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Abstract—Unmanned aerial vehicles (UAVs) or drones are
being utilized by logistics systems in the context of smart cities.
Here, we present a current application of the uses of drones
through the Team Orienteering Problem (TOP). The TOP is
a combinatorial optimization problem aimed at a practical
approach for the urban transportation problems, such as traffic
monitoring, freight transport, information transfer, safety, emer-
gency situations management and other uses. This abstract copes
with a TOP version in which a fleet of drones has to visit a
series of customers. We assume that each visit to customers relies
on a stochastic reward which implies a variable service time.
Thus, a simheuristic algorithm is proposed as a solving approach
integrating simulation inside a multi-start heuristic framework.
A series of computational experiments contribute to illustrate the
potential benefits of our work.

Index Terms—Team Orienteering Problem, stochastic Re-
wards, variable service times, simheuristic algorithm..

I. INTRODUCTION

In a supply chain, a transport system is typically defined

as a robust set of links that allows a continuous flow of

resources such as information, money, and products. This set

of links connects suppliers, production locations, retailers, and

customers. The introduction of new technologies allows to

consider real-time data that can be useful in order to identify

suitable links at each time. Moreover, the European Commis-

sion has proposed different initiatives and some governmental

projects to facilitate the emergence of sustainable and smart

cities. Likewise, this transport system ensures quick responses

to dynamic conditions of markets.

Practical applications of the TOP rely on stochastic rewards

and service times associated to the customers visits. Hence,

we propose a simheuristic algorithm to deal with a TOP

with stochastic rewards and service times. This combinatorial

optimization problem can be described as an undirected graph

G = (N,A), where N is a set of n nodes (including

customers as well as an origin and a destination depot) and

A = {(i, j)/i, j ∈ N} is the set of edges connecting all

nodes in N. Each customer i ∈ N has a stochastic reward

(Ui) and a service time (STi). Similarly, each edge (i, j) is

characterized by a traveling time (tij). The total traveling time

per route is limited by a driving range time (T lim), which

represents the battery life of each UAV. The objective is to

determine the subset of customers to be visited by each route

(including the visiting order) which maximizes the expected

reward considering the T lim as a hard constraint.

The solution approach can be considered as a specialized

case of simulation-based optimization, where only metaheuris-

tics are employed as optimization components and the simula-

tion feedback helps to better guide the metaheuristic searching

process in a vast space of feasible solutions. In particular,

our simheuristic algorithm combines Monte Carlo simulation

(MCS) with a multi-start metaheuristic framework. All in all,

our simheuristic approach aims at finding routing solutions

offering both high expected rewards and reliability indexes.

Finally, an expanded version or this work can be read in [1],

which presents a stochastic version of the TOP using UAVs.

II. SOLUTION APPROACH

Our solving approach relies on a simheuristic algorithm, it is

composed of two different components: an optimization one

–which searches for promising solutions– and a simulation

one –which assesses the promising solutions in a stochastic

environment and guides the searching process. Regarding the

optimization component, we use a multi-start meta framework

in which the constructive phase uses biased-randomization

techniques [2], [3]. Figure 1 describes our simheuristic algo-

rithm.

In the multi-start procedure, a feasible solution is built for

deterministic version of the problem. There, the concept of

‘savings’ is introduced as a criterion for merging routes, and

it is based on the savings in time associated with completing

the merged route instead of the two original ones. This concept

is extended to the concept of ‘preference’, which is a linear
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Fig. 1: Scheme of our algorithm.

combination of savings and accumulated rewards. Then, a

merging that generates a greater accumulated reward will be

prioritized over another one with similar time-based savings.

Only a merging can be completed if the total expected time

after the operation does not exceed the driving-range threshold.

The concept of preference is used to generate a sorted list

of potential mergings, and these are completed following the

corresponding order, from higher to lower preference. Further-

more, we employ biased-randomization techniques, selecting

the promising mergings using a probabilistic algorithm follow-

ing a Geometric Distribution. Hence, merging operations with

a larger preference are more likely to be selected.

Once a feasible solution with a high reward is determined,

it is defined as the best deterministic solution. Then, MCS is

incorporated to assess the quality of this solution, in terms of

the expected reward and reliability (the probability that each

route does not exceeds the driving-range). Thus, a feasible

solution is iteratively constructed, building one element at a

time in the multi-start procedure. As a result, the simulation

procedure provides a feedback to simheuristic algorithm to

better guide the searching process. At the end of this stage,

the solution with the highest expected reward and reliability

level is defined as the best stochastic solution.

III. COMPUTATIONAL RESULTS

Since there are no benchmark instances for the TOP with

stochastic rewards and constrained driving ranges, we modified

and extended a deterministic data set from the literature. We

assumed that the stochastic rewards, Ui, follow a Truncated

Normal Distribution with parameters µ(Ui) and σ(Ui)). The

value of σ(Ui) is estimated as: c·µ(Ui), where c is a parameter

that allows exploring different levels of uncertainty. It is

TABLE I: Comparison of the simheuristic algorithm results

and the best known solutions (BKS).

Instance Tlim BKS BDS BSS (a) BDS* (b) b−a

b

(%)

p3.4.t 27.5 670 670 487.29 485.50 0.37
p4.4.d 20 38 38 27.46 27.16 1.08
p5.4.v 27.5 1320 1320 938.63 901.8 4.17

Average 1.88

expected that as c converges to zero, the results from the

stochastic version converge to those obtained in the determin-

istic scenario.

In order to validate the quality of our approach in the

deterministic environment, where results are available in the

literature, we compare our results with the best-known solution

(BKS). We solve the 3 instances from the set d proposed by

[4]. Each instance involves a number of UAVs (fleet size),

number of nodes, and maximum route duration T lim. The

traveling time is estimated under the assumption that UAV s
travel at a unitary speed. The performance of our approach

is reported in the columns BDS, BSS, BDS*, both for the

deterministic and the stochastic environments solution. Notice

that our simheuristic algorithm reaches the (deterministic)

BKS for all tested instances, even when the run time was

limited to 60 seconds.

Table I presents the expected reward associated with the

deterministic solution BDS, which is compared with our best

stochastic solution BDS*. According to these results, the best

stochastic solution provides an expected reward which is, on

the average, up to 1.88% better than the expected reward

provided by the best deterministic solution when employed

in a stochastic environment. As a result, solutions for the

deterministic version of the problem should not be used in

solving the stochastic version, since they become suboptimal

under uncertainty scenarios.

IV. CONCLUSION

This work presents a simheuristic algorithm to solve a

stochastic version of the TOP, where driving-range limitations

of unmanned aerial vehicles are also considered. Under un-

certain conditions is hardly to ensure feasible solutions, i.e.,

a route can request more time to be completed than the one

provided by the battery duration. Our simheuristic algorithm

allows to assess the quality of promising solutions and the

estimation of the solution reliability.
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