
I Workshop en Ciencia de Datos en Redes Sociales

981

On the analysis of the influence of the evaluation

metric in community detection using GRASP

Sergio Pérez-Peló

Dept. of Computer Sciences

Universidad Rey Juan Carlos

C/Tulipán, S/N, 28933, Móstoles, Spain
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Jesús Sánchez-Oro

Dept. of Computer Sciences

Universidad Rey Juan Carlos

C/Tulipán, S/N, 28933, Móstoles, Spain
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Abstract—Community detection in social networks is becoming
one of the key tasks in social network analysis, since it helps
analyze groups of users with similar interests, detect radicalisms,
or reduce the size of the data to be analyzed, among other
applications. This paper presents a metaheuristic approach based
on Greedy Randomized Adaptive Search Procedure methodology
for detecting communities in social networks. The community
detection is modeled as an optimization problem where the
objective function to be optimized is the modularity of the
network, a well known metric in community detection. The
results obtained outperforms traditional methods of community
detection as Edge Betweenness, Fast Greedy and Infomap over
a set of real-life instances derived from Twitter.

I. INTRODUCTION

The evolution of social networks in the last decades has

aroused the interest of scientist from different and diverse

areas, from psychology to computer sciences. Millions of

people constantly share all their personal and professional

information in several social networks. Furthermore, social

networks have become one of the most used information

sources, mainly due to their ability to provide the user with

real-time content. Social networks are not only a new way

of communication, but also a powerful tool that can be used

to gather information related to several issues: which political

party is the favourite for the next elections, what are the most

commented movies in the last year, which is the best rated

restaurant in a certain area, etc.

The analysis of social networks has become one of the most

popular and challenging tasks in data science [1]. One of the

most tackled problems in social networks is the analysis of the

relevance of the users in a given social network. The relevance

of a user is usually related to the number of followers or

friends that the user has in a certain social network. However,

this concept can be extended since a user may be relevant not

only if he/she is connected with a large number of users, but

with users that are also relevant. Several metrics have been

proposed for analyzing the relevance of a user in a social

network, emerging the PageRank [2] as one of the most used.

The problem of evaluating the relevance of a user has

evolved in a more complex problem which consists of detect-

ing specific users, often named influencers, with certain per-

sonal attributes that can be personal (credibility or enthusiasm)

or related to their social networks (connectiviy or centrality).

These attributes allow them to influcence a large number of

users either directly or indirectly [3].

Another important problem regarding the influence of peo-

ple in other users is the analysis of sentiments in social

networks. It is focused on finding out what do people think

about a certain topic by analyzing the information they post in

social networks. We refer the reader to [4] to find a complete

survey on sentiment analysis techniques.

The previously described problems are related to individual

users. However, there also exists some problems related to the

structure of the network, devoted to find specific attributes and

properties that can help to infer additional information of the

social network. Community detection emerges as one of the

most studied problems related to the structure of the network.

Most of the social networks present a common feature

named community structure. Networks that have this property

has the capacity to be divided into groups in such a way that

the connections among users in the same group are dense,

while connections among users in different groups are sparse.

A connection can represent different features depending on

the social network and the user profile, from professional

relationships to friendships or hobbies in common. Community

detection tasks are devoted to find and analyze these groups

in order to better understand and visualize the structure of

network and the relationships among their users.

Performing community detection algorithms over current

social networks requires from a huge computationally effort

mainly due to the continuous growth of social networks.

Furthermore, since social networks are constantly changing

(new friendships, mentions to users, viral information, etc.),

it is interesting to perform the community detection in the

shortest possible computing time, producing real-time infor-

mation. These features make traditional exact methods not

suitable for the current size of social networks, requiring

from approximation algorithms in order to accelerate the

process without losing quality. Recent works have tackled the

community detection algorithm from a non-exact perspective

in order to generate high quality solutions in short computing

time [5].

The growth of social networks complicates their repre-

sentation and understanding. The communities of a social

network usually summarizes the whole network but reducing
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982

its size and, therefore, making it easier to analyze. Further-

more, detecting communities in social networks has several

practical applications. Recommender systems leverage the data

of similar users in order to suggest new contents. In order

to find similar users in a network we can simply perform

a community detection over the network [6], improving the

results of the recommender system. Communities in social

networks also identifies people with similar interests, allowing

us to evaluate the popularity of a political party [7], or even

to detect radicalisms in social networks [8].

The remaining of the paper is structured as follows: Section

II formally defines the problem considered as well as the

metrics proposed for the evaluation of solutions; Section III

describes the traditional algorithms proposed for detecting

communities in social networks; Section IV presents the new

algorithm proposed for detecting communities; Section V

shows the computational experiments performed to test the

quality of the proposal; and finally Section VI draws some

conclusions on the research.

II. PROBLEM STATEMENT

A social network is represented as a graph G = (V,E),
where the set of vertices V , with |V | = n, represents the

users of the network and the set of edges E, with |E| = m,

represents relations between users belonging to the network.

An edge (v1, v2) ∈ E, with v1, v2 ∈ V can represent different

types of relations depending on the social network under

consideration. For example, in Twitter a relation represents

that a user follows / is followed by an other user, while in

LinkedIn it represents a professional relationship.

This work is focused on the Community Detection Problem

(CDP), which involves grouping users of a social network

into clusters. A desirable community in a social network is

densely connected to the nodes in the same community and

sparsely connected (or even unconnected) to nodes in other

communities. Therefore, the main objective is to obtain groups

or clusters of users that are similar among them and, at the

same time, different to the users in other clusters with respect

to a certain criterion.

A solution for the CDP is represented by a set of decision

variables S, with |S| = n, where Sv = j indicates that

vertex v is assigned to cluster j in solution S. Figure 1(a)

shows an example graph with 19 vertices and 31 edges derived

from a social network. In this example, an edge represents a

friendship relationship between two users; for instance, users

A and B are friends, while users A and C are not friends but

they have a friend in common, which is vertex D.

Figure 1(b) shows a possible solution S for the community

detection problem, where each cluster is represented with a

different color. Regarding the solution representation previ-

ously defined, we can check the cluster for each vertex. Table

I shows the community in which each vertex has been inserted

(for example, vertex A belongs to community 1, vertex G to

community 2, and so on).

The CDP then can be modeled as an optimization problem

which consists of finding a solution S⋆ that maximizes a

certain objective function value. In mathematical terms,

S⋆ ← argmax
S∈S

f(S)

where S is the set of all possible solutions for a given social

network.

There exists a large variety of quality metrics that can be

used as objective function for finding high quality solutions.

Several metrics considers that the optimal partition (ground

truth) is known beforehand, and tries to minimize the distance

of the current partition with respect to the optimal one (e.g.,

Omega-Index [5]). However, this work considers networks

where the optimal partition is not known. In this case, most

of the metrics are focused on maximizing the density of

intra-cluster edges (those connecting vertices of the same

cluster) while minimizing inter-cluster edges (those connecting

vertices in different clusters).

We consider two metrics that has been traditionally con-

sidered for optimizing the quality of a solution for the CDP:

conductance and modularity [9]. For the sake of simplicity, all

metrics are normalized in the range 0–1, where 1 indicates the

value for the optimal partition and 0 is the expected score for

a random assignment of users to clusters. Notice that in some

of the metrics the optimal score of 1 is not possible for some

networks due to their internal structure.

The first metric considered is the conductance [10]. Given a

cluster k, its conductance, Cn(k,G), is defined as the number

of edges that connect vertices of different clusters divided by

the minimum between the number of edges with an endpoint

in the cluster and the number of edges with no endpoint in the

cluster. A large value in the conductance indicates that there

are several edges connecting vertices in different clusters and,

therefore, the cluster does not represent a community. More

formally,

Cn(k,G) =
|(v, u) ∈ E : Sv = k ∧ Su 6= k|

min{Ek, Ek}

Ek = |(v, u) ∈ E : Sv = k ∨ Su = k|

Ek = |(v, u) ∈ E : Sv 6= k ∧ Su 6= k|

Then, the conductance of a complete solution Cn(S,G) is

evaluated as the average conductance for all the clusters in the

graph. In order to have a direct comparison with other metrics,

we subtract that value from 1, so the objective is again to max-

imize the opposite of the conductance Cn(S,G) to produce

high quality solutions (i.e., Cn(S,G) = 1−Cn(S,G)). Then,

the opposite of the conductance value for the example depicted

in Figure 1(b) is Cn(S,G) = 0.63.

The third metric studied is the modularity [11], which

evaluates, for each edge connecting vertices in the same

cluster, the probability of the existence of that edge in a

random graph. The modularity is evaluated as:
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Fig. 1: 1(a) Example of a graph derived from a social network and 1(b) a possible solution for the community detection (each

community is represented with a different color).

A B C D E F G H I J K L M N O P Q R S
1 1 1 1 1 1 2 2 3 2 3 3 3 3 3 4 3 4 4

TABLE I: Cluster assigned to each vertex in the solution depicted in Figure 1(b).

Md(S,G) =

max(S)∑

j=1

(ejj − a2j)

ejj =
|{(v, u) ∈ E : Sv = Su = j}|

|E|

aj =
|{(v, u) ∈ E : Sv = j}|

|E|

where max(S) is the maximum value for the Si variables,

which corresponds to the number of clusters in the solution.

The majority of the traditional algorithms for community

detection considers this metric as the one to be optimized in

order to find high quality communities. The modularity value

for the graph depicted in Figure 1(b) is Md(S ,G) = 0.50.

III. ALGORITHMS FOR COMMUNITY DETECTION

Several algorithms has been proposed for detecting com-

munities in social networks. Community detection algorithms

can be classified in two different classes: agglomerative or

divisive clustering. On the one hand, agglomerative methods

starts from a solution where each vertex is located in a different

cluster and tries to optimize a given objective function by

joining two or more communities at each step. On the other

hand, divisive methods starts from a solution with all the

vertices located in a single cluster, and the objective function is

optimized by dividing one or more clusters in each step. Most

of the algorithms are not exact procedures, since in most of

the networks it is not feasible to find the optimal solution in

a reasonable time, mainly due to the number of users in the

network. This Section is devoted to describe the most used

algorithms in the state of the art for the CDP, in order to have

a framework of comparison for the algorithm presented in this

work.

A. Edge-Betwenness

The idea of the Edge-Betweenness algorithm [12] relies

on identifying those vertices that appears in the majority of

the paths in the graph. Specifically, authors define the edge

betwenness of an edge as the number of shortest paths between

pairs of vertices that contains the edge under evaluation.

Therefore, groups or communities are generated by removing

the edge with the largest edge betwenness value in each step.

This algorithm presents a complexity of O(m2n).

B. Fast-Greedy

The Fast-Greedy algorithm [13] is focused on optimizing

the modularity of the solutions generated. This agglomerative

method starts from a solution where each vertex is located

in a different cluster and iteratively join the two clusters that

produce the solution with maximum modularity value. The

optimization and data structures presented in the original work

reduces the complexity of the algorithm to O(n ·m · logn).

C. Infomap

The Infomap algorithm [14] proposed a fast stochastic and

recursive search method which is based on joining neighbor

vertices into the same community. The method starts with each

vertex located in a different community. Then, it randomly

selects a vertex and assigns it to the community that minimizes

the map equation. The map equation is presented in this

work and it is an efficient estimation of the optimality of a

certain partition. Then, the method creates a new network

where the new vertices are the communities detected until

now. The algorithm stops when no changes are produced in

the communities.

D. Evaluation of the previous methods

This Section is devoted to evaluate the results obtained by

the different methods over an example graph that presents

community structure [15]. Figure 2 illustrates the graphical
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results over the community detection in the graph, where each

community is represented with a different color.

As it can be seen, the results are different for each algorithm.

Additionally, Table II presents the results obtained by each

considered algorithm over the example graph depicted in

Figure 2, considering the three metrics described in Section II

and the number of communities found.

First of all, we will analyze the modularity metric, since it

is the most used metric in community detection optimization.

The best results in modularity corresponds to the Fast Greedy

(0.5284) algorithm, closely followed by Edge Betweenness

(0.5245) and InfoMap (0.5231). All the values are close

since the considered algorithms are focused on optimizing the

modularity.

Regarding the conductance, we can see that best results

are obtained again with the Fast Greedy approach, closely

followed by the Edge Betweenness algorithm. In this case,

both Label Propagation and Infomap present worst results in

term of conductance. These results suggest that optimizing one

of the metrics does not guarantee a good result in the other

considered ones.

Finally, analyzing the number of communities detected,

most of the algorithms detect 6 communities, which seems

to be the actual number of communities in the social net-

work. The Label Propagation algorithms prematurely stops

the search, resulting in only 4 communities, while the largest

number of communities, 8, is found by Infomap algorithm.

IV. GREEDY RANDOMIZED ADAPTIVE SEARCH

PROCEDURE

Greedy Randomized Adaptive Search Procedure (GRASP)

is a metaheuristic originally presented in [16] and formally

defined in [17]. We refer the reader to [18] for a recent survey

on this methodology. This metaheuristic can be divided into

two main phases: solution generation and local improvement.

The solution generation phase iteratively adds elements to

an initially empty solution until it becomes feasible. The

first element is usually selected at random, acting as a seed

for the procedure. The algorithm then constructs a candidate

list (CL) with all the elements that must be included in the

solution. After that, a Restricted Candidate List (RCL) is

created with the most promising elements of the CL according

to a predefined greedy function. Then, in each iteration, an

element is selected at random from the RCL and added to the

solution under construction, updating the CL and RCL in each

step until reaching a feasible solution.

The construction phase of the GRASP algorithm presents a

random part devoted to increase the diversity of the solutions

generated. In particular, in the previous description, the ran-

dom part relies on the selection of the next element from the

RCL. Therefore, most of the obtained solutions are not a local

optimum and can be improved by means of a local optimizer.

The second phase of the GRASP algorithm is intended to find

a local optimum of the solution generated, usually applying a

local search method, although it can be replaced with a more

complex optimizer.

The algorithm presented in this section is able to optimize

any of the metrics defined in Section I. However, since the

algorithm considered for the comparison are focused on opti-

mizing the modularity, the proposed algorithm is also focused

on optimizing the modularity, which has been traditionally

considered as a good optimization metric.

A. Constructive procedure

The constructive procedure designed for the community de-

tection problem, named GRASPAGG follows an agglomerative

approach, where each element is initially located in a different

cluster. Then, GRASPAGG iteratively joins two of the most

promising clusters with the objective of maximizing one of the

aforementioned metrics. Algorithm 1 shows the pseudocode of

the GRASPAGG constructive method.

Algorithm 1 GRASPAGG(G,α)

1: Sv ← v ∀v ∈ V

2: CL← {1, 2, . . . n}
3: continue ← True

4: while continue do

5: continue ← False

6: gmin ← minj∈CL(ejj − a2j)
7: gmax ← maxj∈CL(ejj − a2j)
8: µ← gmin + α · (gmax − gmin)
9: RCL← {j ∈ CL : (ejj − a2j ) ≥ µ}

10: j1 ← Random(RCL)
11: Md best ← Md(S,G)
12: j2 ← −1
13: for j′ ∈ 1 . . .CL do

14: S′ ← S

15: S′

v ← j1 ∀Sv = j′

16: if Md(S′, G) > Mdbest then

17: Mdbest ← Md(S′, G)
18: continue ← True

19: j2 ← j′

20: end if

21: end for

22: if continue then

23: Sv ← j1 ∀Sv = j2
24: CL← CL \ {j2}
25: end if

26: end while

27: return S

The method starts by assigning a different cluster to each

node in the graph G (step 1). Then, the CL is constructed

with every cluster in the solution S under construction (step

2). Then, the minimum (gmin) and maximum (gmax) values

for the greedy function under evaluation are calculated (steps

6-7). The proposed greedy function is the modularity value of

each cluster j, which is ejj−a2j , as stated in Section II. Then,

a threshold µ is evaluated (step 8) to construct the RCL with

the most promising candidates in CL (step 9). The next steps

selects the two clusters that will be merged in the current

iteration, being the first cluster j1 to be merged selected at
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(a) Edge-Betwenness (b) Fast-Greedy (c) Infomap

Fig. 2: Comparison of the community detection of the described algorithms over a example graph with 50 nodes that presents

community structure.

TABLE II: Evaluation of the solution generated by each algorithm over the example graph using the three considered metrics

Algorithm Modularity Coverage Conductance Number of communities

Edge Betweenness 0.5245 0.7250 0.5248 6
Fast Greedy 0.5284 0.7125 0.5306 6

Infomap 0.5231 0.6750 0.4732 8

random from the RCL (step 10). The second cluster j2 is the

one that maximizes the modularity of the resulting solution

after merging clusters j1 and j2 (steps 11-21 ). If the method

has found an improvement in the modularity after joining both

clusters, a new iteration is performed, updating the incumbent

solution (step 23) and the candidate list (step 24). GRASPAGG

stops when it is not possible to join two clusters improving

the modularity, returning the best solution found.

B. Local optimization

This section presents a local search procedure designed to

find a local optimum for every solution constructed in the

previous phase. In order to define a local search method we

firstly need to define the neighborhood in which the local

optimum will be found. For this problem, we consider all

the solutions that can be reached from a given solution S

by moving a node from one cluster to another. Specifically,

after performing the move Move(S, v, j), the vertex v will be

located at cluster j (i.e., Sv ← j). Notice that if v was the last

vertex in its original cluster j′, then cluster j′ will disappear

after performing the move.

The next step for defining the local search method is the

selection of the vertex to be moved to another community. For

this purpose, we define a heuristic criteria based on the number

of intra-cluster edges of the vertex under evaluation with

respect to the total number of edges in the graph. Specifically,

the local search selects the vertex v with the smallest ratio

r between number of edges in the same cluster and the total

number of incident edges to v. More formally,

r(v, S)←
|(v, u) ∈ E : Sv = Su|

|(v, w) ∈ E|
∀u,w ∈ V

The local search method selects, for each community, the

node with the smallest value of this selection criteria among

all nodes in the graph. Then, the node is moved to the

community that maximizes the modularity among all the

existing communities in the incumbent solution.

The proposed local search procedure follows a first im-

provement approach. In particular, the first improvement move

found is performed, restarting the search again, opposite to

performing the best available move, which is often rather time

consuming. The method stops when no improvement is found

after evaluating the move of a node in every community.

V. COMPUTATIONAL RESULTS

This Section is devoted to analyze the quality of the

proposed algorithm when compared with the most popular

community detection algorithms presented in Section III. Since

most of the algorithms are focused on optimizing the modu-

larity, the evaluation of the quality must be performed over a

different metric. In this work we consider conductance as the

evaluation metric, for testing the robustness of the methods.

We additionally include the modularity value obtained by each

algorithm, although it should not be considered in the evalua-

tion of the quality of the community detection. However, we

consider that it is interesting to analyze how far an algorithm

is able to optimize the detection considering the modularity

value. The proposed algorithm have been implemented in Java

8 and the experiments have been conducted in an Intel Core

2 Duo E7300 2.66 GHz with 4 GB RAM.

The instances used for the experiment have been extracted

from the Twitter SNAP dataset1. Specifically, we have selected

100 instances with vertices ranging from 50 to 250, that

represents the ego-network of several Twitter users (data is

anonymized in the dataset).

The first experiment is devoted to tune the α parameter

of the GRASPAPP procedure. This parameter controls the

degree of randomness of the method: on the one hand, α = 0
results in a totally random method, while α = 1 considers

1https://snap.stanford.edu/data/egonets-Twitter.html
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a completely greedy method. Therefore, it is interesting to

test values distributed in the range 0–1 to analyze whether

the best results for the CDP are obtained with a small or

large percentage of randomness in the construction. In this

experiment we have considered α = {0.25, 0.50, 0.75,RND},
where RND indicates that a random value of α is selected

for each construction. This experiment has been conducted

over a subset of 20 representative instances in order to avoid

overfitting.

Table III reports the results obtained with the different

values of α. Specifically, three statistics are considered: Mod-

ularity, the average of the best modularity value obtained for

each instance; Dev (%) the average deviation with respect

to the best solution found in the experiment; and #Best, the

number of times that an algorithm reaches that best solution.

TABLE III: Results obtained by the GRASP algorithm con-

sidering different values for α parameter

α Modularity Dev (%) #Best

0.25 0.31961 1.60 9
0.50 0.32019 1.30 5
0.75 0.32063 1.08 4
RND 0.32080 1.08 6

As it can be derived from Table III, the best results are

obtained with α = 0.75. In particular, is able to obtain the

best modularity values and reaches the best solution in 9 out of

20 instances. The average deviation value of 0.65% indicates

that, in those instances in which it is not able to reach the

best value, it remains rather close to it. Therefore, we select

α = 0.75 for the final experiment.

The final experiment is intended to compare the quality of

the solutions provided by our proposal with respect to the

traditional methods described in Section III.

TABLE IV: Comparison of the considered metrics over all the

algorithms presented in Section III and the proposed GRASP

method.

Modularity Conductance

EB 0.14272 0.11319
FG 0.25064 0.34494
IM 0.14216 0.33014
GRASP 0.26029 0.38206

These results show the superiority of the proposal when

considering both modularity and conductance, supported by

a p-value lower than 0.0001 when applying the Friedman

statistical test.

VI. CONCLUSIONS

This paper has proposed a new metaheuristic method for

community detection in social network based on Greedy

Randomized Adaptive Search Procedure methodology. The

problem is addressed by optimizing the modularity metric,

which is a robust metric to evaluate the quality of a partition in

a social network. The algorithm is compared with several well-

known traditional algorithms for community detection using

conductance as evaluation metric. The computational results

show how GRASP is able to obtain better results in both

metrics than the previous methods, emerging as a competitive

algorithm for detecting communities in social networks.
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