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Abstract—The Research Centre for Intelligent Decision-
Support Systems (CISIAD) has been doing research on prob-
abilistic graphical models applied to medicine for almost three
decades. In this paper we summarise the contributions we have
made, analyse the main difficulties we have found, and present
the main failures and successes we have had in those years.
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I. INTRODUCTION

One of the features of artificial intelligent systems is the

ability to draw conclusions in uncertain domains. In medicine

uncertainty is ubiquitous, mainly due to limited knowledge

about the causal mechanisms and to the non-determinism of

the real world. For this reason medicine has been one of

the main fields of application since the beginning of artificial

intelligence. The first methods for reasoning with uncertainty

were based on the theory of probability, more specifically on

what we now call the naı̈ve Bayes method, which relies on

two assumptions: diseases are mutually exclusive and findings

are conditionally independent given the diagnosis. With these

simplifying hypotheses is was possible to build several models

that succeeded in solving several diagnostic problems in the

1960’s and 1970’s [1]–[6]. However, the assumptions required

by this method are usually unrealistic in practice, which led

many researchers to assert that probabilistic methods could

not be used to solve large AI problems—see [7], [8] for a

discussion.

The situation changed significantly in the next decade with

the advent of probabilistic graphical models (PGMs). Howard

and Matheson, two economists of the Stanford Research

Institute (SRI) developed influence diagrams as a compact

representation of decision problems, alternative to decision

trees [9], and Judea Pearl, an artificial intelligence researcher

at UCLA, developed Bayesian networks as an extension of

the naı̈ve Bayes [10], [11]. Very soon other authors proposed

efficient algorithms for the evaluation of influence diagrams

[12], [13] and Bayesian networks [14]. The first PGMs for

real-world medical problems were developed in the next years

[15]–[18] and the number of applications has grown so fast
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afterwards that now it is impossible to have a registry of all

the medical applications that use PGMs.

In this paper we review some of the applications devel-

oped at the Centre for Intelligent Decision-Support Systems

(CISIAD) of the National University for Distance Education

(UNED), in Madrid, Spain, summarise the contributions we

have made, analyse the main difficulties we have found, and

present the main failures and successes we have had in almost

three decades of research.

II. PROBABILISTIC MODELS FOR MEDICAL PROBLEMS

A. PGMs for medical diagnosis

In 1989 Javier Dı́ez began a doctoral thesis in artificial intel-

ligence for medicine under the supervision of Prof. José Mira

at UNED. The topic was the construction of an expert system

for echocardiography, in collaboration with some doctors of

the Hospital de la Princesa, in Madrid. In those years most

expert systems were built using rules, and fuzzy logic was

more and more popular. Prof. Mira had supervised several

PhD theses that had applied these techniques to different

medical problems [19]–[22], so they seemed to be the obvious

choice for Dı́ez’s thesis. However, in the first knowledge

elicitation sessions one of the doctors proposed building a

causal network: mitral stenosis causes left atrium hypertension,

which back-propagates to the lungs, and so on. However, when

Dı́ez tried to encode this causal model into a set of rules, it was

impossible, because a piece of knowledge such as “A causes

B” can be used either to infer B from A, or vice versa; but

rule-based reasoning is unidirectional. Additionally, when A

and B are causes of C and C is observed, the presence of A

rules out B (this phenomenon is called explaining away [10])

and, conversely, discarding A increases the suspicion that B

has caused C. Due to these limitations of rule-based reasoning

and to his training as a physicist, Dı́ez began exploring proba-

bilistic reasoning for causal models, without being aware of the

landmark contributions made by Pearl a few years earlier [10],

[11], [23], [24]. He then rediscovered Bayesian networks, the

noisy OR gate and its generalization to multivalued variables

[25], which he called the noisy MAX [26], [27], and developed

a new algorithm for evidence propagation [28]. In 1992 he

spent three months at UCLA invited by Judea Pearl, and was

able to catch up with the avant-garde of the research in this

field, which was led by Pearl’s group.
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After finishing his doctorate in 1994 [29], Dı́ez super-

vised several PhD theses that built Bayesian networks for

several problems: Carmen Lacave [30], [31] built Prostanet

for urology, Severino Fernández Galán [32] built Nasonet for

nasopharyngeal cancer and Nuria Alonso Santander [33], an

ophthalmologist of Hospital de la Princesa (Madrid), built

Catarnet for cataract surgery.

B. PGMs for decision analysis

Because of our contact with health professionals, we re-

alised that in medicine the final goal is not to issue a diagnosis,

but to make decisions. In many cases finding out the disease

with the higher probability or obtaining a list of variables

whose posterior probability exceeds a certain threshold is not

enough, because very often a low probability of a serious

disease is more relevant that a high probability for a relatively-

benign disease. In fact, newspapers from time to time tell the

story of a patient who died after presenting at the urgency

room of a hospital and being discharged because the doctors

just gave the most likely diagnosis, without taking into account

that the symptoms were compatible with an infrequent but

mortal disease. Clearly, in medicine a false positive and a

false negative have very different costs: the former usually

leads to performing additional tests and sometimes starting

an unnecessary treatment, which has an economic cost and

may cause anxiety and discomfort to the patient, but a false

negative may lead to delaying a treatment necessary to save

the patient’s life.

For this reason we were interested in building models

that explicitly took into account the decisions and the cost

of tests and treatments, including the cost of giving the

wrong treatment or no treatment. This is how we started

investigating influence diagrams (IDs), which differ from

Bayesian networks in that they do not only have chance nodes,

but also decision and utility nodes [9]. During his doctoral

work, Manuel Luque built Mediastinet, an influence diagram

for the mediastinal staging of non-small cell lung cancer,

in collaboration with Dr. Carlos Disdier, of Hospital San

Pedro de Alcántara (Cáceres) [34], [35], and Diego León built

Arthronet, an influence diagram for total knee arthroplasty,

during his master thesis, in collaboration with a doctor of

Valladolid [36]. Every influence diagram is equivalent to a

decision tree, but IDs have the advantage of being much more

compact and, consequently, much easier to build and modify.

In particular, both Mediastinet and Arthronet are equivalent

to decision trees containing more than 10,000 leaves, and

there is an algorithm that can transform each of them into the

corresponding tree—provided that the computer has enough

working memory.

In these models the main criterion was clinical effectiveness,

measured in quality adjusted life years (QALYs), but they

also represented the economic cost. In health economics the

standard way of combining cost and effectiveness into a single

criterion is to compute the net monetary benefit,

NMB = λ · e− c ,

or, alternatively, the net health benefit,

NHB = λ−1 ·NMB = e− λ−1 · c ,

where e is the effectiveness (measured in QALYs or in

another clinical unit), c is the cost (in monetary units, such

as dollars or euros) and λ, known as willingness to pay

or cost effectiveness threshold, is a parameter that converts

effectiveness into monetary units [37], [38]. This way it was

possible to evaluate Mediastinet taking into account just the

effectiveness (i.e., disregarding the cost, by making λ−1
= 0)

or for specific values of λ. The problem is that λ is different

for each decision maker. In Spain most health economists

accept λ = 30, 000 C/QALY as a value of consensus for

our public health system, but there are also some experts

claiming that this value is too high. Therefore, it would be

desirable to perform a true cost-effectiveness analysis (CEA)

in order to find out the values of λ (the thresholds) that

determine the most beneficial intervention for each decision

maker. Unfortunately, the algorithms available ten years ago

were only able to perform CEA for decision trees containing

just one decision node, at the root, and both Mediastinet and

Arthronet had several decisions.

For this reason our group first developed a CEA algorithm

for trees with several decisions [39] and then for IDs [40].

After implemented them in OpenMarkov, an open-source soft-

ware tool that we describe below, it was possible to evaluate

these IDs in a few seconds.

However, many medical problems involve asymmetries of

several types. There is order asymmetry when the decisions are

not totally ordered; for example, when it is not clear which test

to do first, if any, and what tests to do afterwards depending

on the result of previous tests. There may be information

asymmetry due conditional observability; for example, the

result of a test is know only when the doctor decides to

perform it. And there is domain asymmetry when the value of

one variable restricts the values of others; for example, when

the decision is not to do a test, its result is neither positive nor

negative. In IDs the second and third types of asymmetry can

be represented—clumsily—by adding dummy states to some

variables, but order asymmetry cannot be represented because

IDs require a total ordering of the decisions. With the purpose

of overcoming these limitations we proposed decision analysis

networks (DANs) [41] and developed a CEA algorithm for

them [42].

C. PGMs for temporal reasoning

In the same way as our collaboration with medical doctors

led us from diagnosis (with Bayesian networks) to unicriterion

decision analysis and then to cost-effectiveness analysis, it

also showed us the importance of temporal reasoning. Our

group had proposed two new types of temporal PGMs, namely

networks of probabilistic events in discrete time (NPEDTs)

[32] and dynamic limited memory influence diagrams (DLIM-

IDs) [43]. The former were developed originally to model

the spread of nasopharyngeal cancer [44] and the latter to

predict the progression of carcinoid tumours [45]. For different



I Workshop de Grupos de Investigación Españoles de IA en Biomedicina
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reasons none of these types of networks could solve the typical

problems in which health economists are currently interested.

Therefore we extended our work on IDs to develop Markov

IDs [46]. With them we have been able to conduct CEAs

for several medical problems, such as pleural effusion [47],

colorectal cancer [47], cochlear implantation [48], etc.

III. DEVELOPMENT OF OPEN-SOURCE TOOLS

These medical applications have been built with two open-

source tools: Elvira and OpenMarkov. Elvira was the result

of a collaboration of several Spanish universities, mainly

Granada, Almerı́a, Castilla-La Mancha, Paı́s Vasco and UNED

[49]. The high number of developers, with experienced re-

searchers, was the main reason for its rapid development,

with the implementation of many algorithms for inference and

learning, but, on the other hand, the physical distance between

the teams involved in the project and the lack of adherence to

the principles of software engineering made the tool difficult

to maintain.

For this reason the UNED started the development of a

new tool, called OpenMarkov [50]. We departed from the

experience gained with Elvira, but the all the code was written

from scratch. It is now a large tool, with around 115,000 lines

of Java code, excluding blanks, and more than 200,000 lines

in total, organised in 44 maven projects. The fact that it is

managed by a single team and the use of several software

engineering tools (git, maven, nexus, jenkins, etc.) has allowed

us to make several redesign decisions and to maintain the code,

which is still growing actively.

Both Elvira and OpenMarkov have advanced graphical user

interfaces for editing and evaluating PGMs. Elvira has many

learning algorithms, while OpenMarkov only implements the

two basic algorithms, namely search-and-score and PC, but in

general it is much more robust and more efficient in inference,

and offers more types of networks (Markov IDs, DANs, etc.),

more options for sensitivity analysis and temporal models,

CEA, and the possibility of learning Bayesian networks in-

teractively [51].

To our knowledge, Elvira was used in 10 countries, almost

exclusively at universities, while OpenMarkov has been used

for teaching, research and developing applications at universi-

ties, research centres and companies of more than 30 countries

in Europe, America, Asia and Africa.

IV. DIFFICULTIES, FAILURES AND SUCCESSES

In this section we analyse some of the difficulties we have

found when building artificial intelligence applications for

medicine, which range from technical challenges to human

factors, and describe the main failures and successes we have

faced.

A. Building PGMs with expert knowledge

Our group differs from most others in the field of PGMs

in that, instead of investigating new learning algorithms, we

have specialised in building PGMs with expert knowledge.

This process is time consuming and, what makes it much

more challenging, requires in general the collaboration of

medical doctors. None of the health professionals who have

collaborated with us has ever received any economic com-

pensation for their work. Some of them have collaborated

actively, but others had a low degree of commitment, to the

point that it was difficult for us to arrange the meetings with

them. For this reason, some of our attempts to build models

for medical problems have failed after having investing a

significant amount of time and effort.

B. Use of PGMs for clinical decisions

Clinical decision-support systems can be used in at least

two ways. One of them is to guide the diagnosis and the

treatment of individual patients at the clinical consultation or at

the bedside. Many expert systems have been designed for this

purpose, including our first PGMs. However, we do not know

of any AI system routinely used this way. We were close to

succeed with Catarnet, the above-mentioned Bayesian network

for cataract surgery. The Health Department of the regional

government of Madrid, who had financed the project, was

interested in implanting this system into the new big hospitals

it manages. We collaborated with the technicians of one of

them to design a protocol for integrating Catarnet into their

information system. When we were just about to start the tests,

there was a change in the leadership of the hospital and the

new person responsible refused to implant the decision-support

system unless he could obtain from it some benefit for his

professional/political career.

AI might also be applied to developing public health poli-

cies. However, these policies are based, in the best scenarios,

on epidemiological studies, economic evaluations of health

technologies and the consensus of experts; there seems to be

no room for expert systems. However, in our group we have

combined PGMs, an AI technique, with cost-effectiveness

analysis, as mentioned above. One of the models we have

built is a Markov ID for analysing the cost-effectiveness of

paediatric bilateral cochlear implantation (BCI), i.e., for deter-

mining whether it is worth putting two implants instead of one

to babies who are born with severe to profound deafness. The

preliminary study we conducted, which included a thorough

review of the literature, contributed to convincing the Ministry

of Health that it is cost-effective, and Spain became the

first country in the world—to the best of our knowledge—to

include BCI for both children and adults in the portfolio of

health services (cf. Orden SSI/1356/2015, de 2 de julio). In

spite of this law, several regional governments still refuse to

cover it in practice, even for newborns. We wrote a detailed

report, based on our cost-effectiveness analysis [48], which

proved beyond any reasonable doubt that this intervention

is clearly cost-effective for children, and submitted it to the

Ministry of Health and to 11 regional health departments. In

May 2018 the Ministry of Health sent a letter to F. J. Dı́ez in

which it explicitly rectified its previous stance and confirmed

that BCI must be covered by all health providers in Spain.

More recently, Catalonia and Andalusia, two of the regions

that had steadfastly refused covering it have announced that
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they will start putting two implants to the children that need

them. This is the first time that our research on medical AI

has had an impact on the life of patients.

We are working on two models for finding the optimal

screening patterns for breast cancer and colorectal cancer.

Even though there are several studies about these topics, we

intend to develop new models and new algorithms for finding

the optimal screening pattern for each patient based on his/her

personal features. We will soon begin a CEA of screening for

cytomegalovirus in newborns; if our study concludes that it is

cost-effective, as some experts have recently claimed, health

authorities should include it in the battery of tests for neonatal

screening, which would have an impact on the life of many

children and families.

C. A probabilistic expert system for programming cochlear

implants

Our interest for cochlear implants led us to contact Dr. Paul

Govaerts, who had been investigating the application of AI to

programming them. This is a difficult task, because an implant

has more than 100 electronic parameters that can be fitted.

Improving the quality of hearing in one setting (for example,

in a quiet room) may deteriorate the hearing in others (for

example, in a noisy street). He had built a rule-based system

that improved the performance of human audiologists, but the

results were far from impressive. For this reason he started

a new project, financed by a EU grant, aimed at building

a new version of the expert system. A prestigious research

group specialised in machine learning joined the project as a

partner. However, some technical problems made it impossible

to obtain the data they counted on, and even with them it

would have been virtually impossible to build a model using

learning algorithms, due to the complexity of the task. Seeing

that the project had run aground, Dr. Govaerts contacted our

group. The combination of his knowledge of audiology and

cochlear implant technology with our expertise in building

PGMs from human knowledge made it possible to create a

probabilistic model based on a causal graph and subjective

estimates of the probabilities [47], [52], [53]. In a few months

it gave the first useful results and two years later impressed

some experts in Europe and the USA for its performance. The

main manufacturer of cochlear implants, who has a market

share of more than 50%, has bought the rights to exploit it

exclusively.

V. CONCLUSIONS AND FUTURE WORK

Our group has been doing research on artificial intelligence

applied to health decision making for almost three decades.

We have contributed new algorithms [28], [39], [40], [42],

[50], [54]–[61], new types of probabilistic graphical models

(NPEDTs [32], DLIMIDs [43], [45], tuning networks [52],

Markov IDs [46], DANs [41]), new canonical models [26],

[27], [52] and several methods for the explanation of reasoning

[62]–[66]. Each of them was motivated by a specific medical

problem for which we were building a probabilistic network,

but all of them can be applied to other domains. Similarly,

the software tools we have developed [49], [50] are designed

mainly for medicine, but other groups have used them to build

applications in very different fields. These software tools have

also been very useful for teaching PGMs to our students [67],

[68].

Looking retrospectively, we can see that our efforts to

build decision-support systems for clinical consultation have

failed far from obtaining the benefits we expected. Building a

probabilistic model manually takes a lot of time and requires

the commitment of medical doctors, who in some cases col-

laborate enthusiastically but in others are poorly motivated and

abandon the project far before arriving at the goal. Similarly,

we have invested lots of time in developing software tools

with advanced graphical user interfaces, in spite of our scarcity

of funding and human resources. These tools have been very

useful for our research and teaching, and also for many other

universities in four continents. Several institutes and large

companies of different countries have used OpenMarkov to

build real-world applications. This has brought us the personal

satisfaction of having offered the AI community a useful tool,

but so far we have not obtained any economic return from

it, and in the academic world, governed by the “publish or

perish” principle, it is a risk to devote much time to tasks that

yield poor results in terms of journal papers. Sometimes we

ask ourselves if we made a mistake by following these lines of

research instead of working on other areas, such as machine

learning, in which the productivity is much higher.

Nonetheless, our research has also brought us other rewards.

We have been pioneers in the application of AI to cost-

effectiveness analysis, which is more and more relevant for

medical decision making. Our economic study of cochlear

implantation has contributed to convincing the Spanish health

authorities that profoundly deaf people should receive two

cochlear implants instead of one, especially in the case of

children. Our experience in building probabilistic models from

human knowledge and our software tool, OpenMarkov, had

been essential in the construction of an expert system that

is routinely used for programming cochlear implants; given

that there are hundreds of thousands of cochlear implant

users in the world, we are happy to know that our work

will contribute to improving the quality of life of so many

people. This tool is superior in several aspects to the com-

mercial products developed for this task—and also inferior

in others, clearly—and even though it is open-source, there

are several possibilities of obtaining monetary returns from

it: distributing it under dual-licensing, offering consultancy

(mainly to pharmaceutical companies and manufacturers of

medical devices), doing under-contract developments, etc. We

are currently exploring these possibilities in order to obtain

financial resources for our research activity.
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