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Abstract—Since the canonical genetic code is not universal
several theories arose to explain the evolution to its present form.
Different computational methods were applied to analyze the
optimality level of the canonical code organization, including our
previous works using evolutionary computing in the problem. We
discuss here the possibilities that the use of the classical fitness
sharing technique provides for obtaining knowledge about the
fitness landscape involved in the optimization of the genetic code.

I. INTRODUCTION

The canonical genetic code (CGC), present in most superior

organisms, establishes the association between codons and

amino acids. In the canonical code there are 64 codons of three

bases that encode 20 amino acids. Thus, the genetic code is

redundant, since several codons codify the same amino acid.

However, the canonical code is not universal, since there are

other different associations between codons and amino acids.

Mitochondrial DNA is an exception example. The exceptions

show that the code could evolve in its origin, and it is an open

question how the code evolved to the present form (the CGC).

Since other codes could appear, several models of hypothet-

ical genetic codes were considered, with different associations

between codons and amino acids. Considering only the present

form of a genetic code with codons of three bases, if the codon

set of the CGC is maintained, allowing only swaps of amino

acids between the 20 codon sets, the possible codes are 20!

(2.43 · 1018). Without that restriction, in the sense that every

codon can codify every amino acid, the number of alternative

codes is really huge, larger than 1.51 · 1084.

In this research there are basically three theories about the

reasons regarding the evolution of the genetic code: i) The

stereochemical theory stablishes that codon assignments are

dictated by physicochemical affinity between amino acids and

the cognate codons, ii) the co-evolution theory states that a

set of precursor amino acids passed part or all of their codon

domain to the biosynthetically produced amino acids, and iii)

the physicochemical or error minimization theory states that

the main factor in the code’s evolution was the minimization

of the adverse effects of mutations.

In this last error minimization theory there are two different

alternatives to assess the level of optimization of the CGC:

1. The statistical approach considers random alternative

codes and compares the CGC against the average optimization

quality of those codes [1]. The results of the works in this

alternative tend to indicate that the CGC is quite better

optimized with respect to random codes.

2. The engineering approach, which compares the CGC

against the average random codes and with respect to better

codes (typically obtained with local search algorithms) [2].

This alternative shows that the CGC has a certain level of

optimization, but is still far from optimal.

In these alternatives, the “quality” of a hypothetical code is

defined taking into account the consequences of all possible

mutations in the codons. A mutation in a codon base can

change the amino acid codified, which can take a serious

consequence on the resultant protein. Usually, it is considered

a property (or group of properties) of the codified amino acid,

like the polar requirement (hydrophobicity), since it is the

most important one in defining the folding of the protein. The

quality is defined as the Mean Square (MS) of the difference

of the property values of the corresponding amino acids before

and after the mutation. This is averaged for all base mutations

of all codons. The best code would be the one that minimizes

MS, that is, the consequences of the mutations (with the lowest

consequence on the phenotype, i.e., the proteins).

We introduced the possibility of evolutionary computation

to discover better genetic codes [3], with a classical genetic

algorithm (GA) (with ad hoc operators depending on the

genetic code model of alternative codes), studying the level

of optimality reached by the CGC in the huge landscapes

considered, and taking into account aspects like the different

mutation probability of transversion and transition mutations

in the codon bases, or the biases in mutation probability in

the three codon bases. In [4] we extended the analysis using

a model of possible genetic codes that considers the known

codon reassignments. Depending on the genetic code model

and those commented aspects, the optimization level of the

CGC varies, but in all cases is far from optimal, and in

agreement with the engineering approach.

Since there is a discussion about whether the CGC is located

in a local minimum (or close to a minimum) in the quality

landscape and whether the landscape has a multimodal nature,

in a recent work [5] (which is summarized here) we introduced

the use of the classical Fitness Sharing (FS) technique [6] in

the evolutionary algorithm to inspect that possible multimodal

nature. FS allows the division of the population into different
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Fig. 1. Left: MS value of the hypothetical codes of the final genetic population
vs. their distances to the canonical code and using restrictive codes. Right:
Histograms of interdistances of final evolved codes.

subgroups according to the similarity of the individuals, groups

that perform a simultaneous search in the best found promising

areas (global or local minima) of the search landscape.

The use of fitness sharing serves for two purposes: i) to have

an indirect view of the huge search landscape and to locate

the CGC in relation to the best possible codes that could be

obtained. ii) Given the nature of the landscape obtained in i),

to determine the difficulty of evolution of hypothetical genetic

codes in such a landscape.

II. RESULTS WITH A RESTRICTIVE CODE MODEL

An example of a run of the evolutionary algorithm is

presented here. All the details about the GA implementation

(genetic operators, encoding of hypothetical genetic codes) are

in [5]. We present results of an example run with and without

the use of fitness sharing and with a restrictive model of

hypothetical codes. In this model, the pattern of synonymous

coding found with the CGC is maintained, that is, the 21 CGC

non-overlapping sets of codons are fixed (20 sets correspond

to the amino acids and one set to the 3 stop codons). The 20

amino acids are randomly assigned to one of the 20 sets while

the same 3 stop codons are fixed as in the CGC.

Figure 1 corresponds to a run of the GA without FS and

with FS with two values of the parameter “sharing radius”

(σshare = 0.01 and σshare = 0.1), which controls the extent

of sharing [6]. In Figure 1, subfigures at the left, the x-axis

corresponds to the distance of each encoded code to the CGC

whereas the y-axis corresponds to the code MS value. These

graphs correspond to the final populations at generation 100

in 3 cases: (a) without FS, (b) FS with σshare = 0.01 and (c)

FS with σshare = 0.1. The figures at the right correspond to

the histograms of interdistances between the encoded codes

at that final generation. The distance dij between two codes i

and j is measured taking into account the difference in polar

requirement between the amino acids encoded in the same

positions by both population codes, normalized in [0,1].

The distances of the population (1000 individuals) to the

canonical code vary in a range between 0.3 and 0.6. Many of

the evolved codes are better adapted than the canonical code

(the dashed line represents the MS value of the CGC), showing

that these better codes are far from the CGC. There is not any

clustering of individuals, independently of the value of σshare,

which indicates that there are not deep local minima and that

the CGC is not located in an area of a deep local minimum.

Moreover, the CGC was introduced in the initial population

in the 3 cases. In all runs the CGC disappears from the

population in few generations (as shown in [5]), even with

the use of fitness sharing, which is another evidence that the

CGC is not located in an area corresponding to a deep local

minimum. The interdistances (Figure 1, right part) show that,

without FS, the individuals are close to the best solution,

whereas the solutions are more spread in the search landscape

with larger values of σshare when FS is used. Since there are

not interdistance values close to 0 in the histogram (i.e., no

clusters), both graphs (with FS) indicate that the landscape

does not present clear localized areas of deep local peaks, as

well as that the CGC is not located in one of such areas.

III. CONCLUSION

The main conclusion to be drawn from the results is that the

fitness landscape, although is clearly rugged, does not have a

multimodal nature with deep localized areas of low MS values

and separated by barriers of high MS values. Therefore, the

fitness landscape considered in the error minimization theory

does not explain how the canonical code ended its evolution

in an area that does not correspond to a deep local minimum.
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