
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

107

Goal-Reasoning in StarCraft: Brood War

through Multilevel Planning

Moisés Martı́nez

King’s College London

London, United Kingdom

moises.martinez@kcl.ac.uk

Nerea Luis

Universidad Carlos III de Madrid

Leganes, Spain

nluis@inf.uc3m.es

Abstract—Real-Time Strategy video-games (RTSVGs) are chal-
lenging for most deliberative approaches, such as Automated
Planning. This is due to (i) the dynamic changes of the en-
vironment; (ii) and the wide variety of potential actions that
can be performed over the environment. The aim is “to win

the match”. Besides, RTSVGs presents an additional challenge:
managing goals during the game is extremely hard. They change
as the game state evolves either because of actions performed
by the different agents (player and opponents), by new available
information or by unexpected changes of the environment. Thus,
generating a detailed sequence of actions –plan– to win the match
is not effective in the long term.

In this paper, we propose an autonomous approach based on
two levels of declarative Automated Planning. They are included
inside a planning and execution architecture. The high-level,
macromanagement, searches and suggests a set of soft-goals
according to the current state and the available features of the
agent. The low level, micromanagement, generates short plans of
actions to reach the soft-goals generated by the high level. We
claim that the ability of self-generating goals improves the plan
generation and execution performance in a dynamic environment.
Finally, we present a preliminary empirical evaluation of this
approach tested on StarCraft: Brood War.

Index Terms—Automated Planning, Goal-Reasoning, Planning
and Execution, Cognitive Systems, Video-Games

I. INTRODUCTION

In recent years, video-games have gotten attraction by

the Artificial Intelligence (AI) research community, as they

offer challenging environments to test different AI techniques.

Specially, StarCraft, which has become popular due to compe-

titions such as SCAAIT 1, AIIDE2 and the CIG Competition3.

These competitions provide APIs and tools to easily deploy

different AI approaches into StarCraft.

RTSVGs are considered a sub-genre of strategy games

e.g. chess, backgammon, go, monopoly, etc. in which players

develop a settlement based into two principles: (i) an economy

i.e. exploitation of natural resources to build throughout the

environment; (ii) and a military power i.e training different

units and researching technologies which offer advantages over

the enemy. These features hinder the application of traditional

AI approaches i.e. the game complexity is extremely large in

terms of the size of the state space and the search space and in

1http://sscaitournament.com/
2http://www.cs.mun.ca/ dchurchill/starcraftaicomp
3https://sites.google.com/site/starcraftaic/

the number of actions that can be executed on each decision

step. For instance, a StarCraft map is defined as a rectangular

grid where each tile is measured in building tiles. The smallest

map has 64 x 64 building tiles. Thus, if a player builds the

barracks (3x4), there exist 4096 tiles where they can be built in

the worst case. If the player has four workers, there are 16384

instantiated actions available. Besides, a StarCraft match is

executed at 24 frames per second, which means that the game

state changes every 42 ms. The environment is non fully-

observable, players just know the part of the environment that

has been previously explored or built. In addition, the StarCraft

environment is continuous, which means that players’ turns do

not explicitly exist. Actions are executed when requested by

the players. Some actions can be executed in parallel. Besides,

actions in this kind of games are durative. Thus, there is

a small delay after the player chooses the action until it is

executed on the game.

In order to win a match in a RTSVG like StarCraft, we

must generate and execute a sequence of repetitive actions

(plan) to defeat the opponent. But, to achieve this final goal,

we must achieve first a huge number of small goals which

appear during the game based on our previous actions and

the new information discovered. Automated Planning (AP) is

able to generate a sequence of actions that solves a specific

problem like this one. Goals are usually given as input or as

a part of the problem representation. However, in complex

environments such as StarCraft, it is not possible to initially

define a set of goals due to two important reasons: (i) the dy-

namism of the environment; (ii) the capabilities of the player,

improved or penalized according to the actions executed over

the environment. Nonetheless, several approaches based on AP

have been successfully used before to solve complex problems

with partial information such as the planning Mars exploration

missions [1], managing fire extinctions [5], controlling under-

water vehicles [20], intermodal transportation problems [8]

and controlling quadcopters [3]. The key was to include

some specific knowledge that simplified the deliberative act

of reasoning.

In this paper, we propose a two level planning architecture.

The high level consists on a goal-reasoning process, which

generates goals based on the available information from the

match e.g. player, environment, opponent etc. The low level

consists on a deliberative process, which generates small plans

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

108

that should reach the goals suggested by the higher level.

These two levels are included into a goal-reasoning, planning

and execution loop, which helps to control and process the

real situation of the game to quickly update the plans.

This paper is organized as follows: first in Section II, we

describe the planning framework. Then, Section III presents a

description of the application domain. Section IV describes our

contribution: the goal-reasoning process to control a StarCraft

player. Later on Section V, we show preliminary experiments

of our approach in different maps. Section VI contains the

related work. Finally, in Section VII we present some conclu-

sions and future work directions.

II. PLANNING FRAMEWORK

In this section, we describe the different planning for-

malisms that define the Multilevel Planning approach. It

considers two different kind of planning tasks: (i) a sequential

classical planning task, which is encoded in the propositional

fragment of the standard Planning Domain Description Lan-

guage (PDDL) 2.2 [6]; and (ii) a temporal planning task,

which is encoded in the propositional fragment of the standard

in PDDL 2.1 [7]. In PDDL, a planning task is described

in terms of objects of the world (units, buildings, mineral,

etc), predicates which describe static or dynamic features of

these objects (e.g. building are locations in a specific position),

actions (a unit can move from one location to another, an unit

can be training in a building), an initial state that describes

the initial situation, and a goal definition which describes the

objectives that must be reached (goals).

Definition 1: (Planning task). A planning task can be

defined as a tuple Π = (F,A, I,G), where:

• F is a finite set of grounded literals (also known as facts

or atoms).

• A is a finite set of grounded actions derived from the

action schemes of the domain.

• I ⊆ F is a finite set of grounded predicates that are true

in the initial state.

• G ⊆ F is a finite set of goals.

Any state s is a subset of facts that are true at a given

time step. Each action ai ∈ A can be defined as a tuple ai =
(Pre,Add,Del), where Pre(ai) ⊆ F are the preconditions of

the action, Add(ai) ⊆ F are its add effects, and Del(ai) ⊆ F

are the delete effects. Eff(a) = Add(a)∪Del(a) are the effects

of the action. Actions can also have a cost, c(a) (the default

cost is one). An action a is applicable in si, if Pre(a) ⊆ si.

The result of applying a in a state si generates a new state

that can be defined as: si+1 = (si ∪ Add(a) \ Del(a)). A

plan π is an ordered set of actions (commonly, a sequence)

π = (a1, . . . , an), ∀ai ∈ A, that transforms the initial state

I into a state sn where G ⊆ sn. This plan π is valid if the

preconditions of each action are satisfied in the state where the

corresponding action is applied; i.e. ∀ai ∈ π, Pre(ai) ⊆ si−1

such that from applying the action ai in the state si−1 the

system transits to si. The state s0 represents I .

Definition 2: (Temporal Planning task). A temporal plan-

ning task is a tuple Π = (F,Ad, I, G) where

• F is a finite set of grounded literals (also known as facts

or atoms) and numerical functions.

• Ad is a finite set of grounded durative actions.

• I ⊆ F is a finite set of grounded predicates that are true

in the initial state and a set of numerical functions.

• G ⊆ F is a finite set of goals.

Each action ai ∈ Ad can be defined as a tuple ai =
(D,Pre,Add,Del), where D(ai) is the duration of the

action a. Pre(ai) = 〈Pres(ai), P reo(ai), P ree(ai)〉 where

Pres(ai) are preconditions given at the start of a; Preo(ai)
are preconditions given during the action’s duration; and

Pree(ai) represents preconditions given at the end of a.

Add(ai) = 〈Adds(ai), Adde(ai)〉, where Adds(ai) are the

add effects at the start of ai and Adde(ai), the ones at the

end. Del(ai) = 〈Dels(ai), Dele(ai)〉, where Dels(ai) are the

delete effects at the start of ai and Dele(ai), the ones at the

end.

III. DESCRIPTION OF THE REAL TIME ENVIRONMENT

Our approach has been applied to StarCraft: Brood War 4,

which is a popular RTSVG that runs a science-fiction universe

where three races (Terran, Protoss and Zerg) are at war. The

aim is to defeat all your opponents. Players start the match in

a random position of the map. During the match, the player

exploits the resources in order to (i) train new workers; (ii)

build new buildings - which allow players to train soldier

units, unlock stronger units and unlock new buildings-; and

(iii) research new technologies - improve units’ features or

unlock new skills-. Besides, the player has to explore the

environment to discover new resources, expand its territory

and find the opponents’ position. In the end, players must

define a global strategy in order to destroy every opponent’s

units and buildings.

Our definition of global strategy is composed by simple

actions. First, actions related with units’ control (e.g. collect,

move, train, build, explore, research and attack) for microman-

agement. Second, actions related with the global strategy (e.g.

which kind of unit must be trained, which kind of building

must be built, when and where to attack) for macromanage-

ment. For instance, in order to build a tank we need first to

build a Machine shop, a Factory and a Command Center. Thus,

we need at least one worker to build the four buildings on four

suitable locations in the map -that need to be explored first-.

For instance, when the action “train a tank” is executed, a

set of micromanagement actions were performed first. From

the planning perspective, the macromanagement actions can

be considered as dynamic soft-goals, which are generated

during the match according to the information provided by

the environment and the player; and the micromanagement

actions are the sequence of actions of the plan π that reach

the soft-goals. that

IV. GOAL-REASONING THROUGH MULTILEVEL PLANNING

StarCraft is a RTSVG where two or more players must

compete for the resources of the environment in order to win

4https://starcraft.com

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

109

the match. From the point of view of planning, a StarCraft

player should execute a sequence of actions – plan – provided

by the planner to defeat all its opponents. However, generating

a sequence of actions in a dynamic environment with partial

information arises some issues: (i) new information about

the environment is usually discovered during the action’s

execution; (ii) actions must be quickly chosen to interact

within the environment as fast as possible - the sooner it

happens, the greater the similarity with the current planning

state; and (iii) goals should be generated dynamically during

the game because of the lack of information. As we described

before, the main goal of StarCraft is to win the match. Thus,

the first issue we faced is how to model the PDDL domain

to reach this hard goal. We are certain that this could not be

satisfied if we just used classical planners. As the goal win the

match is an abstract goal, it cannot be reached from a specific

action executed by player. Neither a group of actions executed

sequentially or in parallel guarantees to win the math. As the

environment changes fast, it makes useless any long-term plan.

Our approach solves this issue by having a process that

generates soft goals. They could be easily reached (or might

not) according to the state of the match. Also, the agent has

“high-level” tasks such as move, build, train or attack. Those

can work as soft-goals as long as there is some low-level

process to handle them on the game.

In previous works, the goal-reasoning problem has been

addressed from different directions: (i) using an indepen-

dent goal-reasoning system which receives a model of the

environment, the current state and at least an initial goal,

and returns either the same goal or a new one [14]; (ii)

learning a model by means of Machine Learning to predict

which goals must be achieved in order to control a real-

time system [18]; and (iii) performing a hard goal life-cycle

composed of different steps (selection, expansion, commit,

dispatch, and finally execution) [10], [21]. In this paper, we

propose an autonomous approach based on multiple levels of

planning [17] that encapsulates the complexity of the domain

in different layers.

The multilevel planning system is composed by two levels

(macro and micro) of planning. The macromanagement level

(high level) employs an abstract representation of the envi-

ronment (numerical and logical) in order to define the set of

soft-goals. This level uses temporal planning, which provides a

richer version of PDDL e.g durative-actions, numerical fluents

in preconditions and preconditions, etc. The output plan is a

parallel plan, which explicitly indicates when two actions can

be executed in parallel. Additionally, the soft-goals generation

allow to use different policies for the generation of the plan

in the micromanagement level. Figure 1 shows an example of

an action defined in temporal PDDL which generates a goal

build-building(?b, ?l) where b is the type of the

building and l is the technological level needed to build it.

As a result, this action generates goals to build any kind of

building except for Refinery and Supply Depot which have

special properties.

The temporal planner needs three elements to work: (i) an

(:durative-action generate-build-building

:parameters (?b - building

?l - level

?a - area)

:duration (= ?duration

(* (building_cost ?b)

(number_buildings ?b ?a)))

:condition (and

(at start (> (free_units scv) 0))

(over all (> (max_number_goals) 0))

(over all (tech_level ?l))

(over all (tech_level_building ?b ?l))

(over all (can_build ?b)))

:effect (and

(at end (decrease (max_number_goals) 1))

(at start (decrease (free_units scv) 1))

(at end (increase (free_units scv) 1))

(at end (have_building ?b ?a))

(at end (increase (number_buildings ?b ?a) 1))

(at end (increase (goals_score)

(score_building ?b)))))

Fig. 1. Example of a durative action that generates building goals.

initial state; (ii) a specific domain that accurately describes a

set of actions that, when instantiated, will serve as goals to

“guide” the low-level planner; and (iii) a set of goals in order

to stop the search process when they are satisfied. We were

inspired by the limited horizon search approaches [11], [13] to

define the stop criteria, which in our case is the upper-bound of

goals that can be generated. We defined a fluent called (max-

number-goals) as a counter that decreases in one each time

an action-goal is generated. It stops in zero. The sequence of

actions generated by the temporal planner is transformed into

goals, which are used by the low planning level. Each action of

the plan is considered like a predicate which must be reached

in the next level.

The micromanagement level (low level) uses a structured

representation of the environment to reach the previous soft-

goals. This level employs classical planning in order to reach

the goals. The plan described in Figure 3 is transformed into a

group of three goals: (1) train a worker (SCV) in a Command

Center, (2) build Barracks and (3) build a Supply Depot. Each

goal needs a sequence of detail actions to be reached. The

training goal needs two actions: one to chose a building of type

command center (if there are more than one) and start training

process of a SCV unit. After that, each building goal needs

four actions to be reached: one action to choose an available

worker that will perform the building process, a second action

that chooses an available location using a external search

algorithm, a third action that moves the worker to the building

location and finally a fourth action which starts the building

process. The agent will interleave goal and plan generation

in a infinite loop using the PELEA architecture 5, which

now implements the macro and micromanagement levels into

its different modules. Therefore, in order to handle more

complex situations we are using different planners working at

5The architecture described here is an instantiation of the original ver-
sion [19] which employs two different representations of the environment in
PDDL.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

110

Executor

Monitoring

Goals
and Metrics

Decision
Support

Classical
Planner

Temporal
Planner

PELEA

state

sta
te

plan

statestate

plan

ac
tio

n

state

goals
plan

goals set

playing
domain

goals
domain

StarCraft
action

StarCraft
state

1

2

3
4

56

7 8

9

10

11

12

Fig. 2. Overview of the PELEA architecture applied to StarCraft. The multilevel planning approach is shown on the left of the Figure, where the temporal
planner is in charge of generating the goal-based actions’ plan (macromanagement level) and the classical planner generates the sequence of game actions
(micromanagement level). Numbers in blue indicate the flow of the architecture from the initial state of the game. First, Monitoring asks to the Goals and

Metrics for the high-level plan (initially the set of goals is empty); then the plan is transformed into a set of goals and is sent to the Decision Support, which
generates a low-level plan based on those goals. The resulting plan is sent back to the Monitoring. This module sends the plan to the Executor action by
action. When each action is executed, the game-state is updated and processed.

0.000: (train-unit scv command_center tl_one) [7.0]

7.001: (build-building barracks tl_one) [22.0]

29.002: (build-building supply_depot tl_one) [8.0]

Fig. 3. Example of a high-level plan, whose actions will be used as the goal
set for the low level.

different levels of abstraction. This version integrates planning,

execution, monitoring and goal generation. Figure 2 shows the

structure of the agent which is composed of four sub-modules.

• Monitoring: it is the central module of the planning

agent. It synchronizes the communications among the

other modules and monitors the action’s execution i.e.

dispatches the next action to Execution Module, requests

for a new plan to the Decision Support and checks for

differences between the expected state and the observed

state of the environment sent by Monitoring. If an ob-

served state is not valid, this module has to start another

planning episode to generate a new plan according to the

observed state.

• Executor: this module runs the actions into the environ-

ment by means of the Brood War Application Program-

ming Interface (BWAPI)6. BWAPI provides a Java Native

Interface to the Brood War API that uses the shared

memory bridge to give our code access to the game state.

Information that can be easily extracted through the API

such as units’ state, resources location; or some orders

can be issued through training or moving commands. On

every frame, JNI-BWAPI sends a game state update to the

Java AI agent and waits for a response, which will contain

A. Planning, Monitoring and Execution Architecture

We have developed a Planning and Execution agent based on PELEA. We
contribute with an extended version of the Goals and metrics module

6https://code.google.com/p/jnibwapi/

a set of commands to execute. Besides, this module is

responsible for initiating the goal-reasoning, planing and

execution loop by sending to the Monitoring a particular

problem and domain definition to be solved. Both the

problem and the domain are described in PDDL.

• Decision Support: this module generates a plan of ac-

tions by the invocation of a classical planner (Metric

FF [9]). When the Monitoring informs about a dis-

crepancy between the observed state and the expected

planning state, the Decision Support invokes the classical

planner to generate a new plan.

• Goals & Metrics: this module searches and suggests

different reachable goals according to the available in-

formation about the environment by using a temporal

planner (OPTIC [2]). Additionally, this module keeps a

registry of the different goals that have been solved in

order to generate new goals when all of them have been

reached.

B. Modeling StarCraft with PDDL

StarCraft uses a lot of complex (numerical and logical)

information about the players and the environment to describe

the current state of the game. We have described the environ-

ment using two abstraction levels that are modelled in PDDL.

Our representation of the game state is modeled by using

a sequence of binary and numerical values which represent

the number of units, buildings and resources available for the

players (our player and the opponents) located in the different

areas of the map. The specific location of the units or their

life points is not relevant for the planning process. Thus, they

are omitted.

The game state is described using a sequence of variables

(numerical and binary) which represent the units of each

player. The map environment is divided into areas of same

size. Commonly each area has a set of resources which can

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

111

Command Buildings Groups Workers

(have_building command-center 1)

...

...

1 1 5 02 1 8

(have_building refinery 1)
(group g1 1)

(free_units svc 1)
(gaterhing_units svc 4)

Map

1 2
3 4

4

(area-explored 1 p1)
(area-unexplored 2)

(= (max_number_units) 20)
(= (current_units) 13)

(have_building barracks 1)
(= (number_building barracks) 2)

Fig. 4. Transformation of the partial state of the world from StarCraft to PDDL. The numerical sequence of values represents the current state of the game.
Positions on the sequence correspond to one of the categories on the top of the Figure. Numbers are mapped into PDDL predicates as in the bottom part of
the Figure.

be exploited. The units and buildings are associated to an

area in order to have an approximate location of the different

units. Figure 4 shows an example of a partial representation

of the numeric state, which is later transformed into a PDDL

state. In this case, the units of the player are only located

in one area and there is not information available about the

enemies yet. Each numerical variable is transformed in a

set of logical predicates or numerical functions which are

included into the game state depending of the abstraction level.

The macromanagement level uses some logical predicates,

the numerical functions and a group of special functions

which can be tunned in order to change the goal generation

process: (i) (goals-score) which computes the game

score of the plan; (ii) (total-time) which computes

an approximation of the total time to reach the goals; and

(iii) (max-number-goals) which defines the maximum

number of goals that can be generated. The micromanagement

level uses only the logical predicates in order to simplify the

plan generation. Figure 4 shows an example of the partial

representation of the game state, where there is a Barracks

building which is built in the first area of the map. Thus,

the location of each building is going to be represented

using two predicates: (i) (have_building_barracks 1

which means that there is at least one barracks in the area

1 of the map; and (ii) (number_building barracks

1) which means which number of barracks are in the area

1. Besides, there are some other predicates that indicates

if the agent can be built (can_build ?building) or

if the technological level of the agent allows to build that

specific building (tech_level_building ?building

?level).

As a result, we have come up with 10 directed actions and 4

derived actions for the micromanagement level. These actions

are used by the classical planner to later perform most of

the available game behaviors using the goals generated by the

macromanagement level. The directed actions (move a unit,

move a units’ group, gather, build, train, research, attack,

quarter and explore) produce changes into the environment

and the derived actions (find-unit, find-building-location, find-

explore-location and find-attack-location) collect information

to later execute a directed action.

V. EXPERIMENTAL RESULTS

This section presents preliminary results when using the

Planning and Execution architecture described in Section IV

to play on different scenarios from StarCraft. The Brood

War Application Programming Interface (BWAPI) was used to

connect the executor to the StarCraft game in order to send and

receive real-time information from the game. The experiments

were conducted on an Intel Core i7-6700T 2.80 GHZ (32

bits) with 3.50 GB running on Windows 7 for the StartCraft

simulator and on and Intel Core i7-6700T 2.80 GHZ (64 bits)

with 2 GB running on Ubuntu Linux. The maximum planning

time for the low-level planner to solve a problem has been set

up to 20 seconds and the horizon (max-number-goals)

for the high-level planner has been set up to 5 and 3 goals. The

high-level planner is OPTIC [2] while the low-level planner

is METRIC FF [9]. Each scenario has been played 5 times

until the game is finished. Initially we tried to compare our

approach with some other approaches, but either they had been

developed for other platforms or they needed some kind of

previous human-directed learning to work properly.

Table I shows the results of playing on StarCraft with

our Multilevel Planning approach. We chose three different

scenarios (Astral Balance, Baby Steps, Ice Mountain) where

three different strategies (greedy, global, parallel) have been

deployed. We have used the Terran race. In general, the

Multilevel Planning approach can suggest different set of goals

and use them to generate short plans to execute actions in

the environment. There are two important aspects to analyze

in the results: (i) the planning time; and (ii) the number of

planning steps. Besides, we have defined three goal-selection

policies in order to analyze the influence of the different

goals in the planning and execution process: (a) Greedy goal

selection, which generate a plan for each goal; (b) Global goal

selection, which generate a plan for all goals; and (c) Parallel

goal selection, which extracts a subset of goals that can be

reached in parallel. Two goals are considered parallel if the

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

112

TABLE I
COMPARING THREE GOAL-SELECTION STRATEGIES OVER THREE DIFFERENT MAPS FROM STARCRAFT. THE PERFORMANCE OF THE DIFFERENT

STRATEGIES HAVE BEEN MEASURED OVER SIX METRICS. GOALS CORRESPONDS TO THE NUMBER OF GOALS GENERATED DURING THE MATCH.
PLANNING STEPS CORRESPONDS TO THE NUMBER OF PLANNING EPISODES. UNITS CORRESPONDS TO THE NUMBER OF UNITS TRAINED. BUILDINGS

CORRESPONDS TO THE NUMBER OF BUILDINGS BUILT. PLANNING TIME CORRESPONDS TO THE AVERAGE TIME OF THE PLANNING EPISODES. TIME

CORRESPONDS TO THE TOTAL MATCH TIME.

Map Strategy Goals
Planning

steps
Units Buildings

Planning
time

Time

Astral Balance Greedy 18 17 8 4 0.3 5:45

Astral Balance Global 27 6 18 7 3.55 4:36

Astral Balance Parallel 25 7 17 6 2.94 5:25

Baby Steps Greedy 16 15 7 4 0.1 4:38

Baby Steps Global 31 8 20 6 3.12 5:40

Baby Steps Parallel 29 7 16 7 1.12 5:15

Ice Mountain Greedy 15 13 9 3 0.4 3:18

Ice Mountain Global 28 6 15 8 3.55 4:07

Ice Mountain Parallel 26 9 17 7 2.34 3:56

game actions from which they are derived can be executed in

parallel.

On the one hand, the use of methods that generate a larger

goal set (global selection and parallel selection) decreases the

number of planning steps but increases the planning time on

each iteration. The complexity of the problem to solve is

increased by the number of goals. On the other hand, the use

of a greedy method that generates a small goal set decreases

the planning time but increases the number of planning steps

making the agent work slower and decreasing the number of

actions per iteration that are executed in the environment.

VI. RELATED WORK

The approach described in this paper is focused on applying

Automated Planing (AP) as a reasoning model for a StarCraft

autonomous player. There are previous approaches that have

used either some other AI techniques for reasoning or AP.

SOAR [12] is a cognitive architecture that implements state

abstractions, planning and multi-tasking based on Finite State

Machines (FMS). This architecture was developed using two

layers. First layer is a middleware layer that serves as the

perception system and gaming interface. Second layer is

composed by a set of FSMs that executes parallel actions into

the game according to the information obtained from the first

layer.

Darmok [16] is an architecture that implements on-line case-

based planning by learning from demonstration on WARGUS

(an open source clone of WarCraft II). This architecture

employs a planning, execution and monitoring loop, similar

to the one used in our approach. The execution cycle analyzes

if the last action is finished, updates the current state and

picks up the next action. However, Darmok must be first

trained by playing a collection of games to generate the

case library. In [22], authors present a bot that uses a reac-

tive planning implementation of the Goal-Driven Autonomy

(GDA) [15]. UAlbertBot [4] uses a heuristic search algorithm

to find concurrent plans of actions which are constrained by

unit dependencies and resource availability. Theses plans are

focused on creating a certain number of units and structures

in the shortest possible time span.

The majority of these approaches use control systems for

videogames agents, but only one of them plays on Startcraft.

Our approach mainly differs from those previous works in the

generation and achievement of goals, which is the main focus

of this paper. We do not use any training phase to learn.

VII. DISCUSSION AND FUTURE WORK

In this paper, we propose a Multilevel Planning approach to

perform goal-reasoning and planning on RTSVGs using two

different levels of planning. This approach has been deployed

using the general-purpose software architecture (PELEA) in

order to implement an autonomous player for the video-game

StarCraft: Brood War. The preliminary results presented in this

paper allow us to draw some very interesting conclusions: (i)

it is possible to use AP for goal reasoning according to the

information about the environment; (ii) divide the complexity

of the environment on different levels decreases the complexity

of the planning task and the definition of the domain; and

(iii) using a temporal planner to generate a sequence of

actions, which is going to be transformed into goals, allows

to decrease the information used for planning in the second

level. Our contribution presents some advantages: it can be

easily improved by adding new actions/goals/information on

the domain and being easily adapted to different RSTVGs, as

the only domain-dependent parts are the Executor module and

the planning domains.

While our initial results are encouraging, there is room to

improve the approach presented in this paper. On one hand, the

different domains used for planning and goal-reasoning can be

refined in order to include more actions to generate new goals

or more complex plans of actions. Besides, it is possible to

define different domains for the other races of the video-game.

On the other hand, we can explore other techniques based in

Machine Learning to replace both the goal-reasoning or the

planning process: (i) learning goal trees to suggest goals; and

(ii) using case-based planning to learn previous plan and avoid

some planning and replanning episodes. We could also study

HTN planning to analyze its flexibility when working on a

dynamic environment; it could complement or replace one of

the planners.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

113

ACKNOWLEDGMENTS

This paper has been partially supported by the European

Union’s Horizon 2020 Research and Innovation program un-

der Grant Agreement No. 730086 (ERGO) and the Spanish

MICINN project TIN2017-88476-C2-2-R.

REFERENCES

[1] Mitchell Ai-Chang, John L. Bresina, Leonard Charest, Adam Chase,
Jennifer Cheng jung Hsu, Ari K. Jónsson, Bob Kanefsky, Paul H.
Morris, Kanna Rajan, Jeffrey Yglesias, Brian G. Chafin, William C.
Dias, and Pierre F. Maldague. Mapgen: Mixed-initiative planning and
scheduling for the mars exploration rover mission. IEEE Intelligent

Systems, 19(1):8–12, 2004.
[2] J. Benton, Amanda Coles, and Andrew Coles. Temporal planning with

preferences and time-dependent continuous costs. In ICAPS, 2012.
[3] Sara Bernardini, Maria Fox, and Derek Long. Planning the behaviour

of low-cost quadcopters for surveillance missions. In Proceedings of

the Twenty-Fourth International Conference on Automated Planning and

Scheduling (ICAPS), Portsmouth, New Hampshire, USA, 2014.
[4] David Churchill and Michael Buro. Build order optimization in starcraft.

In Proceedings of the Seventh AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (AIIDE 2011), pages 10–14, 2011.
[5] Marc de la Asunción, Luis A. Castillo, Juan Fernández-Olivares, Óscar

Garcı́a-Pérez, Antonio González, and Francisco Palao. SIADEX: an
interactive knowledge-based planner for decision support in forest fire
fighting. Artificial Intelligence Communications, 18(4):257–268, 2005.

[6] Stefan Edelkamp and Jörg Hoffmann. Pddl 2.2 : The language for
the classical part of ipc-4. In Proceedings of the fourth International

Planning Competition. International Conference on Automated Planning

and Scheduling, Whistler, British Columbia, Canada, 2004.
[7] Maria Fox and Derek Long. Pddl2.1: An extension to pddl for expressing

temporal planning domains. JAIR, 20, 2003.
[8] Javier Garca, Jos E. Flrez, lvaro Torralba Arias de Reyna, Daniel

Borrajo, Carlos Linares Lpez, Angel Garca Olaya, and Juan Senz. Com-
bining linear programming and automated planning to solve intermodal
transportation problems. European Journal of Operational Research,
227(1):216–226, 2013.

[9] Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan
generation through heuristic search. Journal of Artificial Intelligence

Research, 14:253–302, 2001.
[10] Benjamin Johnson and Mark Roberts. Goal reasoning with informative

expectations. In Proceedings of the Fourth Annual Conference on

Advances in Cognitive Systems (ACS-16), 2016.
[11] Richard E. Korf. Real-time heuristic search. Artificial Intelligence

Journal, 42(2-3):189–211, 1990.
[12] John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: An

architecture for general intelligence. Artificial Intelligence, 33(1):1–64,
sep 1987.

[13] Moisés Martı́nez, Fernando Fernández, and Daniel Borrajo. Planning
and execution through variable resolution planning. Journal of Robotics

and Autonomous Systems, In press.
[14] Matthew Molineaux, Matthew Klenk, and David W. Aha. Goal-driven

autonomy in a navy strategy simulation. In Proceedings of the Twenty-

Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta,

Georgia, USA, July 11-15, 2010, 2010.
[15] Héctor Muñoz Avila, Ulit Jaidee, David W. Aha, and Elizabeth Carter.

Goal-driven autonomy with case-based reasoning. In Proceedings of

the 18th International Conference on Case-Based Reasoning Research

and Development, ICCBR’10, pages 228–241, Berlin, Heidelberg, 2010.
Springer-Verlag.

[16] Santiago Ontañón, Kinshuk Mishra, Neha Sugandh, and Ashwin Ram.
Case-based planning and execution for real-time strategy games. In Pro-

ceedings of the 7th International Conference on Case-Based Reasoning:

Case-Based Reasoning Research and Development, ICCBR ’07, pages
164–178, Berlin, Heidelberg, 2007. Springer-Verlag.

[17] Alison Paredes and Wheeler Ruml. Goal reasoning as multilevel
planning. In Proceedings of the ICAPS-17 Workshop on Integrated

Execution of Planning and Acting (IntEx-17), 2017.
[18] Alberto Pozanco, Susana Fernandez, and Daniel Borrajo. Urban traffic

control assisted by ai planning and relational learning. In Proceedings of

the 9th International Workshop on Agents in Traffic and Transportation

(IJCAI’16), 2016.

[19] Ezequiel Quintero, Vidal Alcázar, Daniel Borrajo, Juan Fernández-
Olivares, Fernando Fernández, Angel Garcı́a Olaya, César Guzmán,
Eva Onaindia, and David Prior. Autonomous mobile robot control and
learning with the pelea architecture. In Proceedings of the AAAI-11

Workshop on Automated Action Planning for Autonomous Mobile Robots

(PAMR), San Francisco, CA, USA, 2011.
[20] K. Rajan, C. McGann, F. Py, and H. Thomas. Robust mission planning

using deliberative autonomy for autonomous underwater vehicles. In
Proceedings of the Workshop on Robotics in Challenging and Hazardous

Environments, ICRA, Rome, Italy, 2007.
[21] Mark Roberts, Vikas Shivashanka, Ron Alford, Michael Leece, Shubham

Gupta, and David W. Aha. Goal reasoning, planning, and acting with
actorsim, the actor simulator. In Proceedings of the Fourth Annual

Conference on Advances in Cognitive Systems (ACS-16), 2016.
[22] Ben Weber, Michael Mateas, and Arnav Jhala. Building human-level ai

for real-time strategy game. In Proceedings of AIIDE Fall Symposium

on Advances in Cognitive Systems, 2011.

