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Abstract—This paper states the key ideas of a generalized
version of variable elimination for evaluating interval-valued
influence diagrams. This extension, which is based on linear
programming, does not increase the computational complexity
and avoids unnecessarily large outer approximations.
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I. INTRODUCTION

Influence diagrams (IDs) [5] are probabilistic graphical

models used to solve decision-making problems under uncer-

tainty. Sharp numerical values are required to quantify their

parameters (i.e., potentials). This might be an issue with real

models, whose parameters are typically obtained from expert

judgements or partially reliable data. We consider an interval-

valued quantification of the parameters to gain realism. Even

though, inference in such models could be done by replacing

the operations over sharp potentials with the analogous ones

for interval-valued potentials, this might produce unnecessarily

large outer approximations. To avoid that, we propose a

sophistication of variable elimination (VE) based on linear

programming. The content of this paper is discussed more in

detail in a previous work [1].

II. BACKGROUND

A discrete ID is defined over a set of chance variables X

and a set of decisions D. The qualitative part is an acyclic

directed graph G with a node for each chance and decision

variable. IDs contain a third type of node, namely utility

nodes, representing the user preferences. These nodes are

jointly denoted as U. The quantitative part is made of a set

of probability potentials (PPs) that represents the uncertainty,

and a set of utility potentials (UPs) that represents the user

preferences. A PP over two disjoint sets of variables XI and

XJ , denoted as φ(XI |XJ), is a map φ : ΩXI∪J
→ [0, 1] such

that
∑

xI∈ΩXI

φ(xI |xJ) = 1 for each xJ ∈ ΩXJ
. Similarly,

a UP over XK , denoted as ψ(XK), is a map ψ : ΩXK
→ R.

For each chance node, a PP over the corresponding variable

and its parents is defined, while, for each utility node, a UP

over the parents should be assessed.

The set of all PPs specifies a multiplicative factorization

of the joint probability of X given D. Thus, an ID

is a compact representation of a joint expected utility

EU(X,D) :=
∏

X∈X φ(X|ΠX)
∑

U∈U ψ(ΠU ), where ΠY is

the set of parents of a given node Y . A policy for a decision

variable Di is a mapping δDi
: ΩΠDi

→ ΩDi
associating

a state of Di (i.e., a decision) to its past observations and

decisions. Evaluating IDs (i.e., making inference) consists

in the identification of the set of optimal strategies, which

maximizes the expected value of the sum of the UPs. The

maximum expected utility (MEU) is the expected value of the

utilities when the decision maker takes the optimal policies.

VE is an algorithm for evaluating IDs [5] that eliminates

all the variables one by one. In the version for IDs, chance

variables are removed by sum while decision are instead

eliminated by maximization. In order to remove a variable

Y, all the potentials containing such variable in their domains

are selected and combined1, giving as a result a PP and a

UP denoted as φY and ψY . In case of a chance variable, the

new potentials replacing those containing Y are computed with

Eq. (1). In case of a decision, Eq. (2) is used instead2.

(φ′Y , ψ
′

Y )← (
∑

Y

φY ,

∑
Y φY · ψY∑

Y φY
) (1)

(φ′Y , ψ
′

Y )← (φ
R(Y=y)
Y ,max

Y
ψY ) (2)

III. INTERVAL-VALUED IDS

A. Definitions

Interval-valued IDs (IIDs) are a generalization of IDs con-

taining imprecise parameters. For the utilities we base on the

interval utilities proposed by Fertig and Brese [4], and we

will call them interval-valued utility potentials (IUPs) and will

be denoted by ψ. For the probabilities, we use the notion of

probability interval proposed by de Campos et al. [3], and we

will use the term interval-valued probability potential (IPP)

and will be denoted by φ. An example of both is given below.

ψ(Y ) =
[ ]

[−10,−5] y1
[−5, 5] y2

φ(X) =

[ ][.475, .525] x1

[.285, .335] x2

[.190, .240] x3

(3)

1PPs are combined using multiplication whereas addition is used for UPs.
2φR(•) denotes the restriction operation.
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The difference w.r.t. the precise potentials is that, instead

of single value, associated to each configuration there is an

interval. Note that an interval-valued potential represents a

bounded and infinite set of precise ones (its extension). We will

assume that all the IUPs and IPPs have a non-empty extension

and satisfy the reachability condition [3]. IIDs offer a direct

sensitivity analysis interpretation. An IID can be regarded as a

collection of so-called consistent IDs, all with the same graph

and set of variables, with PPs and UPs taking their values from

the extensions of the IPPs and IUPs of the IID.

B. Evaluation by linear programming

IID evaluation is intended as the calculation of the interval

spanned by the MEU values of the consistent IDs. The

evaluation could be done by replacing the operations over

sharp potentials with the analogous ones for interval-valued

potentials [1], e.g., the multiplication of two IPP will

be obtained by separately multiplying the lower and the

upper bounds. This might produce unnecessarily large outer

approximations. Note that the division Eq. (1) could lead

to intervals with −∞ or +∞ in their bounds. Instead, we

propose to use linear programming for the computation

of the potentials resulting at each elimination step. Yet,

the combination for interval-valued potentials will be still

required for obtaining these programs.

First, let us consider the removal of a chance variable Y

from a set of probabilities (i.e., left-hand side in Eq. (1)),

then the equivalent operation with IPPs is defined as follows.

Definition 1 (eliminating chance variables from IPPs):

Consider the elimination of the chance variable Y during

VE. Let φ(XI |XJ , Y ) denote the IPP obtained by com-

bining all the IPPs with Y on the right-hand side, and

φ(Y,XK |XL) the only IPP with Y on the left. The elimination

of Y from the combination of these two IPPs generates

an IPP φ(XK , XI |XL, XJ). For each xI∪K ∈ ΩXI∪K
and

xL∪J ∈ ΩXL∪J
, an outer approximation of the lower bound

φ(xK∪I |xL∪J) is the solution of the following task:

minimize
∑

y∈ΩY

φ(xI |xJ , y) · φ(y, xK |xL) ,

subject to φ(xI |xJ , y) ≤ φ(xI |xJ , y) ≤ φ(xI |xJ , y) ,

φ(y, xK |xL) ≤ φ(y, xK |xL) ≤ φ(y, xK |xL), ∀y ∈ ΩY .

In case of computing the lower bound, we will replace

φ(xI |xJ , y) with the lower bound φ(xI |xJ , y). This reduces

the task to a linear program over the optimization variables

{φ(y, xK |xL)}y∈ΩY
. Analogously, an outer approximation

of the upper bound φ(xK∪I |xL∪J) can be calculated by

maximizing the previous objective function instead and

replacing φ(xI |xJ , y) with φ(xI |xJ , y). Now consider the

right-hand side in Eq. (1), then the equivalent operation with

IUPs is defined as follows.

Definition 2 (eliminating chance variables from IUPs): Let

φ(XI |XJ , Y ) be the IPP obtained by combining all the IPPs

with Y on the right-hand side, φ(Y,XK |XL) be the only IPP

with Y on the left-hand side and ψ(Y,XM ) the combination

of all the IUPs with Y in the argument. The elimination of

a chance variable Y from the combination of these poten-

tials produces a new IPP ψ(XI , XJ , XK , XL, XM ). For each

xI∪J∪K∪L∪M ∈ ΩXI∪J∪K∪L∪M
, an outer approximation of

the lower bound ψ(xI∪J∪K∪L∪M ) is the solution of the task

minimize

∑
y∈ΩY

φ(xI |xJ , y) · φ(y, xK |xL) · ψ(y, xM )
∑

y∈ΩY
φ(xI |xJ , y) · φ(y, xK |xL)

,

subject to φ(xI |xJ , y) ≤ φ(xI |xJ , y) ≤ φ(xI |xJ , y) ,

φ(y, xK |xL) ≤ φ(y, xK |xL) ≤ φ(y, xK |xL) ,

ψ(y, xM ) ≤ ψ(y, xM ) ≤ ψ(y, xM ), ∀y ∈ ΩY .

The task has a linearly constrained cubic-fractional

objective function. When calculating the lower bound, the

minimization with respect to the optimization variables

associated to an IUP can be trivially achieved by setting

ψ(y, xM ) = ψ(y, xM ). We can also regard the product

φ(y, xK |xL) · φ(xI |xJ , y) as a single optimization variable.

In this way the task becomes a linear-fractional program

which can be reduced to a linear program using the classical

Charnes-Cooper transformation [2]. Analogously, a similar

procedure can be done for the upper bound ψ(xI∪J∪K∪L∪M ).

The elimination of a decision (i.e., Eq. (2)) is done using

the analogous operations for interval-valued potentials without

introducing any imprecision. To obtain the optimal policy,

we adopt a conservative approach, called interval dominance

in the imprecise-probability jargon, which rejects all the

decisions leading to certainly sub-optimal strategies.

IV. CONCLUSIONS

In this paper we have proposed an extension of the classical

VE for evaluating IDs whose parameters are interval-valued

potentials. This extension is achieved by local optimization

tasks, reduced to linear programs. An empirical analysis of this

method can be found in a previous work [1]. As a future work

we intend to extend this formalism to more general imprecise

frameworks, e.g., credal sets represented by extreme points.
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