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Abstract

In the context of supervised classification, several aspects already exist which need to be improved regarding the decision
making step that any classifier passes through. Before providing the final assignment, many classification algorithms produce a
soft score (either a probability, a fuzzy degree, a possibility, a cost, etc.) assessing the strength of the association between each
item to be classified and each class. Usually, the final decision or classification step of these algorithms consists on assigning the
item to the class with the highest soft score, a method typically known as the maximum rule. However, this procedure does not
always take advantage of all the information contained in such soft scores. In other words, the final classification step of many
algorithms may be improved through alternative procedures more sensible to the available soft information that the mentioned
maximum rule.

To this aim, in this paper we propose a general bipolar approach that enables learning how to take advantage of the soft
information provided by many classification algorithms in order to enhance the generalization power and accuracy of the classifiers.
To show the suitability of the proposed approach, we also present some computational experiences for three-class classification
problems, in which its application to some well-known classifiers as random forest and neural networks produce some improvements
in performance.

Index Terms—Supervised classification models, bipolar models,
Machine learning, Soft information

I. INTRODUCTION

One of the most important topics in data science is clas-

sification, and particularly supervised classification tasks. In

the literature, there exist a huge diversity of supervised clas-

sification algorithms, approaches and applications, depending

on the specific tasks, type of data, characteristics or efficiency

[7], [8]. Typically, in a supervised classification context the

main aim is to be able to classify a set of items into classes

based on a training sample or dataset that provides examples

of association between items and classes, and that is used

to train the classifiers in order to adequately generalize the

observed associations, that is, to fit the classification models

to the observed data.

Following the ideas presented in [12]–[15], in [17] classical

supervised algorithms as CART [2], Random Forest (RF) [3]

and Neural Networks [11], [16] were modelled as proba-

bilistic classifiers, providing soft probabilistic assessments of

the association of items with classes. In a second step, a

bipolar probabilistic representation framework was developed

by allowing some opposition or dissimilarity relationships

between the classes to be introduced. In a third step, the

more convenient structure of dissimilarity relationships was

learned through an evolutionary algorithm. This more ex-

pressive representational model and the associated learning

process permitted to improve the classification performance

of the original classifiers in a binary classification context. In

this paper we extend these results by addressing three-class

classification problems instead of binary ones.

Moreover, in [18] we proposed a replication + aggregation

scheme to obtain a fuzzy classifier from a probabilistic one

as a robustness enhancing pre-process that permits developing

a fuzzy bipolar model from any soft classification algorithm.

The experimental results were also carried out in a binary

classification context.

The remainder of the paper is organized as follows: Section

II describes the preliminary concepts we will use along the

work, including the differences between crisp and probabilis-

tic classifiers, as well as some specific concepts regarding

accuracy measures and Genetic Algorithms (GAs). Then, in

Section III, we present the main idea of bipolar knowledge

representation and the complete two-stage (learning and ag-

gregating) process for constructing a bipolar classifier from

a soft supervised one. Finally, the experimental framework

along with the respective analysis of the results are presented

in Sections IV and V. We summarize the paper with the main

concluding remarks in Section VI.

II. PRELIMINARIES

In this preliminary section, we introduce some concepts

for a better understanding of the paper. We firstly introduce

the main concepts of crisp and probabilistic classifiers as

well as their differences and relationships to motivate one

of the principal contribution of this paper: the importance of

modelling the soft information of a classifier before making

the final decision in a classification task.

A. Crisp and probabilistic classifiers

Let us denote by {C1, . . . , Ck} the set classes of a classifica-

tion problem, and by X = {x1, . . . , xn} the set of items that
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has to be classified.

As we have pointed in the introduction, many classification

users only takes into account the final output of the classifica-

tion task. This is probably because they are only interested in

the final solution provided by the classifier. This is the reason

why in a general way, the classifiers are usually viewed as

functions

C : X −→ {C1, . . . , Ck}, (1)

that is, a procedure to assign one of the available classes to

each of the items being classified.

Nevertheless, the classification process goes through many

steps before to arrive to the final assignment, and it is in the

intermediate steps that soft information usually appear as a

natural way to model the information and the evidence being

obtained. Particularly, it is very common that classification

algorithms manage soft information for each item x ∈ X

about the probability that x belongs to each of the different

classes, or in fuzzy classification models about the degree of

membership of the item x in the set of classes.

Taking into account these considerations, in [17] we distin-

guished between crisp (classical) and probabilistic classifiers.

A probabilistic classifier can be viewed as a function

CP : X −→ [0, 1]k, (2)

that assigns to each item x its probability of belonging to

each of the available classes. Obviously, for any x ∈ X it

has to hold that

k
∑

i=1

(CP (x))i = 1 because of the additivity of

probability. We would like to remark that many classification

algorithms (as for example neural networks, random forest or

decision trees) could be viewed as probabilistic classifiers if

we just look at the soft information provided by the algorithms

before making the final decision or crisp assignment.

III. PROBABILISTIC BIPOLAR MODEL

This section is devoted to present the underlying ideas

of bipolar knowledge representation. Firstly, it merits to be

stressed that the concept of dissimilarity assumes that the

available classes are related through a certain opposition or

dissimilarity structure informing of which classes provide

negative evidence against the others. This dissimilar structure

can be modelled through a dissimilarity matrix D, which

contains the degree of dissimilarity for any pair of classes.

Obviously, the main diagonal has to be composed by zero

values.

It is clear that the dissimilarity matrix D plays a crucial

role in this classification scheme since it determines how the

negative evidence is derived from the initial evidence for each

class. As a consequence, the performance of the resulting crisp

classifier, as well as the effect of incorporating the bipolar

representation framework and the aggregation method, are

absolutely dependent on the choice of the matrix D.

Figure 3 shows a flow diagram of the proposed decision

making stage, including the genetic search of the dissimilarity

structure and its application to the test set.

Decision Making Stage

Take a Dissimilarity Matrix D

Apply the bipolar knowledge representation
and obtain the pairs: (p+i (x), p

−

i (x))

Aggregate the positive and
negative evidences into
an adjusted membership

degree: p
bip
i (x). Apply

the maximum rule on
this adjusted degrees.

Accuracy evaluation.
Kappa Metric

Choose the best
dissimilarity matrix D∗

Test Set evaluation
and final comparisions.

GA
Iterations

Fig. 1. Flow diagram of the proposed Decision Making Stage.

A. Learning the dissimilarity matrix

Ideally, in real situations the adequate structure of dis-

similarity between classes should be proposed by application

domain experts based on his knowledge. However, in many

cases it may be more practical to obtain the matrix D through

a learning process carried out once the base soft classifier has

been trained. When this learning process is driven by a mea-

sure of performance focused on the generalization accuracy of

the adjusted crisp classifier, the resulting matrix tends to fix

some of the misassignments committed by the base classifier

on the training sample, hopefully also improving its predictive

accuracy on new queries or a test sample. Therefore, this

learning approach allows that any probabilistic classifier may

benefit from introducing a dissimilarity structure in the set

of classes, aiding the decision rule of the classifiers to better

adapt to the specific features of each dataset or application

context.

Here we propose that the learning process of the dissimi-

larity matrix D is performed by means of a genetic algorithm

(GA). The specific parameters of the applied GA are given in

Section IV-C.

B. Obtaining the paired structure (p+, p−)

In this section we show the application of the dissimilarity

matrix already learned by the GA to obtain the paired structure

containing the positive and negative evidences.
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To do so, we depart from the soft information (estimated

probabilities) given by the base algorithm for an item x,

pi(x) = p+i (x), treating it as our positive probability of

class Ci membership. Then, we apply the bipolar knowledge

representation approach to get the negative evidence in the

following way:

p−i (x) =
∑

j 6=i

dij p+j (x) =

k
∑

j=1

dij p+j (x) = Dip
+(x), (3)

Once the bipolar paired structure has been obtained, one of

the possibilities we have is to aggregate this positive and

negative evidences into a bipolar adjusted degree of evidence

by applying any kind of aggregation operator.

Let us stress this is only one among the wide spectrum of

possibilities for dealing with paired structures.

C. Aggregating bipolar evidence: the additive and logistic

cases

Let us now address the question of how to aggregate, for a

given class Ci and an item x, the pair of positive and negative

evidence degrees p+i (x) and p−i (x) in order to obtain a sin-

gle adjusted degree p
adj
i (x). Obviously, different aggregation

choices will lead to different adjusted classifiers. In this work

we have studied two different kinds of aggregation, that are

defined below.

Let p+i (x), p
−
i (x) be the positive and negative probabilities

of item x into class Ci. The additive adjusted degree of x into

class Ci is defined as

paddi (x) = max{0, p+i (x)− p−i (x)}. (4)

Notice that the previous definition can be interpreted as

the Lukasiewicz t-norm W (a, b) = max{a + b − 1, 0} of

the positive and non-negative degrees, that is, paddi (x) =
W (p+i (x), n(p

−
i (x))), where n stands for the standard nega-

tion n(a) = 1 − a. In this way, the positive evidence

p+i (x) initially provided by the soft classifier is adjusted by

subtracting from it the negative evidence p−i (x). Particularly,

the initial degrees are not modified when no class is dissimilar

to Ci, that is, when Di = 0.

Thus, an adjusted degree paddi (x) > 0 represents the

existence of a positive gap between the support for class

Ci and the support for class dCi, that is, for the classes

considered dissimilar to Ci. In this situation, the strength of

the association of item x with class Ci may have been reduced

from its initial assessment, but it is still perfectly possible that

item x is finally assigned to Ci. On the other hand, a zero

value of paddi (x) represents a situation in which there exist

more evidence for the dissimilar class dCi than for Ci, and

thus the adjusted classifier should not assign the item to class

Ci.

In the following definition, we propose an alternative way

to aggregate the positive and negative information into a single

adjusted degree.

Let p+i (x), p
−
i (x) be the positive and negative evidence de-

grees of item x into class Ci. The logistic adjusted membership

degree of x into class Ci is defined as

p
log
i (x) =







1− e
−

p
+
i

(x)

p
−

i
(x) if p−i (x) > 0

1 otherwise
(5)

Unlike the additive logic of the previous aggregation, this

logistic aggregation focuses on the ratio between positive and

negative information, adjusting it to range in the [0,1] interval

through a logistic transformation. This permits a somehow

more flexible behaviour of the adjusted degrees, in the sense

that the choice of the dissimilarity matrix D may have an

even greater influence in the adjustment of the initial positive

evidence provided by the base soft classifier, up to the point

that class p
log
i (x) = 1 whenever no evidence is gathered for

the dissimilar class dCi, that is, when p−i (x) = 0.

As mentioned above, once one of these two aggregation

methods has been applied and the adjusted degrees p
adj
i (x)

has been obtained for each class (either p
adj
i (x) = paddi (x)

or p
adj
i (x) = p

log
i (x)), the final decision on the classification

of item x is made by applying the maximum rule to such

adjusted degrees. Therefore, the item x is finally assigned to

the class Ch with a maximum adjusted degree p
adj
h (x), that

is, h = argmaxi∈{1,...,k} p
adj
i (x).

IV. EXPERIMENTAL FRAMEWORK

This section is devoted to present a computational experi-

ence aimed to assess the performance of our dissimilarity -

based bipolar knowledge representation approaches (additive

and logistic) when applied on recognized classifiers such as

Random Forest [3] and Neural Networks [11], [16].

A. Experimental setting details

As just mentioned, the base classifiers used in this experi-

ment are Random Forest (RF) and Neural Networks (NNet).

This experience is designed to compare the benchmark perfor-

mance of these classifiers with those obtained from the later

ones by means of the proposed dissimilarity learning process

and the additive and logistic adjustments.

The results for each classifier in each experiment will be

obtained following a 5-fold cross validation scheme for each

dataset. In each folder, that is, for each training set, the

optimal base classifier parametric configuration is approxi-

mated using a grid P on the space of parameters of the

algorithms considered. In order to evaluate the performance

of each specific parametric configuration p ∈ P , 25 bootstrap

samples of the training set are generated, in such a way

that the base classifiers are fit to each of these bootstrap

samples and then tested on a hold-out sample (composed by

the non selected instances in the bootstrapping process) using

the kappa statistic.

At each folder, the genetic dissimilarity learning process is

carried out departing from the vectors of estimated probabil-

ities p(x) of the items x in the training sample in the way

shown in III.

The train and test performance measures of each of the 3

classifiers in each dataset considered in each experiment are
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Id. Data-set #Ex. #Atts. (R/I/N)

Aut Autos 159 25 (15/0/10)
Car Car 159 25 (15/0/10)

Wnq Winequality-red 1599 11 (11/0/0)
Pen Penbased 10992 16 (0/16/0)
Pag Page-blocks 5472 10 (4/6/0)
Der Dermathology 366 34 (0/34/0)
Eco ecoli 336 7 (7/0/0)
Fla flare 1066 25 (15/0/10)
Gla Glass 214 9 (9/0/0)
Shu Shuttle 2175 9 (0/9/10)
Yea Yeast 1484 8 (8/0/0)
Lin Lymphography 148 18 (3/0/15)
Bal Balance 625 4 (4/0/0)

Win Wine 178 13 (13/0/0)
Nty Newthyroid 215 5 (4/1/0)
Hay Hayes-Roth 160 4 (0/4/0)
Con Contraceptive 1473 9 (6/0/3)
Thy Thyroid 720 21 (6/0/15)

TABLE I
SUMMARY DESCRIPTION FOR THE EMPLOYED DATASETS.

finally computed by respectively averaging the train and test

accuracy rates of the F = 5 different folders.

B. Data sets

We have selected a benchmark of 18 datasets from the

KEEL dataset repository [1]. Particularly, we have used the

5-folder cross-validation datasets provided by KEEL in the

different experiments. Table I summarizes the properties of

the selected datasets, showing for each dataset the number

of examples (#Ex.), the number of attributes (#Atts.) and

type (Real/Integer/Natural) To transform multi-class datasets

into trhee-class ones, we have taken as class C0 and C1 the

originals closest to 20% of instances and as class C2 the union

of the remainder classes.

C. Genetic algorithm details

Finally, regarding the GA used at the evolutionary tuning

of the dissimilarity structures, we have used the default GA

for real-coded chromosomes implemented in the genalg R

package. It is a standard GA, with usual crossover and

mutation operators, the details of which can be consulted at

[20]. The GA has been run with the following configuration,

that provided satisfying solutions in a feasible amount of time:

• Population Size: 50 individuals.

• Number of iterations: 20

• Mutation Chance: 0.01.

• Elitism: About 20% of the population size.

Let us note at this point that we have tried a more complex

configuration for the GA used in number of iterations, specif-

ically we have used a 40 iterations and 100 individuals with

no improvements.

D. Statistical test for performance comparison

In this paper, we use some hypothesis validation techniques

in order to give statistical support to the analysis of the results.

Specifically, we employ the Wilcoxon rank test [19] as a

non-parametric statistical procedure for making pairwise com-

parisons between two algorithms. For multiple comparisons,

we use the Friedman aligned ranks test, which is recommended

in the literature [4], [5] to detect statistical differences among

a group of results. Finally, the Holm post-hoc test [6] has

been used to find the algorithms that reject the equality hy-

pothesis with respect to a selected control method. A complete

description of these tests, with many considerations and rec-

ommendations and even the software used to run this analysis

can be found on the website http://sci2s.ugr.es/sicidm/.

V. EXPERIMENTAL RESULTS

This section is aimed to present the results of the compu-

tational experience described above, and carried out in order

to study the capacity of enhancement of our bipolar adjusted

classifiers with respect to the reference base classifier to which

the proposed final decision tuning method is applied.

Results are grouped, for each base algorithm, in pairs

for training and test, where the best global result for each

considered dataset is stressed in bold-face. None is stressed

in case of ties.

The experimental study has been obtained using R Software.

Specifically, we used the caret package [21] for the classifiers

training, fitting them through the underlying classical packages

random forest and nnet, and finally the genalg package [20]

to assess the GA.

For performing all the analysis presented in this paper we

have used a computer AMD A10-6700 3.94GHz, 8GB RAM,

Windows 8.1.

We can observe from the results of tables II and III the

general good behaviour of the bipolar tuning method, at

least regarding one of the bipolar adjustment methods, since

it allows the improvement in performance of the reference

algorithms.

RF
Ref bipAdd bipLog

Train Test Train Test Train Test

Aut 1.000 0.716 1.000 0.719 1.000 0.706

Car 0.996 0.867 1.000 0.854 1.000 0.857

Wnq 1.000 0.515 1.000 0.489 1.000 0.525

Pen 1.000 0.903 1.000 0.895 1.000 0.892

Pag 1.000 0.831 1.000 0.832 1.000 0.832

Der 1.000 0.995 1.000 0.993 1.000 0.992

Eco 1.000 0.758 1.000 0.775 1.000 0.764

Fla 0.796 0.783 0.805 0.787 0.807 0.784

Gla 1.000 0.672 1.000 0.658 1.000 0.677

Shu 1.000 0.996 1.000 0.996 1.000 0.995

Yea 1.000 0.377 1.000 0.366 1.000 0.378

Lin 0.981 0.672 0.996 0.675 0.996 0.710

Bal 0.612 0.556 0.615 0.523 0.617 0.513

Win 1.000 0.979 1.000 0.954 1.000 0.973

Nty 1.000 0.935 1.000 0.912 1.000 0.895

Hay 0.885 0.703 0.886 0.715 0.886 0.715

Con 0.788 0.280 0.807 0.286 0.807 0.279

Thy 1.000 0.895 1.000 0.897 1.000 0.891

Mean 0.948 0.746 0.950 0.740 0.951 0.743

TABLE II
RESULTS IN TRAIN AND TEST ACHIEVED BY THE GENETIC BIPOLAR

APPROACHES APPLIED TO THE RF ALGORITHM.

Regarding the bipolar method applied to the RF classifier, in

Table II we show the results and the following brief description

of its behaviour.
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• There is no improvement by kappa means when compar-

ing the additive bipolar model against reference.

• The additive bipolar classifier outperforms the classifica-

tion of the remainder approaches in 8 out of 18 datasets

and the logistic one does so in 6 of them.

• Reference wins in 6 out of 18 datasets.

• There is a tie between the additive bipolar approach and

the reference in the Shuttle dataset.

Thus we can see that we have reached improvements or

ties in 12 out of 18 datasets when comparing. It is important

to note the variable behaviour of the additive bipolar method

in this case. Despite being the winner method in number of

datasets, we can see that its mean is not the best because of

the lower kappa value obtained in several of the remainder

datasets.

Nnet
Ref bipAdd bipLog

Train Test Train Test Train Test

Aut 0.504 0.382 0.533 0.385 0.532 0.385

Car 1.000 0.997 1.000 0.997 1.000 0.997

Wnq 0.359 0.341 0.399 0.356 0.399 0.356

Pen 0.954 0.855 0.964 0.866 0.966 0.856

Pag 0.853 0.753 0.874 0.755 0.887 0.774

Der 1.000 0.987 1.000 0.991 1.000 0.991

Eco 0.753 0.697 0.779 0.680 0.777 0.688

Fla 0.785 0.788 0.794 0.782 0.795 0.777

Gla 0.660 0.507 0.688 0.517 0.687 0.513

Shu 0.991 0.976 0.993 0.977 0.994 0.977

Yea 0.440 0.360 0.473 0.379 0.473 0.381

Lin 0.896 0.667 0.922 0.671 0.925 0.678

BAl 0.600 0.586 0.603 0.562 0.603 0.563

Win 0.945 0.911 0.959 0.915 0.960 0.901

Nty 0.986 0.957 0.995 0.957 0.997 0.957

Hay 0.811 0.615 0.850 0.600 0.845 0.588

Con 0.356 0.334 0.383 0.336 0.383 0.338

Thy 0.859 0.738 0.904 0.770 0.925 0.803

Mean 0.764 0.692 0.784 0.694 0.786 0.696

TABLE III
RESULTS IN TRAIN AND TEST ACHIEVED BY THE GENETIC BIPOLAR

APPROACHES APPLIED TO THE NNET ALGORITHM.

Considering the NNet classifier, the bipolar method reaches

the results shown in Table III that could be interpreted as

follows:

• There is an improvement by kappa means of 0.004 when

comparing the logistic bipolar model against reference,

being of 0.002 in case of the additive one.

• Both additive and logistic bipolar classifiers outperform

the classification of the remainder approaches in 7 and

10 out of 18 datasets respectively.

• Reference wins in 3 out of 18 datasets.

• There two ties in these results.

On balance we have reached improvements or ties in 14 out

of 18 datasets when comparing the bipolar approaches against

the reference.

In order to detect significant differences among the results of

the different approaches, we carry out the Friedman aligned

rank test. This test obtains a low p-value for all the three

algorithms, which implies that there are significant differences

between the results provided by each method.

For this reason, we can apply a post-hoc test to compare our

methodology against the remaining approaches. Specifically,

a Holm test is applied using the best approach (the one with

lower ranking) as control method and computing the adjusted

p-value (APV) for the one with the highest ranking.

Obviously, it would be desirable for the reference to reach

the highest or, at least, not the lowest ranking since it is usually

associated with worse results.

Algorithm Rank RF Rank NNet

”Ref” 22.22 31.5
”BipAdd” 31.83 26.44
”BipLog” 28.44 24.55

p-val 0.00097 0.000913

APV 0.1336 0.371
TABLE IV

AVERAGE RANKINGS OF THE ALGORITHMS (ALIGNED FRIEDMAN),
ASSOCIATED P-VALUES AND HOLM TEST APV FOR EACH ALGORITHM

WITH THE MAX AGGREGATION.

Table IV, reflects that there are statistical significant dif-

ferences between the three classifiers for both RF and NNet

algorithms. However, in case of RF this differences and the

respective statistical analysis should be carefully interpreted

because of the lower ranking value obtained by the reference

algorithm. In fact, the reference (RF without applying any

bipolar approach) seems to reach the best results regarding

the Friedman aligned rank test in spite of not being the best

in number of datasets outperformed. Therefore there is no

statistical evidence of the superiority of any method compared

in case of RF.

Regarding the base Nnet classifier, Table IV shows the

superiority of both bipolar approaches in ranking values, how-

ever the Holm post-hoc test reflects that there is not enough

evidence to ensure that both bipolar approaches outperform

the reference.

Comparison R+ R− p-val

RFbipAdd vs. RFRef 115.0 56.0 0.1913
RFbipLog vs. RFRef 100.0 71.0 0.5135
NNetbipAdd vs. NNetRef 100.0 53.0 0.2559
NNetbipLog vs. NNetRef 95.0 58.0 0.3684

TABLE V
WILCOXON TEST TO COMPARE THE BIPOLAR TUNING APPROACHES (R+)

AGAINST THE BASE CLASSIFIER (R−).

The statistical analysis of the pairwise comparisons of meth-

ods, which is carried out by means of a Wilcoxon test, Table

V, reflects the weak superiority of the proposed methodology

when it is applied to the RF and Nnet algorithms with not

so high p-values in case of additive bipolar model. Again, the

application of the methodology on the RF and NNet algorithm

does not reach significant improvements.

VI. DISCUSSION AND FINAL REMARKS

In this paper we have studied the extension of probabilistic

supervised classifiers into a bipolar knowledge representation

framework by means of the introduction of a dissimilarity
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structure in the set of classes. These structures enable consider-

ing different opposition or dissimilarity relationships between

the available classes, that otherwise are by default consid-

ered as independent, unrelated objects. These relationships

provide further information of the underlying structure of

the classification problems being addressed, which can be

used at the final decision or classification stage to better

exploit the soft scores provided by any classifier to assess the

association between each item and each class. Therefore, the

introduction of dissimilarity structures may allow to strengthen

the adaptation of the classifiers to each specific application

context, in which classes acquire a particular semantics, thus

also improving the classifier performance.

In this sense, the proposed approach can be understood as

a general post processing method to fine tune the maximum

decision rule usually applied to make the decision on the class

assignment of each item to be classified.

To study the feasibility of the proposed approach, and

particularly to remark that it can be applied to any soft

classifier despite how it is obtained, we have applied it to two

of the most powerful supervised classifiers, random forests and

artificial neural networks. A rigorous and extensive computa-

tional experience has been conducted to analyse whether the

proposed additive and logistic bipolar approaches enabled an

statistically significant improvement of the base probabilistic

classifiers.

Along this experimental study, we have reached several

lessons learned:

• The bipolar framework improved the results of the two

base machine learning algorithms considered in this work

in number of datasets outperformed.

• Both the additive and logistic adjustment methods did

not significantly outperform the results of the base clas-

sifier. However, they reached not so high p-values in the

Wilcoxon test, specially the additive one.

• Comparing both the additive and the logistic proposed

classifiers, we found there is no clear winner. In fact,

this question seems to be somehow dependent on the

base algorithm considered as well as on the dataset of

application.

These results lead us to conclude that the proposed approach

provides a suitable solution to confront three-class classifica-

tion problems and improve the decision rule that manages how

the intermediate soft information gathered by many classifiers

is exploited.

However, we must improve the results in statistical terms

so that we could ensure the superiority of our proposed

methodology when applied in three-class classification prob-

lems by enlarging the benchmark of datasets, and considering

several different parametric configuration for training the base

classifier as well as the evolutionary search of the dissimilarity

structure among the set of classes.

Regarding future research on this approach, a main line of

work will be devoted to study further mechanisms than the

additive and logistic aggregations for exploiting the bipolar

pairs of positive and negative evidence. A particularly ap-

pealing possibility is to use these bipolar pairs as the base

information of a multivalued para-consistent logic, as those

proposed in [9], [10], [12]. This would allow an even more

expressive representational framework to take advantage of

all the information contained in the soft scores provided by

classifiers.
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[17] Villarino, G., Gómez, D., Rodrı́guez, J. T. (2017). Improving Supervised
Classification Algorithms by a Bipolar Knowledge Representation. In
Advances in Fuzzy Logic and Technology 2017 (pp. 518-529).
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