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Abstract—Global Climate Models (GCMs) are the main tool to
predict the future evolution of the atmosphere at different time
scales, from weather forecast (for the next few days) to climate
change projections (where the forcing effect of greenhouse gases
drives future climate trend projections for the next few decades).
The main limitation of GCMs is their limited spatial resolution
(hundreds of kilometers for climate change applications). A num-
ber of statistical downscaling techniques have been proposed in
the last two decades to increase the resolution of these predictions
taking into account the relationships between model outputs and
local observations of the variables of interest. Besides the classical
approaches based on (generalized) linear regression or analogs, a
number of machine learning approaches have been applied to this
problem. However, there is general consensus that only limited
added value is obtained with these techniques when jointly
considering model performance, interpretability and parsimony.
In this Thesis we analyze the potential of deep learning in
this field, which is yet unexplored. In particular, we analyze
the promising properties of convolutional neural networks using
as benchmark a recent intercomparison experiment of over 50
statistical downscaling methods over Europe (VALUE initiative,
http://www.value-cost.eu). Some promising results are reported
for a first illustrative example (precipitation occurrence), showing
that these models automatically handle redundancy and perform
geographical and variable selection/transformation of predictors
in a robust and spatially consistent form. The relevance of
this new approach is discussed in the context of a number of
international initiatives where this Thesis will contribute.

Index Terms—climate change, statistical downscaling, deep
learning, convolutional neural networks

I. INTRODUCTION

Global Climate Models (GCM) are key tools to simulate

and predict the evolution of the climate system by numerically

solving the physical equations governing its different compo-

nents (atmosphere, hydrosphere, cryosphere, lithosphere) and

the interactions among them [1], [2]. These models are solved

over a 3D grid discretizing the globe (latitude, longitude,

and height) and provide information for a large number of

climatic variables, with typical spatial and temporal resolutions

of hundreds of kilometers and days, respectively. GCMs are

crucial for studying the future evolution of the climate and for

assessing the impacts of climate change under different socio-

economic emission scenarios (different plausible evolutions of

We acknowledge financial support from the project MULTI-SDM
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concentrations of greenhouse gases in the atmosphere). For

instance, politicians have recently adopted mitigation climate

measures in the historical 2015 Paris agreement based on

the assessment provided by the Intergubernamental Panel on

Climate Change (IPCC) [3], which builds mainly on GCM

projections for the present century [4].

One of the main practical limitations of GCMs is that

they do not solve regional to local processes due to its

coarse resolution, specially in areas where local phenomena

are relevant (e.g., coastal areas and/or complex topography

regions). Regional and local climate information is crucial to

determine the effects of climate change in different impact

areas, such as hydrology, agriculture and energy production.

In order to bridge this gap, a number of statistical downscaling

(SD) [1] techniques have been developed during the last two

decades building on empirical relationships stablished between

informative large-scale atmospheric variables provided by

GCMs (predictors, e.g. humidity or temperature at different

atmospheric height levels) and observational records of the

variables of interest at regional/station scale (predictands).

These relationships are learned using simultaneous daily

records for predictors (normally obtained from a retrospective

forecast dataset) and observational variables for a (∼ 30 years)

historical period (more details in [2], [5]). To generate future

regional projections, the statistical models learned in a histori-

cal period are then applied to (the predictors from) future GCM

projections. This poses a number of methodological issues that

are analyzed in detail in Section II.

Besides the classical SD techiques based on linear ap-

proaches (e.g., generalized linear models) or non-parametric

techniques (e.g., analogs) [6], a number of sophisticated ma-

chine learning techniques have been applied to this problem.

For instance, the first applications of neural networks are

dated back in the late 90s [7], [8]. The problems related to

nonconvexity, time-consuming learning, and overfitting drove

attention to alternative machine learning approaches, such as

support vector machines (SVMs) [9] or random forests [10],

[11]. However, there is general consensus that no method

clearly outperforms the others and, in general, only limited

added value is obtained with nonlinear techniques in the con-

text of climate change when considering model performance,

interpretability and parsimony [7], [12], [13], [14].
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Machine learning is currently a very active research area,

boosted by the major deep learning (DL) breakthroughs in

the field of neural networks (see [15] and references therein).

Deep learning extracts high-level feature representations in

a hierarchical way due to its (deep) layered-structure whose

unit elements (neurons) are connected by adjustable weights.

Different combinations of convolutions, auto-encoders and/or

classic fully-connected layers allow to model a variety of

problems in several disciplines. Moreover, new efficient learn-

ing methods (e.g. batch, stochastic, and mini-batch gradient

descent), regularization options (e.g. dropout), and frameworks

(e.g. TensorFlow) allow to efficiently learn these models from

(big) data, avoiding overfitting. However, finding the adequate

topology for a particular problem is still a challenging step.

Particularly in computer vision, deep learning has outstanded

against other machine learning techniques with a specific

topology called deep convolutional neural network (CNN).

CNN was first introduced in [16], appeared as a neural network

specially designed for regular grid-structure inputs such as

images (2D). The characteristic of CNN is that the parameters

convolutes over the 2D map, exploiting the spatial structure

and resulting into fewer parameters than traditional neural

networks. Thus, the layers consists in a set of neurons spatially

arranged called maps or filters that represents the spatial

distribution of a particular feature learned by the net. The

deeper the network, the more complex the features are in the

filter maps.

Deep learning is a very active topic in many communities,

such as bioinformatics [17]. In the case of meteorology and

climate, there are only a few applications of deep learning

such as the estimation of cyclone’s intensity [18], the de-

tection of extreme weather events [19] or a first approach

for downscaling [20], among others. The latter establishes an

analogy between images and atmospheric fields to generate

super-resolution precipitation images and set the path for the

application of deep CNN in statistical downscaling.

In this Thesis we will undertake a comprehensive analysis

of deep learning for statistical downscaling of climate change

projections, analyzing the adequacy of different components

and topologies for this problem and assessing the underlying

assumptions and methodological issues required for a robust

applications of deep CNN in this field. We also analyze

the replicability and explicability of results in order to gain

confidence in these techniques, which are currently seen

as black-box methods by the climate community. We will

build and contribute to standard experimental frameworks

and international initiatives focusing on statistical downscaling

(e.g. IPCC, VALUE [21] and CORDEX [22]) and use as

benchmarks the state-of-the-art methods developed therein. In

particular, we will consider a recent intercomparison experi-

ment of over 50 statistical downscaling methods over Europe

developed in the framework of the VALUE initiative, which

constitutes the largest to date intercomparison of statistical

downscaling methods [6]. This approach will maximize the

diffusion and impact of the results of this Thesis.

II. HYPOTHESIS AND METHODOLOGY

Statistical downscaling methods have to fulfill three assump-

tions in a climate change context in order to provide plausible

results and to avoid statistical artifacts [1]:

1) Explanation of local variability: The methods should

explain a large fraction of local variability in order

to provide an informative link between the large scale

(predictors) and the local scale (predictands). Besides the

choice of the downscaling technique, the selection of in-

formative predictors over suitable geographical domains

plays a key role here in order to convey the appropriate

large scale information to downscale the variable of

interest (e.g. precipitation or temperature). This assump-

tion is assessed using a variety of validation metrics,

which measure (directly or indirectly) the percentage of

local variability explained by the downscaling method.

In this Thesis we will build on the previous work done

in the VALUE initiative for the validation of statistical

downscaling methods [21].

2) Selection of robust predictors: Since the downscaling

methods are trained in a historical period using predic-

tors from a retrospective GCM forecast (and simultane-

ous observations) and then applied to predictors from

different GCM future projections, it is required that

the predictors are realistically simulated by the different

GCMs in present/historical climate. Therefore, suitable

predictors for climate change studies typically restrict

to large scale variables (such as pressure, wind com-

ponents, temperature and humidity) at different heights

(e.g. 850 and 500 mb, corresponding approximately to

1500 and 5000 meter above sea level, respectively).

Surface variables (apart from sea level pressure or sur-

face temperature) are commonly not used as predictors,

since they strongly depend on the particular topogra-

phy/resolution used by the GCM.

3) Extrapolation capability: This is a key requirement for

SD methods, since the future climate change signal may

be artificially biases otherwise. Therefore, the structure

of the statistical downscaling method should provide

extrapolation capabilities to future climates. This implies

that the predictors used are credibly projected into the

future by the GCM and that the statistical downscaling

method can extrapolate out-of-sample records. There-

fore, good cross-validation performance is a necessary

but not sufficient requirement, since the values of predic-

tors in future climates can be far away from the historical

climate. Additional cross-validation experiments with

pseudo-observations (using future model predictions as

observations, since observations of the future climate are

not available) have been suggested for this task and will

be used in this Thesis [21].

As a consequence of these requirements, predictors must

be carefully selected (both the particular variables and the

geographical region of influence) in order to obtain credible

results. Atmospheric predictors are very redundant and the
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same event can be driven by completely different physical

processes depending on the region. As a consequence, identi-

fying the adequate informative predictors —both the variables

and the geographical regions of influence— for a certain task

(e.g., downscaling precipitation) is a major challenge in sta-

tistical downscaling. For instance, this problem was reported

in the largest to date intercomparison of standard SD methods

performed in the VALUE initiative (http://www.value-cost.eu)

as one of the most time-consuming tasks in most of the

cases. Predictor selection was typically undertaken applying

tedious feature selection (e.g., stepwise algorithm) and/or fea-

ture reduction (e.g., principal component analysis) techniques

[6]. Moreover, when considering large continental domains

(Europe in VALUE) most of the methods tackle the predictor

selection task by subdividing Europe in 8 regions (see Figure

1), which hinders transferability to other domains.

Fig. 1. Geographical domain indicating the renalysis’ gridboxes or predictors
(2◦ resolution, blue dots, aprox. 200 km) and the location of 86 stations
or predictands (black triangles). The coloured boxes show 8 subregions,
illustrating how traditional regions need to split big domains into subdomains
due to dimensionality constraints; more details in [6].

In principle, machine learning techniques could help with

these problems, allowing to develop automatic SD methods

based on the available data, building on automatic feature

selection approaches. In particular deep learning and in par-

ticular CNNs seem to be ideal candidates for this problem

since convolutional layers could deal with the problem of

selecting informative geographical regions for each predictand

(e.g. location), whereas fully-connected layers could model

potential nonlinearities connecting large and local scales. In

Section IV we show some first results indicating the suitability

of CNNs for this purpose.

Another disadvantage of statistical downscaling is that is

very dependent on both the quality and quantity of data, in

order to infer reliable models. This poses serious problems

for downscaling in regions that lack of data, such as the

Antarctica or Africa. Traditionally in these cases dynamical

downscaling is preferred (see [22] for a review), due to the

incapacity to infer the parameters of a statistical model. In this

Thesis we will try to address this issue by using the concept of

transfer learning, present in multi-task neural networks [23].

For downscaling problems, transfer learning can be interpreted

as a way to answer the following question: can information of

a certain region be useful to downscale climate in another place

on the planet? Transfer learning has been sucesfully applied

in other fields, such as natural language processing [24] and

computer vision [25]. Furthermore, we believe that the ability

to simultaneously downscale to various locations will result in

more spatially coherent downscaling, very important in impact

studies.

Fortunately, new sophisticated software and computation

sources have been developed in order to easy the imple-

mentation of deep neural networks, permitting the construc-

tion of versatile and complex architectures. In particular,

we will use the package TensorfFlow [ref], which facilitates

the solid implementation of CNNs using the most relevant

deep learning advances. Among them, we can construct deep

neural networks with novel optimitation algorithms (e.g. Adam

algorithm or Adagrad algorithm), different kinds of weight

initializations (e.g. He’s initialization or Xavier initializa-

tion), various activation functions (e.g. sigmoidal classification

and ReLu activations), new regularization techniques (e.g.

dropout), and pre-build complex hidden layers (e.g. convolu-

tional layers). In this Thesis we will focus in deep CNNs,

which builds on different parameters: kernel size, pooling,

padding and number of filter maps. We will explore the effects

of these parameters of convolutional layers as well as other

deep learning advances in order to analyse the applicability of

deep learning in statistical downscaling.

III. OBJECTIVES AND WORKPLAN

This Thesis is devoted to the study and application of deep

neural networks for statistical downscaling in the context of

climate change, building on the intercomparison framework

developed in the VALUE initiative [21]. The main objetive is

developing a CNN-based downscaling method which solves

some of the outstanding open problems of statistical down-

scaling: 1) faces curse of dimensionality and automatically

feature select/transform the predictors, 2) exploits the spatial

structure, 3) operates over continental-sized domains, 4) is

able to extrapolate the results to ”unseen” regions by transfer

learning and 5) quantifies the uncertainty of the predictions. In

order to accomplish this objective we designed the following

workplan.

A. Complementary academic formation (Months 1 - 6)

The first task to accomplish has been achieving and ade-

quate complementary formation in machine learning and the

new advances in deep learning. This has been done using

standard texts (e.g. [26], [27]), and attending to special curses

and workshops. Moreover, an extensive bibliographic search

was conducted in order to get an up-to-date overview of

the field, and the published references on machine learning

applications to statistical downscaling. From this search we

conclude that the topic is yet unexplored (there is a single

general publication on this topic, [20]) and, therefore, the
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Fig. 2. Deep neural network architecture found in this Thesis to accomplish the objectives proposed. In particular, the net aims to downscale the precipitation’s
occurrence over 86 stations (output) based on several large-scale predictors of size 19× 22 (input: 7 predictors), building on three convolutional layers with
50 kernels of size 3× 3× 7, 25 kernels of size 3× 3× 50 and one kernels of size 3× 3× 25, respectively, followed by dense layers, with a total of over
50000 parameters. ReLU non-linear functions are used in all layers, except for the outputs, which are sigmoid for classification.

Thesis can be a significant and timely contribution to this field

(see Section V).

B. Deep learning for statistical downscaling (Months 6 - 30)

This task is the core of the Thesis and consists in exploring

the deep learning developments in a statistical downscaling

context building on TensorFlow. We focus in CNN due to their

suitability to deal with spatial inputs (atmospheric fields in this

case). However, many different kinds of CNN arquitechtures

can be found in the literature, ranging from only convolutional

layers to a combination of convolutional, autoencoders and

dense layers. Exploring these configurations and understanding

its influence on different validation metrics (e.g., temporal

and spatial metrics, metrics related to extreme weather events)

will be the main topic along the first part of the Thesis. To

date we have explored the effects of CNN parameters such

as the kernel size, whether to add padding or not (i.e., the

filter map has the same resolution than the original map) and

whether to incorporate pooling (i.e., a parameter highlighting

the presence or not a certain parameter). Furthermore, as we

are particularly interested in spatial metrics and the spatial

consistency of the climate fields, we pay special attention to

multi-task architectures rather than single-task. Thus, during

this task we will also evaluate the benefits of multi-task

architectures over single-task according to spatial metrics. In

the end, the objective will be to come with a particular deep

learning net that justifies its architecture based on its ability to

handle predictor information and on the benefits obtained from

transfer learning. Some first results have been already obtained

in this task, corresponding to a simple illustrative classification

example (precipitation occurrence, wether it has rained or

not) used to analyze and understand the role of the different

layers and elements in the downscaling process. This work

is described in Section IV, which shows promising results to

handle predictor redundancy and irrelevancy automatically.

C. Quantifying uncertainty (Months 18 - 30)

Bayesian neural networks have existed since the late 80’s

[28]. However their intractability in many neural network

topologies along with a damage in the performance with

respect to non-Bayesian neural networks [29], prevented from

a widespread use of these models. Recently, Bayesian deep

learning has simplified these problems by simply leaning on

dropout [30]. Dropout consists in giving every neuron of the

neural net a certain probability to exist in a particular step

of the training process. Thus, at every new epoch a new

subset of the original net is trained. This randomness generates

distributions of predicted values that carry the uncertainty

information. Dropout is easily implemented by TensorFlow

and will basically consist in adding dropout to the deep

learning architecture found to solve SD tasks.

D. Model Explanation (24 - 30 months)

The climate community is reluctant to black-box machine

learning methods due to the inability to explain the results.

Therefore, in this Thesis we analyze model explicability of

deep learning in statistical downscaling, trying to understand

what elements are key for the different components and layers

of the model, and which factors influence the performance of

the model when compared to benchmark methods. We will

examine the physical interpretation (relative to the problem

under study) of the different hidden layers. For instance, in

Section IV we analyze a simple example that allows for a

interpretability of the convolutional layers. Thus, we will try

to understand the physics underlying the coupling of large and

local scales, as learned by the deep neural network model.

For instance, precipitation is driven by different processes in

the Mediterranean and in North Europe, but are these physical

processes captured as patterns responsible of the improvement

of the downscaling with respect to benchmark models?

E. Divulgation and contribution to international initiatives

(Months 24 - 36)

The results of this Thesis will be published in artificial

intelligence and climate journals and conferences, such as

Conferencia de la Asociación Española para la Inteligencia

Artificial (CAEPIA), Neural Information Processing Systems

(NIPS) and Climate Informatics (CI). In fact, the results

described in Section IV have been already submitted to the

Climate Informatics congress that will take place in September

in Colorado. Moreover, in order to maximize the diffusion and
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visibility of this work, (see Section V). Finally, the submission

of the Thesis is planned for mid 2020.

IV. FIRST RESULTS

In this section we describe the first results obtained during

the first year of the realization of the Thesis. We have

explored different deep learning topologies and have obtained

a particular CNN configuration able to shed light and respond

to the objectives described in the previous section for a

simple statistical downscaling case-study corresponding to a

classification problem: downscaling the occurrence of precip-

itation. In particular we consider the experimental framework

of the first VALUE intercomparison experiment, consisting

on downscaling over 86 stations located over Europe (Figure

1). As benchmark we use one of the best performing models

participating in this experiment, based on Generalized Linar

Models (GLM), in particular logistic regression for this case

[6].

The topology of deep learning architectures vary depend-

ing on the task to be solved. According to the objectives

described in Section III, the configuration for this problem

should automatically handle the selection of predictors, dealing

with the typical redundancy and irrelevancy properties of

atmospheric predictors. In particular to this study we have

used the following redundant set: the specific humidity at

850 and 700 hPa, the temperature at 850 and 700 hPa,

and the geopotential height at 1000, 850 and 500 hPa. In

order to address the latter and find an adequate configuration,

we have tested a combination of convolutional layers with

dense layers (see Figure 2). The output layer has 86 neurons,

one for each station of Figure 1. For this case-study, an

only-convolutional configuration (i.e., excluding the two last

fully connected layers) achieves higher validation scores and

provides more interpretability with respect to unraveling the

implicit geographical feature selection for this simple example.

However, the search has not been limited to define wether the

net should be partially or totally convolutional, and the number

of filter maps in the last layer has been found to be crucial

for the performance. Performance suffers from the curse of

dimensionality and thus the addition of unnecessary filter maps

to the neural architecture harms the statistical significance of

the model. This is specially relevant if they are added in the

last layer directly having an impact in the space’s size where

there is the boundary layer separating rainy from non-rainy

days. As a consequence, reducing the number of filter maps

to 1 in the last layer has shown better performance than with a

bigger number of filter maps (e.g., 10), demonstrating that only

1 filter map is necessary to this simple case. In this only 1 filter

map architecture, the CNN filters the information coming from

the original predictors retaining a pattern that best downscales

the precipitation and representing it spatially in its third layer,

generating a new novel super-predictor. By this way, the CNN

feature selects/transforms the original predictors into only 1.

But does CNN also performs a domain feature-selection?. In

Figure 3 we observe the coefficient’s values linking the third

layer with the output layer for a) Madrid and b) Helsinki.

It is interesting that the CNN automatically finds the area

influencing the local climate for a particular station, from

its surrounding geographical region, ignoring the rest of the

continental domain.

Fig. 3. Weights from the last convolution layer to the outputs (the stations) for
Madrid (left) and Helsinki (right). A 5× 5 spatial moving average is applied
to represent the effect of kernels. Blue/red colors indicate positive/negative
weights.

The resulting CNN shows better performance than the con-

sidered state-of-the-art benchmark method (GLM), in terms

of a standard validation measure: Relative Operating Charac-

teristics Skill Score (ROCSS), which is a standard accuracy

measure for probabilistic predictions of binary variables. In

Figure 4 we observe the ROCSS as a function of the a) training

epochs and b) stations for three different configurations of

deep learning models and for the benchmark (GLM). We

observe how the deep CNN with only 1 feature map in its

last layer and with no fully connected layers after the convo-

lutions achieves the best results. In particular, it is remarkable

how deep learning models have achieved considerably higher

results than the benchmark model, which additionally required

a tedious pre-analysis of the predictors.

V. RELEVANCE

Statistical downscaling is an important problem in the

context of climate change, since it allows to transfer the global

information of GCMs to the regional and local scales needed

in impact studies. There are a number of important interna-

tional initiatives which focus on this problem, including the

IPCC (Intergubernamental Panel on Climate Change, [4]) and

CORDEX (COordinated Regional climate Downscaling EX-

periment, [22]). Also, at a national level, the Spanish National

Adaptation Plan (PNACC) provides regional climate change

information for Spain building, among others, on statistical

downscaling methods (see http://escenarios.adaptecca.es). At

an international level, one of the main limitations of statistical

downscaling method is that they need to be applied at a global

level, considering continental domains. As we have seen in

the previous sections, state-of-the-art statistical downscaling

methods cannot operate automatically and require human

intervention to define suitable geographical regions, predictors,

etc. CNNs may provide an alternative to circumvent these

problems and may contribute to these initiatives providing

downscaled results with global coverage. The Thesis will be

performed in the framework of these initiatives, which will

sever as ideal platforms for the dissemination of results. At
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Fig. 4. Results (ROCSS) of the different downscaling models as a function
of (a) the epochs (train/test results are indicated by solid/dashed lines; the
dots indicate early stopping) and (b) the stations for the trained models, with
stations sorted according to the GLM results. The deep learning models have
1 filter map in the third hidden layer (CNN1) or 10 filter maps (CNN10).

a national level, one of the main limitations of statistical

downscaling methods is that they do not provide spatially

consistent results. CNNs could also circumvent this problem,

thus contributing to a better provision of regional climate

change information for impact studies in Spain.
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