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I. SUMMARY

In many classification tasks, we observe that some concepts

are more difficult to be recognized than others [2]. This is

related to the structure and inner characteristics of the data

[3]. In particular, we may refer to the problem of imbalanced

classification tasks as an important framework in Data Science

problems [4]. It is found when some classes are underrepre-

sented and the accuracy obtained for them is on average much

lower than on the remaining classes [3].

As commented above, there are several reasons that, in

conjunction with the imbalance, impose a hard restriction

for the learning algorithms. The most significant one is the

overlapping between classes [5]. This issue is strongly related

with the attributes that represent the problem. Our hypothesis

is that the use of feature selection will allow simplifying the

boundaries of the problem by limiting the influence of those

features that may create difficulties for the discrimination [6].

However, the imbalance class problem cannot be addressed

by itself just by carrying out a feature selection. For this

reason, it is also mandatory to perform a preprocessing of

instances by resampling the training data distribution [7],

avoiding a bias of the learning algorithm towards the majority
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classes. In addition, we may go one step further to integrate

both approaches into an ensemble-type classifier [8].

Obtaining the optimal set of features and instances for a

given problem is not a trivial task. For this reason, an optimiza-

tion procedure is often required. Among different approaches,

recent works have shown the goodness of Multi-Objective

Evolutionary Optimization (MOEA) procedures [9] due to

their ability to perform a good exploration and exploitation

of the solution space.

In our research, we proposed EFIS-MOEA, which stands

for “Ensemble classifier from a Feature and Instance Selection

by means of Multi-Objective Evolutionary Algorithm.” To do

so, we embedded the C4.5 decision tree [10] in a wrapper

procedure, applying the well-known NSGA-II multi-objective

optimization algorithm [11].

The ultimate goal of our proposal was to provide a rule-

based model that maximizes the recognition of all individual

classes. This was achieved by focusing on the minority class

clusters that were hard to identify. To do so, we focused on

boosting the confidence of those rules associated with the

former areas by means of the cleaning procedure, i.e. instance

selection. In this way, the optimal criteria was minimizing the

number of “bad” examples or, in other words, maximizing the

reduction of instances. Additionally, and taking into account

the findings made in [12], the coverage of the rules may imply

capturing some of the non-related classes. We must point out

that in order to obtain the quality of the recognition ability

of the classifier, we computed MAUC metric as the macro-

average of the pairwise AUC values of all pairs of classes:

MAUC =
2

m(m− 1)

∑

i<j

AUC(Ci, Cj) (1)
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The basis of our methodology involved several components:

1) First, feature selection was devoted to simplify the

overlapping areas easing the generation of rules to

distinguish between the classes.

2) Selection of instances from all classes addressed the

imbalance itself by finding the most appropriate class

distribution for the learning task, as well as possibly

removing noise and difficult borderline examples.

3) Finally, the non-dominated solutions of the Pareto front

from the MOEA could be directly combined into an

ensemble of classifiers.

We set up a fair validation framework for the novel EFIS-

MOEA proposal, considering two different case studies in

binary and multi-class problems. Several approaches from the

state-of-the-art were chosen in order to contrast the results.

Particularly, the SMOTE+ENN preprocessing approach [13]

for binary class problems and multi-class problems (using

a binarization scheme [14]), and both Global-CS [15] and

AdaBoost.NC [16] for the multi-class case study. Finally, we

must recall that the behavior of EFIS-MOEA was contrasted

versus 1-FIS-MOEA, i.e. a classifier obtained by selecting the

best solution of the Pareto in terms of M-AUC.

In Table I we show the results for the binary case study. We

observe that the synergy between feature selection and instance

selection boosts the performance of our approach versus the

oversampling and cleaning carried out by SMOTE+ENN, es-

pecially for highly overlapped problems in which the absolute

differences are almost 4 points on average.

TABLE I
AVERAGE TRAINING-TEST RESULTS (AUC) AND STATISTICAL STUDY FOR

BINARY IMBALANCED DATASETS.

Scenario Method AUC Train AUC Test Ranking APV W/T/L
(Holm test)

C4.5 .9510 ± .0253 .8892 ± .0661 94.00 (4) .00000* 4/0/26
Low overlap C4.5-SMOTE+ENN .9797 ± .0090 .9263 ± .0472 53.30 (2) .00737* 8/0/22
(F1 > 1.5) [30]) 1-FIS-MOEA .9943 ± .0031 .9195 ± .0514 65.47 (3) .00005* 3/0/27

EFIS-MOEA .9906 ± .0072 .9439 ± .0414 29.23 (1) ***** -/-/-

C4.5 .8437 ±.0454 .7352 ±.0726 113.78 (4) .00000* 2/0/34
High overlap C4.5-SMOTE+ENN .9338 ±.0182 .7817 ±.0740 71.61 (2) .00000* 3/0/33
(F1 < 1.5) [36]) 1-FIS-MOEA .9761 ±.0081 .7749 ±.0757 79.22 (3) .00000* 0/0/36

EFIS-MOEA .9717± .0100 .8273± .0596 25.39 (1) ***** -/-/-

In Table II we show the results for the case study of

multi-class problems. The findings extracted from this analysis

is similar of that of the previous scenario. The goodness

shown by our EFIS-MOEA approach is clear, as it is able

to outperform all algorithms selected for comparison. The

statistical results provide a strong support to the excellent

capabilities for our approach. By taking advantage from all

the solutions discovered in the optimization stage into an

ensemble, results are significantly boosted with respect to the

best classifier found in the MOEA search, i.e. 1-FIS-MOEA,

which suffers from the curse of overfitting.

The results obtained by EFIS-MOEA were very competitive,

especially for highly overlapped problems. The selection of

instances allowed rebalancing the training set as well as to

clean the low quality data, i.e. noisy and redundant examples.

In addition, feature selection simplified the boundaries of the

problem to manage the aforementioned overlapping issue.

TABLE II
AVERAGE TRAINING-TEST RESULTS (M-AUC) AND STATISTICAL STUDY

FOR MULTI-CLASS IMBALANCED DATASETS.

Method AUC Train AUC Test Ranking APV W/T/L
(Holm test)

C4.5 .9006 ± .0141 .8157 ±.0297 102.54 (6) .00000* 2/0/22
OVO-SMOTE+ENN .9369 ± .0136 .8292 ± .0352 74.58 (5) .00725* 6/0/19
Global-CS .9726 ± .0060 .8324 ± .0346 72.48 (3) .01206* 4/0/20
AdaBoost.NC .9530 ± .0147 .8233 ± .0319 69.06 (2) .02597* 8/0/16
1-FIS-MOEA .9715 ±.0041 .8299 ±.0355 74.08 (4) .00820* 5/0/19
EFIS-MOEA .9691 ± .0058 .8441 ± .0322 42.25 (1) ***** -/-/-

The behavior of EFIS-MOEA is excelled as it was shown

to outperform the state-of-the-art algorithms, especially the

AdaBoost.NC algorithm, a robust approach in this context.
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