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Abstract—Fitness landscape analysis is used to determine the
distribution and shape of the fitness function for the space of
solutions of optimization problems. It is a hard task which can
help in the design of efficient metaheuristics to approach the
solution of the problem in hand. This paper studies the landscape
of a problem of finding satisfactory metaheuristics. A molecule-
docking problem and a problem of determination of kinetic
constants in a chemical reaction are used as case studies. We
are not working at the level of the case study problems, but at
a higher abstraction level, which makes the landscape analysis
an even harder task. The metaheuristics being analyzed are
developed with a parameterized schema, with each combination
of parameters in the schema being an element of the solutions
space and a metaheuristic to be applied to the base problem. The
fitness for a metaheuristic is measured by applying it to some
training instance of that problem. Some highlights are given on
how fitness landscape analysis can be conducted for this type of
problems. The ideas analyzed with the two case studies can be
extended for the development of hyperheuristics searching for
satisfactory metaheuristics for other optimization problems.

Index Terms—fitness landscape analysis, metaheuristics, hy-
perheuristics, molecule-docking, reaction kinetics

I. INTRODUCTION

Metaheuristics are used to approach the solution of complex

optimization problems, but the selection of a satisfactory

metaheuristic for a particular problem is a difficult task.

Fitness landscape analysis has been applied to the field of

metaheuristics since the 1980s [1]–[3]. It studies the shape of

the fitness in the space of solutions, and gives guidelines for

the design of metaheuristics for the problem in hand.

Here we are interested in the landscape of an optimization

problem built on top of another optimization problem. Two

optimization problems are used at the bottom as case studies:

a molecule-docking problem [4] and determining the kinetic

constants of a chemical reaction [5]. Several metaheuristics

can be applied, and a hyperheuristic (a metaheuristic in itself)

searching in the space of metaheuristics is the optimization

problem at the top of our hierarchy.

A parameterized schema of metaheuristics is used. It was

initially used for the application of several metaheuristics

to some optimization problems [6]. The next step led us
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to the development of hyperheuristics on top of the meta-

heuristic schema [7]. These hyperheuristics has high compu-

tational costs due to the repeated application of numerous

metaheuristic configurations to the problem in hand. The

base problem may in turn be computationally demanding,

and so the combination of the high computational cost of

metaheuristics with that of the hyperheuristics working on top

of metaheuristics advises the exploitation of parallelism at both

levels [8]. But even the efficient exploitation of parallelism is

not enough to reduce the search to an acceptable time, and so

fitness landscape analysis can guide the search for satisfactory

metaheuristics. The conclusions drawn here can be applied to

the problem of searching for satisfactory metaheuristics for

other optimization problems.

The rest of the paper is organized as follows. Section II

briefly describes the two case studies. The general ideas of

the parameterized metaheuristic schema and the hyperheuristic

developed on top of it are presented in Section III. The fitness

landscape analysis is shown in Section IV. Finally, Section

V summarizes the conclusions and gives some directions for

future work.

II. CASE STUDY PROBLEMS

A. The Molecule-Docking Problem (MDP)

Virtual Screening (VS) methods analyze large libraries of

small molecules (ligands) to search for those structures which

are most likely to bind to a protein receptor or enzyme [9].

VS is computationally demanding and requires the application

of approximate optimization and high performance computing

techniques [10], [11].

Molecular docking is used to predict non-covalent binding

of molecules. Normally, the molecules to be bound are a

macromolecule (receptor) and a small molecule (ligand). There

are several scoring functions that can be used to measure the

strength of the bond [12]. The Lennard-Jones potential is used

here. The sum of the interactions of each atom of an active site

of the protein with each atom of the ligand is computed. So,

the computing cost is quadratic in the sizes of the molecules.

The ligand can bind at several spots on the receptor

molecule. There are six degrees of freedom for the ligand,

three for its translation and three for the rotation. The spot,

translation and rotation which give the lowest value of the
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scoring function are sought. The values of the movements and

rotations of the ligand can be approached with metaheuristics,

and a search is conducted in the neighborhood of each spot.

So, independent metaheuristics are applied at each spot and

the reference set for the search is composed of a subset for

each spot.

B. Kinetic Constants of a Chemical Reaction (KCP)

When chemical reactions occur in heterogeneous phase the

variables that affect the reaction rate are temperature, pressure,

composition and mass transfer rate. The kinetics of the disso-

lution of calcium carbonate is used for the experiments. It is a

function of the concentration of the various carbonate species

in the solution and, therefore, a function of the partial pressure

of carbon dioxide and pH. Depending on the value of the pH,

there are different ways in which the dissolution occurs: by

reaction with acetic acid, by reaction with carbonic acid, and

by the hydrolysis reaction [13]. Therefore, the variation of

moles of calcium over time is

1

V

dNCa2+

dt
= −k1a

n1
[

H3O
+
]n2

− k2a
n3 [H2CO3]

n4 − k3

(1)

where ki are the combined reaction rate constants, ni are the

reaction orders, and a is the area of the tablet, which is known

for each increase of time. The integration of the equation for

a certain value of time, tj , gives the increase of calcium in

the solution as a function of the concentrations of protons and

carbonic acid. An individual is represented by a real vector of

size seven. Every time the fitness of an individual is computed,

the whole chemical system is solved with an iterative process,

and the fitness is obtained by comparing the values obtained

with the simulation with those obtained experimentally.

III. PARAMETERIZED METAHEURISTICS AND

HYPERHEURISTICS

The application of a parameterized schema of metaheuristics

(Algorithm 1) to the two case studies is considered. Schemas

of this type have been applied to other problems, and the fit-

ness landscape analysis techniques here used can be extended

to other hard optimization problems.

Algorithm 1 Parameterized metaheuristic schema

Initialize(S,ParamIni) //Generate initial set and improve elements
while (not EndCondition(S,ParamEnd)) do

SS=Select(S,ParamSel) //Select elements for combination
SS1=Combine(SS,ParamCom) //Combine pairs of elements
SS2=Improve(S,SS1,ParamImp) //Improve and diversify
S=Include(S,SS1,SS2,ParamInc) //Update the reference set

end while

The schema comprises some basic functions which work

on sets (S, SS, SS1 and SS2) of configurations. Some

metaheuristic parameters (ParamX) are included in each

basic function, which can be implemented in different ways,

and the number of parameters and their meanings also change.

Landscape analysis is conducted to study the influence of the

parameters on the fitness. The sets, the basic functions and

the meaning of the metaheuristic parameters in the schema

are commented on.

Initialize: Sets of candidate solutions are randomly

generated. For the MDP, a subset is generated at each spot, but

in the experiments only one spot is considered for low execu-

tion times. The number of elements is given by the parameter

Initial Number of Elements (INEIni), which determines if

the metaheuristic is closer to a local search (INEIni = 1) or

to a population based method.

Some of the generated elements are improved, and the

intensity of the improvement can be varied to determine the

importance of the local search in the metaheuristic. A percent-

age (PEIIni) of the elements is improved by comparing its

fitness with that of a neighbor configuration, which substitutes

the original element if the fitness is improved. The intensity of

the improvement is determined by parameter IIEIni, which

represents the maximum number of neighborhood analysis

steps.

Another intensification parameter is considered for MDP.

A ligand has a number of flexibility junctions determined by

its crystallographic structure. In the intensification, NEIF lex

represents the number of configurations obtained by rotation of

the junctions to be evaluated for each candidate element. This

parameter depends on the characteristics of the ligand, and so

the same value is considered for improvements in the functions

of the schema (after initialization and in the improvements

inside the loop).

A number of the best elements is selected for the following

iteration. The implementations for the two problems differ

slightly at this point. In the KCP only one parameter is used,

for the Number of Best Elements to include (NBEIni). But

in the MDP a Number of Best Elements (NBEIni) and of

Worst Elements (NWEIni) is established, in order to not

concentrate the search on only the most promising areas. The

selection can be made in different ways (random, roulette,

etc). Our implementation selects the NBEIni best elements,

and NWEIni elements are randomly selected from the half

elements with the worst scores.

EndCondition: Typically, the end condition of a meta-

heuristic is a maximum number of iterations (MNIEnd) or

a maximum number of iterations without improving the best

solution (MIREnd). Because we are interested in the study of

the influence of the parameters on the fitness, the experiments

are carried out for fixed times.

Select: A number of the best (NBESel) and the worst

(NWESel) elements of the reference set are selected. The

selection is made in the same way as the elements to be

included in the reference set are selected for the MDP after

the improvement in the initialization.

Combine: A number of combinations is carried out be-

tween best (NBBCom), worst (NWWCom) and best-worst

(NBWCom) pairs of elements. The inclusion of worst ele-

ments diversifies the search. In the MDP the combination of

a pair of elements gives a new element obtained as the mean

of the translation and rotation parameters of the two elements.

In the KCP, the classical crossing by a middle point is used.
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Improve: Some of the elements obtained by combination

are improved in the same way as in the improvement in

the initialization. The percentage of elements to be improved

is PEIImp, and the intensification of the improvement is

determined by IIEImp.

A diversification strategy is applied to avoid falling into

local minima. The percentage of elements from the reference

subsets to be diversified is PEDImp, and the elements

obtained by diversification are improved with an intensification

IIDImp. An element is diversified by randomly generating

a new value for one of its parameters, which is selected ran-

domly. The elements generated by diversification are improved

to avoid early death.

Include: The NBEInc best elements from all those

in the reference set and those generated by combination,

diversification and improvement are included in the reference

set for the next iteration. The reference set is completed with

FNEIni − NBEInc elements randomly selected from the

remaining ones.

There are eighteen metaheuristic parameters in the imple-

mentation for the MDP and sixteen for the KCP, and their

influence on the fitness was analyzed varying the execution

time and without considering the end condition parameters.

Hyperheuristics are methods for the selection of satisfactory

metaheuristics [14]. The schema in Algorithm 1 can be used

for the development of hyperheuristics. The optimization prob-

lem now consists in selecting the values of the metaheuristic

parameters which give the best fitness for some training prob-

lems. The hyperheuristic is therefore another metaheuristic that

can in turn be developed as a parameterized metaheuristic with

the parameterized schema. The general ideas of this type of

hyperheuristics when applied for the two case studies are:

• The possible solutions for the hyperheuristic are vectors

of metaheuristic parameters (metaheuristics). The sizes

of the vectors depend on the implementation of the

parameterized schema: 18 or 16 parameters for the MDP

and the KCP, with only 16 or 14 if the end condition is

a fixed execution time. The hyperheuristic searches in a

predetermined search range for each parameter. For the

experiments with the MDP, INEIni varies between 20

and 200, and a range between 0 and 100 is established for

the rest of the parameters; and with the KCP, INEIni

and FNEIni are between 20 and 200, the intensifica-

tion parameters between 0 and 50 and the rest of the

parameters between 0 and 100.

• The fitness for each metaheuristic is obtained through its

application to some training problems. Only one training

problem can give problem-dependent results, and a large

number of training problems means large execution times.

Fitness landscape analysis can help in determining how

a particular problem is representative of the behavior of

other problems.

• The execution time of a hyperheuristic of this type is very

high due to the repeated application of metaheuristics to

the training instances. So, the analysis of the fitness land-

scape could help to guide the search of the hyperheuristic

for low search times.

• In general, to reduce the high execution times, the meta-

heuristic parameters for the hyperheuristic will be smaller

than those of the metaheuristics it searches for. The sets

in the search are smaller, as are the number of elements to

be improved and the intensification of the improvement.

• The improvements in the initialization and inside each

iteration are carried out by analyzing elements in the

neighborhood, with the neighbors of an element being

those which are obtained from it by changing one ele-

ment of the metaheuristic parameter vector (increasing

or decreasing by one).

• The combination of a pair of metaheuristics is carried out

with the typical method of selecting a crossing point and

combining the initial part from one ascendant with the

second part from the other. If an invalid configuration of

the metaheuristic parameters is generated, it is discarded.

• The diversification consists of the substitution of the

value of a randomly selected metaheuristic parameter by

another value randomly selected from the search range

for this parameter.

There is an optimization problem at the bottom (MDP or

KCP), and the fitness landscape analysis of metaheuristics for

this problem studies the shape of the fitness function for some

instances of the problem. At a higher abstraction level, the

hyperheuristic is now the metaheuristic to be guided with the

results of the fitness landscape analysis.

IV. FITNESS LANDSCAPE ANALYSIS

The fitness landscape analysis of the problem of finding sat-

isfactory metaheuristics for an optimization problem is a hard

task. The fitness of each metaheuristic is measured through

its application to various training instances of the problem.

The optimization problem can have high computational costs,

which, together with the number of training problems, means

high execution times. Furthermore, the results obtained with

one or several training problems should be representative for

other problems. For simplification, for the two case studies

experiments were carried out for three instances of the problem

and for 100 randomly generated metaheuristics, with the

values of the metaheuristic parameters in the ranges previously

indicated.

The characteristics of the pairs for the MDP are given

in Table I; they correspond to the Angiotensin-converting

enzyme (ACE), the Glycogen phosphorylase beta (GPB) and

the Poly(ADP-ribose) polymerase (PARP), and the table shows

the number of atoms of the receptor and the ligand and the

number of junctions of the ligand. The best fitness when

applying each metaheuristic to the corresponding receptor-

ligand pair was stored at intervals of 30 seconds, starting at

30 seconds and finishing at 600 seconds. Three experiments

for which laboratory data are available are used for the KCP.

In this case, each metaheuristic is run for 100 seconds, and

the fitnesses obtained at intervals of 5 seconds are stored. The

results of the experiments are analyzed to study three aspects:
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TABLE I
CHARACTERISTICS OF THE RECEPTOR-LIGAND PAIRS USED IN THE

EXPERIMENTS.

pair #atoms receptor #atoms ligand #junctions

ACE 9198 59 13
GPB 13261 29 1
PARP 5588 32 3

• The influence of the parameters in the fitness is analyzed,

both individually (which parameters influence the fitness

most and if the influence is positive or negative) and

globally (if the distance between metaheuristics is related

to the difference of their fitnesses). The hyperheuristics

could concentrate the search in the parameters which

prove to be the most influential, and in the ranges where

the best fitnesses are obtained.

• The influence of the execution time on the distribution of

the fitness and on the influence of the parameters in the

fitness. This study can help establish a time limit for the

application of the metaheuristics to the training problem,

so reducing training time.

• Whether the results obtained for one instance are similar

to the others. If they are similar or if some relation

between them can be deduced, the number of training

problems could be low (in the best case only one), so

reducing training time.

The influence of the metaheuristic parameters on the fitness

can be analyzed to determine the parameters with most influ-

ence and the ranges where the search should be concentrated.

The evolution of the correlation coefficient of the metaheuristic

parameters with respect to the fitness is shown in Figures 1

(MDP) and 2 (KCP). A negative value indicates that when

the value of the parameter increases the fitness improves

(decreases). The figures on the left show the coefficient for the

parameters with the greatest positive influence on the fitness,

and those on the right correspond to the other parameters.

The colors identify the basic functions in the schema: blue for

initialization, red for selection, black for combination, brown

for improvement, cyan for inclusion, and green for NEIFlex.

In the MDP, the parameter which most positively influences

the fitness is not always the same. For ACE it is NEIF lex,

which also influences PARP, but with no influence on GPB. It

can be logical if we consider the number of flexible junctions

in each case, which is 13 for ACE, 3 for PARP and 1 for

GPB (Table I). So, it seems the search by flexing the ligand is

more advisable for more flexible junctions. Another influential

parameter is NBEInc, with a correlation coefficient of around

-0.2 in ACE and PARP, and a little higher than -0.1 in

GPB. It is also normal that considering a large number of

promising elements will provide better fitness. The percentage

of elements to diversify (PEDImp) is the best parameter for

GPB and PARP, and the value is slightly higher than -0.2 in

ACE. So, it seems that diversification is better than exploring

the neighborhood of promising metaheuristics. Surprisingly,

the combination of non promising elements (NWWCom)

seems to be the fourth parameter in importance for good

fitness, maybe because combining these elements avoids in-

tensification in their neighborhood.

The relevance of the parameters changes for the KCP. The

most relevant parameter is always clearly IDEImp, which

has an inverse relation with the fitness, so it is advisable

not to work too much on the improvement of elements after

diversification. The other parameters have little influence. The

initialization parameters have in general a positive influence

and, in particular, the improvement parameters in the initial-

ization. The improvement of the elements in the successive

steps (PEIImp and IIEImp) also has a positive influence.

So, the local searches lead to better results for this problem.

In any case, independently of which parameters have most

influence on the fitness, the analysis can serve to guide the

hyperheuristic according to the problem it is being applied

to and the particular implementation of the parameterized

metaheuristic schema for that problem.

There is a need to reduce the training time of hyperheuris-

tics. Figures 1 and 2 show the relation of the metaheuristic

parameters with the fitness at several time-steps. After a

time (around 250 and 50 seconds) the influence is stable.

Furthermore, as can be seen in Figure 3, the correlation

coefficient of the fitnesses obtained at one time step with

respect to those obtained at the final time is higher than 0.9

after 250 seconds for the MDP and after 60 seconds for the

KCP. With the application of the metaheuristics to a training

problem we are not searching for optimum solutions for this

particular problem, but for satisfactory metaheuristics for the

general problem. So, the training time could be reduced to

approximately half the time used in the experiments.

There are other possibilities to reduce the training time. For

example, with the 100 metaheuristics experimented with in

20 time-steps, if the five metaheuristics with the worst fitness

are discarded at each step, the total training time is halved.

The difference in the behavior with the different problems and

instances considered can be seen in Figure 4, where the mean

fitness of the five metaheuristics discarded at each time step

is shown. The similarity in the results for GPB is observed in

its flat shape. For the MDP, the slope of the lines seems to be

related to the number of flexible junctions (Table I) and the

difficulty of approaching the optimum.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a first approach to the analysis of

the fitness landscape for the problem of finding satisfactory

metaheuristics for hard optimization problems. A molecule-

docking problem and a problem of obtaining the values of

kinetic constants are used as case studies, but the same

methodology can be applied to the search for metaheuristics

for other problems. The metaheuristics considered are im-

plemented with a parameterized schema, which is used for

the development of a hyperheuristic which searches in the

space of metaheuristics. The fitness for each metaheuristic

is obtained with its application to some training problems.

The main difficulty in the fitness landscape analysis is the



XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

571

50 100 150 200 250 300 350 400 450 500 550 600

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

co
rr

el
at

io
n

o
f

th
e

p
ar

am
et

er
w

it
h

th
e

fi
tn

es
s

ACE: parameters with the most positive influence

NWEIni NBESel

NWESel NWWCom

IIEImp PEDImp

NEIFlex NBEInc

50 100 150 200 250 300 350 400 450 500 550 600

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

co
rr

el
at

io
n

o
f

th
e

p
ar

am
et

er
w

it
h

th
e

fi
tn

es
s

GPB: parameters with the most positive influence

INEIni IIEIni

NBEIni NWEIni

NBWCom NWWCom

PEDImp NBEInc

50 100 150 200 250 300 350 400 450 500 550 600
−0.4

−0.3

−0.2

−0.1

0

0.1

co
rr

el
at

io
n

o
f

th
e

p
ar

am
et

er
w

it
h

th
e

fi
tn

es
s

PARP: parameters with the most positive influence

INEIni PEIIni

NBEIni NWWCom

PEDImp IIDImp

NEIFlex NBEInc

50 100 150 200 250 300 350 400 450 500 550 600

−0.2

−0.1

0

0.1

0.2

0.3

0.4

co
rr

el
at

io
n

o
f

th
e

p
ar

am
et

er
w

it
h

th
e

fi
tn

es
s

ACE: parameters with the most negative influence

INEIni PEIIni

IIEIni NBEIni

NBBCom NBWCom

PEIImp IIDImp

50 100 150 200 250 300 350 400 450 500 550 600

−0.1

−0.05

0

0.05

0.1

0.15

0.2

co
rr

el
at

io
n

o
f

th
e

p
ar

am
et

er
w

it
h

th
e

fi
tn

es
s

GPB: parameters with the most negative influence

PEIIni NBESel

NWESel NBBCom

PEIImp IIEImp

IIDImp NEIFlex

50 100 150 200 250 300 350 400 450 500 550 600

−0.1

−0.05

0

0.05

0.1

0.15

co
rr

el
at

io
n

o
f

th
e

p
ar

am
et

er
w

it
h

th
e

fi
tn

es
s

PARP: parameters with the most negative influence

IIEIni NMEIni

NBESel NWESel

NBBCom NBWCom

PEIImp IIEImp

Fig. 1. Evolution of the correlation coefficient of the metaheuristic parameters with the fitness, for the MDP, for several execution times for the receptor-ligands
ACE (left), GPB (middle) and PARP (right). Top: the eight parameters with the most direct relation with the fitness after 600 seconds; Bottom: the eight
parameters with the most inverse relation.
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Fig. 2. Evolution of the correlation coefficient of the metaheuristic parameters with the fitness, for the KCP, for several execution times for the experiments
EXP1 (left), EXP2 (middle) and EXP3 (right). Top: the seven parameters with the most direct relation with the fitness after 100 seconds; Bottom: the seven
parameters with the most inverse relation.
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Fig. 3. Evolution of the correlation coefficient of the fitness at different time-
steps with respect to the fitness. Top: MDP after 600 seconds; Bottom: KCP
after 100 seconds.
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Fig. 4. Mean of the final fitness of the metaheuristics discarded at different
times-steps. Top: MDP, plot each 30 seconds; Bottom: KCP, plot each 5
seconds.

randomness of the application of the metaheuristics, which

makes the surface of the fitness function dependent on the

random execution and on the instances used in the training

process. The influence of the parameters and of the training

time on the fitness has been experimentally analyzed.

The results of our analysis are being used to guide the

implementation of hyperheuristics on top of the parameterized

metaheuristic. More experiments with more instances of the

case study problems are needed, and similar studies for other

optimization problems at the bottom of the metaheuristics

hierarchy will be conducted.
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