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Abstract—Evaluation of Unmanned Aerial Vehicle (UAV) 

systems is mostly based on simulation tools that are manually 

configured to analyse the system output. In this work, the authors 

present an original method to evaluate the perfor-mance of UAV 

platform in real situations based on available data. The main 

innovation is an evaluation for designing sensor fusion parameters 

using real performance indicators of accuracy of navigation in 

UAVs based on PixHawk flight controller and peripherals. This 

platform allows physical integration of the main types of sensors 

in UAV domain, and at the same time the use of powerful 

simulation models developed with Gazebo. This methodology and 

selected performance indicators allows to select the best 

parameters for the fusion system of a determined configuration of 

sensors and a predefined real mission. 

Keywords— UAVs sensor fusion, EKF, Real Data Analysis, 

System Design. 

I. INTRODUCTION  

Unmanned vehicles must be able to control their attitude and 
position by means of automatic control algorithms, they are 
controlled by a computer that integrates data from some electro-
mechanical sensors and any local or global positioning system 
and applies any output control system to change its location 
using any locomotion system. The controller usually is an 
embedded microcontroller with appropriate interfaces to all 
vehicle components. As an example, PixHawk Px4 system 
integrates navigation data and software modules including 
fusion algorithms [1].  

The main problem in navigation focuses on improving GPS 
with the ability to provide accurate navigation output when GPS 
data becomes unavailable due to unexpected outages or 
intentional problems (jamming or spoofing) in certain 
environments. Therefore, an approach based on the fusion of 
complementary sensors is essential, resorting to the fundamental 
equations of navigation and the characterization of the errors 
committed by each data source. This area has become popular 
due to the ubiquity of GPS and the availability of inertial sensors 
based on inexpensive MEMS components [2], [3], [4]. The 
integration of these complementary technologies allows 
compact and robust navigation solutions to determine attitude 
and location, so that the vehicle can determine its state in a robust 
way and use appropriate control techniques for autonomy. Other 
more drastic options for non-dependence on the GPS signal 

involve the deployment of autonomous localization systems 
such as the recognition of the environment by artificial vision [5] 
or location by means of electromagnetic beacons [6], with the 
associated cost of developing a complementary infrastructure. 

 Complementary to navigation technologies, the use of lasers 
in combination with other range detection sensors (sonar, radar, 
video), allows to extend the navigation conditions and obstacle 
avoidance. In order to develop obstacle avoidance algorithms, it 
is interesting to include software simulation to carry out tests 
without incurring risks for people and devices. Gazebo is a 
powerful 3D simulation environment for autonomous vehicles 
that is particularly suitable for testing object-avoidance. Gazebo 
can be used with Software In Loop (SIL) and Hardware In Loop 
(HIL) design. However, the simulation software will be outside 
the scope of the document. In the air vehicles (UAVs), the 
integration requirements (consume, weight, dimensions) are 
much more restrictive but, even so, it is a line in continuous 
development [7],[8],[9].  

Therefore, research of robust and general techniques to 
integrate complementary data sources has become essential for 
this type of systems. In addition to theoretical developments, it 
is of vital importance the availability of equipment and 
experimental environments to validate the robustness of the 
solutions working in real-world conditions. The integration of 
sensors has to be based on the definition of parameters of the 
tracking system that should be adjusted to improve performance 
in a predefined set of missions with a defined set of sensors. The 
methodology proposed in this paper assumes that real system 
adjustments will be based on a real platform with predefined 
flight missions so that, in this context, the best parameters could 
be obtained analyzing the real operation of sensors and real 
output. Simulation of UAV environments is a powerful tool but 
not enough to evaluate in a thorough way these systems in real 
conditions of real missions. Accordingly to [13], evaluation 
tasks should be aligned with the user needs and how the fusion 
system meets the specifications. The selection of parameters and 
quality metrics is a complex task, particularly in real 
applications, since there are not ground truth or a standard 
methodology for making the data fusion evaluation. There are 
numerous examples of output analysis of algorithms and 
configurations based on simulation, such as characerizing 
navigation errors [14], sensor fault detection [15], or sensor 
integration in maritime navigation domain [16]. Other works in 
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UAV navigation use experimental real data sets, usually in a 
single flight, in order to assess specific aspects such as 
robustness against GPS outages [17] or impact of outliers in 
different solutios [18].  

This paper presents the selected platform, design tools and 
environment for real experimentation, the proposed 
methodology and a selection of available data sources and 
effects of data processing techniques on the quality of the 
navigation solution. The main contribution of this paper is the 
briefing of a methodology used for adapting filter parameters to 
real conditions, and further systematic analysis of available real 
data. Section II introduces the selected working platform, 
detailing the architecture of its software and the vehicles we have 
made to test its capacities and collect data. Section III presents 
the proposed methodology and evaluation metrics, section IV 
explains experimental environment and and analysis of the 
PixHawk Px4 system filter and fusion algorithms following the 
presented methodology. Finally, section V summarizes the 
conclusions derived from this work. 

II. THE PIXHAWK AND PX4 UAV SYSTEM 

A. Architecture 

Unmanned vehicles must be able to control their attitude and 
position by means of automatic control algorithms. They are 
controlled by a computer that integrates data from some electro-
mechanical sensors and any local or global positioning system, 
and applies any output control system to change its location 
using any locomotion system. This controller is usually an 
embedded microcontroller that performs the core of all vehicle 
components.  

This research is based in the study of the PixHawk flight 
controller performance. An open-hardware computer designed 
by 3D Robotics specifically to create autopilot vehicles, that 
arises from the combination of PX4FMU and PX4IO boards. 
Both cards, from their version v2, are integrated in the same PCB 
(Printed Circuit Board) giving origin to PixHawk. 

B. Sensors and data sources 

The PixHawk board has several sensors integrated, shown in 
Table I, which serve as data sources to the PX4 stack and include 
some processing functions. 

TABLE I. SENSORS INTEGRATED IN THE PIXHAWK BOARD  

                                                           
1 www.nuttx.org 

These sensors allow enhancing navigation capabilities and 
increase the accuracy of the stabilization system measurements, 
what is quite important when we want to create an unmanned 
vehicle, because allows a more faithful image of the flying 
environment. 

C. Software for Flight Control and Data Processing 

PX4 is the control software of PixHawk processor. It is a 
real-time operating system based on NuttX1 and consists of two 
main layers: PX4 Flight Stack and PX4 Middleware. PX4 Flight 
Stack is the complete collection of applications embedded in 
PixHawk hardware for drone control, while PX4 Middleware is 
the interface that allows the flow of data from sensors to 
applications through a publish/subscribe system called uORB. 
uORB allows to publish the data coming from the sensors and 
make them available to the applications of the Flight Stack, 
obtaining a reactive system and totally parallelized. The 
outstanding modules are flight controller and sensor data 
processing [19]. 

Regarding the data processing, Px4 implements an AHRS 
(attitude and heading reference system) that implements 
different algorithms to estimate the vehicle attitude and creates a 
direction vector that allows the unmanned displacement. In this 
section we will overview some basic algorithms that run into the 
system during the flights. 

a) Direction Cosine Matrix (DCM) 

This program allows the analysis of the triaxial 
accelerometers and gyroscopes data to obtain a Direction Cosine 
Matrix [20]. It makes possible the conversion of real-time 
measurements into instantaneous orientation parameters of the 
vehicle to deliver roll, pitch and yaw angles or variations:  

b) Inertial Navigation System (INS)  

This algorithm calculates the trajectories and corrections that 
allows the vehicle to move between single points using the DCM 
data. It is used to estimate the vehicle attitude with high 
frequency, so it is especially useful to complement the global 
position obtained from the GPS data. 

c) Extended Kalman Filter (EKF) 

All measurements are affected by noise that should be taken 
into account in the estimation of attitude and cinematic 
parameters. The Px4 system counts with several Extended 
Kalman Filter algorithms to process all sensor data in a 
compensation function that depends of the specific noise and 
accuracy characterization of each sensor, throwing high 
accuracy estimations of the vehicle attitude. The Px4 application 
counts with the possibility of applying different EKF solutions 
running in parallel, using different sensor measurements and 
states. With this implementation, it is possible to increase the 
accuracy and consistence of estimates even if the vehicle losses 
the GPS signal in certain time intervals. Table II shows the three 
different available EKF modes. 

D. Possibility of SIL and HIL design. 

Sensor Type Axes Scale 
ADC 

accuracy 

Data 

rate 

L3GD20H gyroscope 3 
2000 
dps 

16 bits 760 Hz 

LSM303D 
accelerometer/ 
magnetometer 

6 
± 16g / 
±  
2gauss 

16 bits 
1600 
Hz/ 
100 Hz 

MPU-
6000 

accelerometer/ 
gyroscope 

6 
± 16g / 
2000 
dps 

16 bits 

1000 
Hz/ 
8000 
Hz 

MS5611 barometer 1 
1200 
mbar 

24 bits 
1000 
Hz 
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 Pixhawk supports SIL [29] and HIL [30] using Gazebo 
simulation This way, it is possible to debug navigation and 
object-avoidance algorithims in PixHawk fligh controller, 
without using any real device. In this way, you could save on 
material cost, as well as increase the quality of the final product. 

In addition, Gazebo offers various models of real 
autonomous vehicles, saving modeling time. In case of not being 
offered by Gazebo, it will be necessary to use time and resources 
in a correct physical modeling, so that the conditions of 
simulation could be as close as possible to reality. It will be the 
task of the engineer to evaluate the interest in using software 
simulation. Furthermore, it is necessary to keep in mind the fact 
that Sotfware modeling and simulation is only of interest when 
it is carried out by an experienced engineer in the field. 
Otherwise, the behavior of the system would not be reproduced 
in a faithful manner. 

Specifically, in the case of Pixhawk, a HIL configuration 
allows running the code written in the flight controller without 
using any real sensor. That fact allows a first contact in the study 
of the effect of the parameters of navigation and evasion 
algorithms. 

III. EVALUATION OF UAV SENSOR FUSION IN REAL CONDITIONS 

In many real problems, simulated environments are used to 
define UAV sensors and the system parameters to optimize the 
system performance [14],[15],[16],[21],[22]. Some problems 
appear with this kind of methodologies, basically how to 
represent in simulation all effects appearing in real conditions 
and the way to evaluate the parameters configuration. UAV 
simulation have been applied to design the control subsystem for 
predefined missions, but simulation of real sensors is a major 
problem in this kind of approach. Real UAV conditions are not 
easy to model in simulators. UAV are affected for atmospheric 
conditions and random movements of UAV platforms, so 
accurate simulation of input data is extremely complicated for 
designing system parameters.  As mentioned before, it would be 
necessary to evaluate advantages and disvantages of using 
simulation enviroments. 

In this scenario, the proposed methodology, depicted in Fig. 
1, tries to test the system parameters under real conditions. The 
first step of this methodology is the definition of the UAV 
platform, the type, cinematic characteristics, set of sensors and 
the tracking algorithms. Once the UAV platform is defined, the 
methodology is composed by the following steps: 

1.- Mission definition. Parameters are selected from a set of 
possible values for a specific mission, defined by means of 
several waypoints. These waypoints are used to repeat the same 
mission every time that a new evaluation is done. 

2.- Each time a flight of the UAV passing through the 
predefined waypoints (mission) is carried out, the values of the 
sensor data are stored (position and velocity taken from GPS, 
inertial data, magnetometers, etc.) 

3.- A set of flights, with the same waypoints defining the 
mission, are carried out and the corresponding sets of sensors 
data are stored together with system output, using several 
configurations of parameters for filtering. These values are 
postprocessed offline. 

4.- The best configuration of parameters is selected, 
analyzing the performance metrics for the set of missions carried 
out over the same waypoints.  

5.- The selected parameters are introduced in UAV system 
to perform real mission 

The decision about “the best” parameters should be based in 
a set of indicators to evaluate the quality of the main components 
of the data fusion system. The validation and quality assessment 
of fusion system is a fundamental step in the development. 
However, as indicated in [23], the development of objective 
evaluation metrics with no available ground truth is a challenge 
yet for data fusion researchers. There are no well-established 
procedures to systematically evaluate sensor fusion systems 
beyond simulated conditions, making in many times difficult to 
predict performance in real-world conditions. After a revision of 
previous works, there are scarce global metrics without ground 
truth of fusion system, such as [24] where the metrics are fusion 
break rate, rate of fusion tracks and track recombination rate. 
This terminology considers “global” metrics as those assessing 
the global fusion system output, while “local” metrics evaluate 
specific outputs from individual sensor data processes in a 
decentralized fusion architecture. Some local metrics without 
ground truth are: rate of non-associated data, rate of premature 
deleted tracks and average residual [24], association 
performance metrics for track purity and track switches [25], or 
number of missed targets, track life time, rate of false alarms, 
rate of track fragmentation and track latency [26]. 

 

TABLE II. PX4 EXTENDED KALMAN FILTERS 

Name Specification 

EKF1 Only use the DCM for attitude control and the Inertial navigation 
for AHRS reckoning for position control 

EKF2 Use the GPS for 3D velocity and position. The GPS altitude could 
be used if barometer data is very noisy. 

EKF3 If there is no GPS, it can use optical flow to estimate 3D velocity 
and position. 

 
Fig 1. Evaluation methodology 
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In navigation function, since data association is not a 
problem (all sensor data associate to the vehicle track), the 
sensor fusion performance is evaluated with the following global 
indicators: 

• averaged innovations 

• fusion break rate 

These metrics allow the validation of the designed system 
and decision of appropriate configuration parameters in complex 
scenarios.  

1) Averaged innovations 

The innovation, or residual, is computed in the tracking filter 
each time an update is done for the prediction. For instance, for 
horizontal XY position, denoting with sub-index p the predicted 
track and sub-index m for measurement, and considering the 
average along a time window with NT measurements, it is 
defined as: 

        (1) 

The normalized innovation also employs the covariance 
matrices considering both the predicted and observation 
uncertainties, matrix S. The averaged value of normalized 
innovations defined as: 

  
(2) 

This value is a-dimensional, and represents the discrepancy 
between observations and predictions, averaged along the 
measurements contained in NT. 

Sometimes, if full covariance matrices are not available, a 
simplification is done and only the variances (diagonal terms) 
are considered: 

         (3) 

2) Fusion break rate 

The rate of fusion break, tFB, is the number of times some 
navigation source is declared as inconsistent in the integrity 
analysis and therefore de-fused (the less consistent component is 
removed from the system track). This may lead to tracker re-
initialization or keep the system track with a component less, the 
faulty sensor. It is computed as:   

               (4) 

The value, averaged along NT measurements, is obtained 
counting the total number of fusion break events during the 
interval. The test to decide the removal of a data source is done 
using the innovation, this time normalized by a higher number 
of standard deviations, typically 5. 

IV. EXPERIMENTAL ENVIRONMENT AND EVALUATION OF 

TRACKING FILTERS FOR SENSOR FUSION 

The process of data acquisition was based on several flight 
test missions that have taken place on circuits like the one 
sketched in Fig. 2. For each specified mission, we applied 
different configuration parameters to analyze the performance 
differences between each setting up of tracking filters. The 
flight controller log data was saved together with the 
configuration settings to be analyzed. For instance, table III, 
shows different tests carried out on the previous circuit and the 
analyzed elements of the navigation system (sensors and 
controllers). Remember, for information purposes that HIL 
strategy could be used in order to get simulated sensor data 
instead of real data. 

The most typical task carried out by the data fusion process 
of the Pixhawk (EKF2 filter) is the attitude estimation using 
magnetometer, gyroscope and accelerometer data (attitude and 
heading reference system), and then fuse with accelerometers 
and GPS data to estimate position and velocity.  

So, the sensor fusion system is based on a loosely coupled 
architecture which uses GPS position and velocity 
measurements to aid the INS, typically used in most of 
navigation solutions based on sensor fusion 
[15],[18],[19],[21],[28]. In this way, the IMU sensors are used 
extrapolate position, velocity, and attitude at high frequency (50 
Hz), while updates from GPS measurements at low frequency 
(1 Hz) allows refinement of cinematic estimates and inertial 
sensor biases. Typically, the estimated state vector resulting in 
the output for the GNSS/INS filter contains the attitude vector 
represented with a quaternion, 3D position and velocity, three 
gyro biases and three accelerometer biases. The selected 
coordinate frame for position and velocity is the ENU frame 
(East, North, Down) with respect to the tangent plan with origin 
defined by the arming point in the start of the mission. 

The EKF filter, used for sensor fusion in navigation, 
depends on two sets of parameters wich are sensor noise and 
plant noise. Both the estimation of cinematic parameters and 
sensor biases critically depend on the parameters characterizing 
noise in sensor data and uncertainty in prediction (process 
noise). Speficicallly, process noise parameters affect to the 
predicted error covariance and have critical impact in the 
weights given to the sensor observations with respect to the 
predicted estimates. A higher value for these parameters imply 
higher values of predicted covariance and so higher gain to 
observations (since the confidence on prediction decreases). 
Conversely, lower values imply lower gain to observations 
(higher confidence on predictions). The first set (sensor noise 
parameters) is usually given by accuracy tables from sensor 
providers. 
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t =TABLE III. TEST PERFORMED OVER THE SAME CIRCUIT 

Name Specification 

Static test without propellers Accelerometers and gryroscopes, noise. 

Static test on ifle Accelerometers and gryroscopes, noise 

Unmanned flight test GPS, inertial navitation system 

Unmanned hold test GPS, Flow Sensor, DCM 

Manual flight test PID and configuration parameters 
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A. GPS and INS local position integration 

  

With respect to process noise, the values which can be 
tunned in the available platform have been systematically 
analyzed in the six scenarios used, with flights repeating the 
programmed mission (waypoints), but changing the parameters 
affecting to EKF performance shown in table IV. The selected 
values, to analyze the impact on performance metrics appear 
also in table IV and have been set considered the minimum and 
maximum values recommended in the implemented EKF2 
system. 

Fig. 3 presents a zoom of horizontal position estimated by 
tracking filter and GPS observations (circles), corresponding to 
right-bottom corner of mission. As can be appreciated, the 
flights corresponding to higher values of parameters (like flight 
1, in blue, flight 5, in black) present lower deviations during 
turns, and, conversely, are affected more by the sensor noise. 

B. Analysis of innovations 

The normalized innovations are presented in this section. 
Fig. 4 presents aggregated position and velocity in a 6D 
innovation vector, normalized by its covariance matrix. In this 
case can be seen that flights 4,5 present the lower values. Table 
VI summarizes the innovation analysis for the 6 flights. The 
results showed in detail the system output with different 
parameters, reflecting the impact assessed through different 

magnitues and the quality metrics considered (averaged 
innovations and fusion breaks). 

 
Fig. 3: Details of lat-lon GPS input and EKF output for all flights (1-blue, 2-
red, 3-cyan, 4-green, 5-black, 6-yellow) 

 
Fig 4. Normalized innovations for all flights 
The methodology allows to take decisions of appropriate 
parameters for the mission considering the global residual of 
navigation vector and difference with respect to the default 
configuration, corresponding to the default configuration (flight 
#4). A moderate improvement in averaged residuals was 
appreciated, while the robustness in terms of fusion breaks, is 

TABLE IV. PROCESS NOISE PARAMETERS OF EKF 

Name Specification Flight 1 Flight2 Flight3 Flight4 Flight5 Flight6 

EKF2_ACC_B_NOISE  Process noise for IMU 
accel. bias prediction 

0.003 
m/s3 

0.001 m/s3 0.003 m/s3 0.007 m/s3 0.01 m/s3 0.003 m/s3 

EKF2_GYR_B_NOISE  Process noise for IMU 
rate gyro bias 
prediction 

0.001 
rad/s2 

0.001 
rad/s2 

0.003 
rad/s2 

0.007 
rad/s2 

0.01 rad/s2 0.001 
rad/s2 

EKF2_ACC_NOISE Accelerometer noise 
for covariance 
prediction 

0.35 
m/s/s 

0.1  m/s/s 0.3  m/s/s 0.7  m/s/s 1.0  m/s/s 0.35 m/s/s 

EKF2_GYR_NOISE Rate gyro noise for 
covariance prediction 

0.015 
rad/s 

0.01 rad/s 0.03 rad/s 0.07 rad/s 0.1   rad/s 0.015 rad/s 

EKF2_ACC_B_NOISE  Process noise for IMU 
accel. bias prediction 

0.003 
m/s3 

0.001 m/s3 0.003 m/s3 0.007 m/s3 0.01 m/s3 0.003 m/s3 

 
Fig 2. Mission circuit design 
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not critically dependent on these parameteres within the 
recommended intervals. 

Finally, the methodology can be generalized and applied to 
different missions and sets of available sensors to explore the 
sensitivity of fusion algorithms and find the optimal parameters. 

V. CONCLUSIONS 

This paper presented a platform (Pixhawk PX4) and 
methodology to experiment with real data for UAV navigation. 
Based on data analysis and characterization the algorithms can 
take advantage of available sources. The quality of all inputs 
was systematically analyzed, and three processing algorithms, 
DCM, LPF and EKF, were evaluated with different parameters 
to exploit the data in the appropriate way considering the output 
analysis and specific performance metrics not based on ground 
truth. 

So, this work presents a methodology to test and configure 
UAV navigation systems in real conditions, illustrated with an 
open environment for experimentation. The analysis of real data 
in a systematic way will allow successive improvements and 
parametrization, considering, among others, the following 
aspects: 

- Data filtering to reduce errors and remove outliers 
- Quality analysis to weight data uncertainty 
- Analysis of biases and calibration previous to fusion. 
- Parameter adjustment to optimize performance (PID 

gains, filter parameters, observation and plant noises, etc.) 
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TABLE V. RMS OF INNOVATIONS  

Variable 
Flight
1 

Flight
2 

Flight
3 

Fligt
4 

Flight
5 

Flight
6 

Pos_x 0.1456 0.1786 0.2011 0.1958 0.1205 0.1684 

Pos_y 0.1366 0.1220 0.1451 0.1368 0.1294 0.1070 

Pos_z 0.1674 0.1468 0.1452 0.1414 0.1527 0.1651 

Vel_x 0.3495 0.2583 0.2280 0.2059 0.2517 0.2746 

Vel_y 0.3250 0.2276 0.2187 0.2025 0.2732 0.2610 

Vel_z 0.2115 0.1940 0.2226 0.2192 0.2060 0.2172 

Aggregate
d pos-vel 

0.4574 0.3040 0.2878 0.2532 0.2926 0.3456 


