. In these kind of problems meta-heuristics

approaches such as Evolutionary Computation-based algo-

rithms are able to obtain very good solutions with a moderate

computational complexity. We therefore propose to apply a

kind of Evolutionary Algorithm, the aforementioned CRO-

SL approach, to solve this optimization problem associated

with scale-free random-based networks. The question arising

here is whether or not the proposed model for complex

network construction over geographically embedded random

nodes can generate scale-free networks. Note that in this case

the random situation of nodes makes impossible to obtain an

exact solution such as the one shown for square lattices in

[10]. The approach, therefore, should be stochastic due to the

nature of the considered networks, and approximate solutions

could arise.

IV. OPTIMIZATION METHOD: THE CRO-SL ALGORITHM

The Coral Reef Optimization algorithm (CRO) [12] (further

described in [13]), is an evolutionary-type algorithm based on

the behavior of the processes occurring in a coral reef. For an

illustrative description of the CRO algorithm, the interested

reader is referred to [12], [13]. Additionally, in [14], a new

version of the CRO algorithm with Substrate Layer, CRO-SL,

has been presented. In the CRO-SL approach, several substrate

layers (specific parts of the population) have been introduced.

In this algorithm, each substrate layer may represent different

processes (different models, operators, parameters, constraints,

repairing functions, etc.). Specifically, in [15] a version of

the CRO-SL algorithm has been recently proposed, in which

each substrate layer represents a different search procedure,

leading to a co-evolution competitive algorithm. This version

of the CRO-SL has been successfully tested in different

applications and problems such as micro-grid design [16],

vibration cancellation in buildings, both with passive models

[17], and active models [18], or in the evaluation of novel

non-linear search procedures [19]. This is also the CRO-SL

algorithm used in this paper for complex network evolution.

Regarding the algorithm’s encoding for the optimization

problem at hand, we consider integer vectors as solutions,

x ∈ N. Note that using this encoding the length of each

individual is equal to N . This encoding provides a compact

version of the algorithm, and allows using some different

searching procedures such as Harmony Search or Differential

Evolution. The main problem with a direct encoding of N

integer values in the CRO-SL algorithm is that, as N grows,

the searching capabilities of the algorithm can be affected,

since the search space is huge. It is possible to manage shorter

encodings by using a compressed version of the encoding,

in such a way that each element of the encoding represents

β actual values, such as we proposed in [20]. Fig. 3 shows

an example of this compressed encoding, which reduces the

current encoding length l to l′ = l
β

. Of course, the resolution

of the search space is smaller than in the original encoding

when the compressed encoding is applied, but on the other

hand, it is expected that the CRO-SL algorithm searches for

better solutions in this smaller search space.

The considered substrates for solving the stated problem are

detailed below. Note that there are general purpose substrates,

such as Differential Evolution or Harmony Search-based, and

other specific substrates with crossovers and mutations adapted

to the chosen encoding. Five different substrates will be

described and evaluated later in the experimental section.
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Fig. 3. Compressed encoding example (β = 5), useful in the evolution of
complex networks.

• Differential Evolution-based operator (DE): This op-

erator is based on the evolutionary algorithm with that

name [22], a method with powerful global search ca-

pabilities. DE introduces a differential mechanism for

exploring the search space. Hence, new larvae are gener-

ated by perturbing the population members using vector

differences of individuals. Perturbations are introduced by

applying the rule x′

i = x1

i +F (x2

i −x3

i ) for each encoded

parameter on a random basis, where x′ corresponds to

the output larva, xt are the considered parents (chosen

uniformly among the population), and F determines the

evolution factor weighting the perturbation amplitude.

• Harmony Search-based operator (HS): Harmony

Search [23] is a population based MH that mimics the

improvisation of a music orchestra while its composing a

melody. This method integrates concepts such as harmony

aesthetics or note pitch as an analogy for the optimization

process, resulting in a good exploratory algorithm. HS

controls how new larvae are generated in one of the

following ways: i) with a probability HMCR ∈ [0, 1]
(Harmony Memory Considering Rate), the value of a

component of the new larva is drawn uniformly from

the same values of the component in the other corals. ii)

with a probability PAR ∈ [0, 1] (Pitch Adjusting Rate),

subtle adjustments are applied to the values of the current

larva, replaced with any of its neighboring values (upper

or lower, with equal probability).

• Two points crossover (2Px): 2PX [21] is considered one

of the standard recombination operators in evolutionary

algorithms. In the standard version of the operator, two

parents from the reef population are provided as input. A

recombination operation from two larvae is carried out by

randomly choosing two crossover points, interchanging

then each part of the corals between those points.

• Multi-points crossover (MPx): Similar to the 2PX, but in

this case the recombination between the parents is carried

out considering a high number of crossover points (M ),

and a binary template which indicates whether each part

of one parent is interchanged with the corresponding of

the other parent.

• Standard integer Mutation (SM): This operator consists

of a standard mutation in integer-based encodings. It

consists of mutating an element of a coral with another

valid value (different from the previous one). Note that

the SM operator links a given coral (possible solution)

to a neighborhood of solutions which can be reached by

means of a single change is an element of the coral.

V. EXPERIMENTS AND RESULTS

In this section we show different computational results

obtained with the CRO-SL in the evolution of two different

random networks with 200 and 400 nodes, respectively. The

resulting randomly generated nodes have been represented in

Fig. 4 without the corresponding links which form the net-

work, for the sake of clarity. In both cases, a common Ra = 10
value has been considered, whereas the link radius to be

assigned by the CRO-SL has been forced to fulfill the property

10 ≤ Ri
l ≤ 100. Table I shows the corresponding values for

the CRO-SL parameters considered in the experiments carried

out.
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Fig. 4. Randomly-generated nodes for the N = 200 and N = 400 networks
(represented without links, and with Ra = 10); (a) N = 200; (b) N = 400.

TABLE I
PARAMETERS OF THE CRO-SL USED IN THE EVOLUTION OF THE

NETWORKS CONSIDERED. SEE [12], [13] FOR FURTHER DETAILS ABOUT

THE PARAMETERS.

CRO-SL Parameters

Initialization Reef size = 50× 40, ρ0 = 0.9
External sexual reproduction Fb = 0.80
Substrates T = 5 substrates: HS, DE, 2Px, MPx, SM
Internal sexual reproduction 1− Fb = 0.20
Larvae setting κ = 3
Asexual reproduction Fa = 0.05
Depredation Fd = 0.15, Pd = 0.05
Stop criterion kmax = 500 iterations

First, we have tackled the evolution of the N = 200
network, from scratch by using the CRO-SL algorithm. A

compressed encoding with β = 5 has been considered so

that the corals length is in this case l′ = 200

5
= 40. Fig. 5

shows the results obtained by the CRO-SL in the evolution

of this network. Fig. 5 (a) shows the network obtained after

the optimization process, which has obtained an excellent
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agreement of the network distribution node degree with a

power law distribution k−1.55 (Fig. 5 (b)). Note that, in this

case, we have explored 12 values of the node degree k in

the network, ranging from 2 to 12, while the rest bring in

upper values of k. The best solution r
∗ found by the CRO-SL

algorithm has been represented in Fig. 5 (c), note the runs

of β = 5 equal values in the solution. Fig. 5 (d) shows the

fitness evolution of the best coral in the reef. As can be seen,

the CRO-SL is able to converge almost up to optimality in

just 500 generations, showing a fast and robust behaviour in

this problem.
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Fig. 5. Example of geographically-embedded complex network with N =
200 nodes, evolved with the CRO-SL algorithm; (a) Resulting spatial network
obtained; (b) Node degree distribution for the network represented in (a): blue
circles stand for the power law distribution k−1.55, and red points for the
actual degree distribution of the obtained network; (c) Best solution obtained
with the CRO-SL; (d) CRO-SL fitness evolution.

Fig. 6 shows the results obtained by the CRO-SL in the

evolution of the second network considered, with a network

order of N = 400 nodes. In this case, we have considered

a compressed encoding with β = 10, which leads to a

l′ = 400

10
= 40, similar to the N = 200 case. We have found

that this compressed encoding provides the best results. Fig.

6 (a) shows the resulting network generated by the CRO-SL

algorithm, which is constructed to very approximately follow

a power law distribution k−1.59. In this case we have explored

15 values of the degree k, from 2 to 15 and a rest in upper val-

ues of k. The best solution r
∗ found by the CRO-SL algorithm

has been displayed in Fig. 6 (c). Note the runs of β = 10 equal

values in the solution. Fig. 7 shows the network evolution

process in 6 steps for the best solution found by the CRO-

SL. In this figure it is possible to see the process of network

construction as the nodes are being attached. It is important to

take into account that the spatial network construction depends

on the position of the randomly generated nodes (we have

considered geographically-embedded networks), controlled by

Ra and also in the values of Ri
l , which are evolved by the

CRO-SL algorithm.
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Fig. 6. Example of geographically-embedded complex network with N =
400 nodes, evolved with the CRO-SL algorithm; (a) Resulting geographically-
embedded network ; (b) Node degree distribution for the network represented
in (a): blue circles stand for the power law distribution k−1.59, and red points
for the actual degree distribution of the obtained network; (c) Best solution
obtained with the CRO-SL; (d) CRO-SL fitness evolution.

As can be seen in the results obtained, it is possible to obtain

quasi-scale-free geographically-embedded random networks,

considering a very simple model of distances between nodes.

It is necessary to solve an optimization problem, which is

hard, since it must optimize the link radius of all the randomly

generated nodes which form the network. We have shown how

the CRO-SL algorithm is able to successfully solve this task,

finding near optimal solutions to the optimization problem.

VI. SUMMARY AND CONCLUSIONS

In this paper we have shown that random geographically-

embedded networks can be constructed, in such a way that

they fulfil the scale-free property, i.e. the fraction of nodes in

the network having degree k (ki = number of links in node ni)

follows a power law probability distribution P (k) ∼ k−γ . Up

until now, the scale-free property in geographically-embedded

network has only been studied for regular networks in a

mesh. We have considered completely randomly generated

nodes for the networks, and we have established the on-

line construction of the network, following a very simple

model which only depends on the distances between new

generated nodes and existing nodes in the network (Ri
l). We
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Fig. 7. Network evolution process in 6 steps for the N = 400 case (best
solution obtained with the CRO-SL algorithm).

propose then the evolution of the network with the objective

of fulfilling the scale-free property: we have described this

problem as an optimization task, consisting on assigning a

given link radius Ri
l to each node of the network, as soon

as it is randomly generated. The optimal assignment of these

link radius leads to an evolution of the network to be quasi-

scale-free when it is completely constructed. We have applied

the modern meta-heuristic Coral Reefs Optimization with

Substrate Layers (CRO-SL), which is able to combine different

searching procedures within a single-population algorithm. A

discussion on the optimal problem’s encoding with different

lengths using a compression procedure is also carried out.

We have successfully tested the CRO-SL in two randomly

generated networks of 200 and 400 nodes, where we have

shown that the CRO-SL is able to obtain quasi-scale free

geographically-embedded networks when it is applied.
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[14] S. Salcedo-Sanz, J. Muñoz-Bulnes and M. Vermeij, “New coral reefs-

based approaches for the model type selection problem: a novel method
to predict a nation’s future energy demand,” International Journal of

Bio-Inspired Computation, vol. 10, no. 3, pp. 145-158, 2017.
[15] S. Salcedo-Sanz, C. Camacho-Gómez, D. Molina and F. Herrera, “A
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