
XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

527

GRASP with Path Relinking for the Constrained

Incremental Graph Drawing Problem

A. Martı́nez-Gavara

Dept. Estadı́stica i Inv. Operativa

Universitat de València

València, España

gavara@uv.es

A. Napoletano

Dept. Mathematics and Applications

University of Napoli Federico II

Napoli, Italy

antonio.napoletano2@unina.it

P. Festa

Dept. Mathematics and Applications

University of Napoli Federico II

Napoli, Italy

paola.festa@unina.it

T. Pastore

Dept. Mathematics and Applications

University of Napoli Federico II

Napoli, Italy

tommaso.pastore@unina.it

R. Martı́

Dept. Estadśtica i Inv. Operativa

Universitat de València

València, España

rafael.marti@uv.es

Abstract—Graph Drawing is a well-established area in Com-
puter Science, with applications from scheduling to software
diagrams. The main quality desired for drawings is readability,
and edge crossing minimization is a well-recognized method for
a good representation of them. This work focuses in incremental
graph drawing problems, with the aim to minimize the number
of edge crossings while satisfying some constraints to preserve the
absolute position of the vertices in previous drawings. We propose
a mathematical model and a GRASP (Greedy Randomized Adap-
tive Search Procedure) with PR (Path Relinking) methodology to
solve this problem. Finally, we compare our methodology with
CPLEX and heuristic solutions obtained by a well-known black-
box solver, LocalSolver.

Index Terms—heuristics, graph drawing, path relinking

I. INTRODUCTION

Graph Drawing is a relevant topic of research in areas such

as workflow visualization, database modeling, bioinfomatics

and decision diagrams. The difficulty lies in getting readable

informations from systems represented by graphs. See, for

example, Kaufmann and Wagner [4] and Di Battista [1]

for a throughly survey in graph drawing. The edge-crossing

minimization criterion is one of the most common to obtain a

readable drawing. The problem of minimizing the number of

crossings is NP-complete.

In this work we consider hierarchical graphs, this is not a

limitation since there exists several methodologies to convert

any directed acyclic graph (DAG) into a layered graph. The

Hierarchical Directed Acyclical Graph (HDAG) representation

is done by setting all the vertices in layers, and all the edges

pointing in the same direction. The most well-known method

to obtain a good representation of a graph is the Sugiyama’s

procedure [9], which has become a standard in the field.

We focus on minimizing the number of edge crossings in

incremental graph drawings. The goal is to preserve the mental

This work has been partially supported by the Spanish Ministerio de
Economı́a y Competitividad with grant ref. TIN2015-65460-C02.

map of the user over successive drawings. In this way, we

consider a new model adding constraints on both the relative

([7]) and the absolute position of the original vertices ([1]

in the context of orthogonal graphs).

In this work, we propose a new mathematical programing

formulation and a GRASP (Greedy Randomized Adaptive

Search Procedure) with PR (Path Relinking) method. We

adapt the well-known Local Solver black-box optimizer

to solve this problem. Finally, we compare our heuristic

with CPLEX and Local Solver, we have verified that

GRASP+PR is able to obtain a fraction of the optimal so-

lutions.

II. MATHEMATICAL PROGRAMING MODEL

A hierarchical graph H = (G, p, L) is defined as a graph

G = (V,E) where V and E represent the sets of vertices

and edges, respectively, p is the number of layers, and L :
V → {1, 2, . . . , p} is a function that indicates the layer where

a vertex v ∈ V resides. Let V t be the set of vertices in layer

t, and let Et be the set of edges from V t to V t+1, with nt =
|V t|.

The problem of minimizing edge-crossing is well-known in

graph drawing [1] and, in the context of hierarchical graphs,

may be formulated as the problem of finding the optimal

ordering in each layer. A drawing D of a hierarchical graph

H is the pair (H,Π) where Π is the set {π1, . . . , πp}, with

πt establishing the ordering of the vertices in the layer t. We

define as C(D) the total number of edge crossings in drawing

D.

From an original hierarchical graph H = (G, p, L) and its

drawing D = (H,Π0), we can consider the addition of some

vertices V̂ and edges Ê obtaining an incremental graph IH =
(IV, IE, p, L), where IV = V ∪ V̂ and IE = E ∪ Ê, p is

the number of layers and mt is the number of vertices in the

incremental graph in layer t.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

528

The goal in the Incremental Graph Drawing Problem

(IGDP) is to minimize the number of edge crossings of an

incremental drawing ID = (IH,Π), while conserving the

same relative position between the original vertices as in the

original drawing D. The mathematical programing formulation

of IGDP is based on a linear integer formulation for the Multi-

Layer Drawing Problem proposed by Jünger et al. in [3], with

a new set of constraints that preserves the relative position of

the original vertices. As the authors in [3], we define the binary

variables xt
ik, where xt

ik take the value 1 if vertex i precedes

vertex k and 0 otherwise, where i, k are vertices that reside

in the same layer t, t = 1, . . . , p. Let πt
0(i) be the original

position of the vertex i. The new constraints are:

xt
ij + xt

ji =1, ∀ i, j ∈ V t : 1 ≤ i < j ≤ mt (1)

xt
ij =1, ∀ i, j ∈ V t : πt

0(i) < πt
0(j). (2)

Finally, we add the requirement that the positions of the

original vertices has to be set close enough to their positions in

the original drawing. The maximum distance slack between the

original position of a vertex and the new one, is represented by

K. The mathematical model for the Constrained Incremental

Graph Drawing Problem (C-IGDP) consists in the IGDP

model adding the following set of constraints:

max{1, πt
0(i)−K} ≤ πt(i) ≤ min{πt

0(i) +K,mt}, ∀ i ∈ V,

(3)

where πt
0(i) and πt(i) represent the position of the vertex i,

original and the new one where i can be assigned, respectively.

III. GREEDY RANDOMIZED ADAPTIVE SEARCH

PROCEDURE

In this work, we propose a GRASP metaheuristic. The

method iteratively performs two phases, constructive and im-

provement. The first phase employs a greedy function g(v)
that measures the minimum number of edge crossings g(v, q)
when vertex v is inserted in position q in its layer, for all

positions q.

Initially, the construction phase starts with the original draw-

ing, and iteratively, a vertex v is selected from the Restricted

Candidate List (RCL) and it is placed in the position in which

the number of crossings is minimum. The RCL consists of all

unselected vertices (CL) with the number of edge crossings

lower than or equal to a threshold τ :

τ = min
v∈CL

g(v) + α

(

max
v∈CL

g(v)− min
v∈CL

g(v)

)

. (4)

That is RCL = {v ∈ CL : g(v) ≤ τ}. The performance of

this method depends on the parameter α which balances

greediness and randomness. Note that during the construction

phase all the original vertices should maintain the restriction

max{1, π0(v)−K} and min{π0(v) +K,mL(v)}. The pseu-

docode of construction phase is described in Fig. 1.

Once a solution ID is obtained, we apply our improvement

method which consists in two neighborhoods N0(ID) and

N1(ID). First, the method explores N0(ID), which consists

Fig. 1. Constructive phase for the C-IGDP.

in swapping the positions of two incremental vertices. For a

incremental vertex v, from the first until the last incremental

vertex in a layer, our procedure searches the best swap move

with all the other incremental vertices, and performs it if it

reduces the number of edge crossings. The algorithm scans all

the swap moves from layer 1 to p until no further improvement

is possible. Since only incremental vertices are involved, all

the moves are feasible. Henceforth, we call this local search

phase as Swap.

Then, the local search method resorts to a second phase,

called Insertion, based on neighborhood N1(ID). In a given

layer, the method scans all incremental vertices (starting from

the first one) and explores all its feasible insertions in previous

positions (a move is feasible if the position of the original

vertices is within the limits of (3)). As in the case of N0(ID),
the local search performs sweeps from layer 1 to p until no

improvement is possible.

Our improvement procedure ends when Swap and Insertion

phases are performed and a local optimum is found.

IV. PATH RELINKING

In this work, we propose a hybridization of GRASP with

forward Path Relinking (PR). PR was originally proposed in

the context of Tabu Search [2] to integrate search diversi-

fication and intensification. Later, Laguna and Martı́ in [6]

adapted this technique as an intensification phase for GRASP.

The method generates intermediate solutions in the path to

connect high-quality solutions, which could be better or more

diverse than the solutions being connected.

Let IDi and IDg be the initial and guiding incremental

drawings, respectively. A path relinking move consists of

replacing an entire layer from the initial solution IDi with

a layer from IDg . Fig. 2 illustrates the path between two

solutions IDi and IDg with 3 layers and 6 vertices. The three

first intermediate solutions ID1, ID2 and ID3 are generated

from IDi, exchanging one of its layer with the layers of

IDg . The process continues from the best solution found, in

this case solution ID1 with C(ID1) = 2, in case of ties

the algorithm choose one of the solutions at random. The

algorithm finds two solutions, ID4 and ID5, that are better

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

529

Fig. 2. Illustration of PR.

than IDi and IDg , both with number of edge crossings equal

to 1.

The PR explores the path between all pairs of solutions

in a set, called Elite Set (ES), which is constructed with

m = |ES| solutions generated with our procedure, and has

the property of being as good as diverse as possible. Initially,

the ES contains the m first solutions obtained with our

GRASP. In each iteration, this set is updated with the generated

solution ID∗ if ID∗ is better than the best solution in ES or

sufficiently different from the other elite solutions. Diversity

is measured as the number of positions that are not occupied

by the same vertices divided by the number of vertices in the

graph (with a distance larger than a parameter γ), while the

quality is evaluated by the objective function. The algorithm

ends when no new solutions are admitted to ES.

V. EXPERIMENTAL RESULTS

This section describes the experimental analysis to study the

effectiveness and efficiency of the procedures presented above.

In particular, we consider the following methods: GRASP

(construction phase + local search), and GRASP+PR where

we couple GRASP with Path Relinking. We also compare our

heuristics with the solution obtained by running the integer

linear programing proposed above with LocalSolver, and

CPLEX.

The algorithms are implemented in C++, and the exper-

iments have performed in an Intel Corei7-4020HQ CPU

@2.60Ghz x 8. The set of instances consists of 240 files with

2, 6, 13 and 20 as the number of layers and the graph density

varying in the range {0.065, 0.175, 0.3}. This set is generated

in line with previous graph drawing papers [8] and [5], and it

is available on-line in the web-page http://www.optsicom.es.

To avoid over-training, we consider 24 representative in-

stances from the set of 240 to fine tune the algorithmic

parameters. Note that, an important element is the value of

the slack, K, between the original position of the vertices and

the feasible ones. In this work, we consider low values of this

parameter, K = 1, 2 and 3. Then, for each instance in the

testing set, we have at most three different instances, one for

each value of K (if the number of incremental vertices in one

layer is less than K, then this value cannot be considered).

To sum up, we have 609 instances in our testing set, and 62
instances in the training set.

These preliminary experimentation is devoted to fine tune

the parameters in our GRASP+PR heuristic. First, the value of

the parameter α in the construction phase which controls the

balance between the diversity and the quality of the solution.

We test three different values of α: 0.25, 0.5, and 0.75, and

we also include a variant, labelled as random that, for each

construction, the value of α is selected by random in the range

[0, 1]. The best performance is achieved with this random

variant. The last parameters to be set are the elite set size

and the distance parameter in the PR procedure. We set these

values to |ES| = 3 and γ = 0.2. The selection of the values of

the parameters in these preliminary experiments is a trade-off

between quality and computing time, for this reason, we do

not reproduce the tables.

Table I shows the comparison between GRASP and

GRASP+PR with CPLEX and LocalSolver over the entire

set of 609 instances, classified by size. We execute our

heuristics for 100 iterations, LocalSolver is run with a

time limit of 20 seconds on the instances with 2 layers,

and 60, 150 and 300 seconds on those with 6, 13 and 20
layers, respectively. Finally, we configure CPLEX to run for

a maximum of 1800 seconds. This table shows for each

procedure, the average number of crossings (C̄), the average

percent deviation from the best solution found (% dev), the

average percentage deviation between the heuristic solution

value and the CPLEX best solution value (% gap), the number

of best solutions (Bests), the number of optimum solutions

(Opt), and the CPU-time in seconds required to execute the

method (T ime).

TABLE I
COMPARISON ON ENTIRE BENCHMARK SET ACCORDING TO INSTANCE

SIZE

Procedures C % gap % dev Bests Opt T ime

2 Layers (32 ≤ n ≤ 96), 171 instances

CPLEX 2408.50 - 0.00 171 171 0.77
GRASP 2409.19 0.14 0.14 161 161 1.11
GRASP+PR 2408.92 0.14 0.14 164 164 1.18
LocalSolver 2785.47 17.01 17.01 12 12 20.11

6 Layers (48 ≤ n ≤ 288), 159 instances

CPLEX 9995.70 - 0.01 157 157 56.24
GRASP 9997.43 0.13 0.14 81 81 5.53
GRASP+PR 9994.32 0.08 0.08 100 98 5.39
LocalSolver 11024.89 16.59 16.6 0 0 62.43

13 Layers (104 ≤ n ≤ 611), 141 instances

CPLEX 23469.05 - 0.21 131 128 273.77
GRASP 23319.41 0.13 0.33 29 27 15.22
GRASP+PR 23305.22 0.02 0.22 54 44 15.34
LocalSolver 25530.24 15.95 16.16 0 0 162.06

20 Layers (120 ≤ n ≤ 960), 138 instances

CPLEX 37918.20 - 0.38 118 116 383.73
GRASP 37522.42 0.03 0.39 21 20 25.77
GRASP+PR 37495.44 -0.12 0.24 49 29 28.39
LocalSolver 40954.07 14.30 14.68 0 0 328.77

Table I shows that, as expected, GRASP+PR obtains better

results than GRASP. It is worth mentioning that CPLEX is able

to obtain the optimal solution in 572 out of the 609 instances,

and, with similar CPU time as our heuristics, it is able to obtain

all the exact solutions for the small instances. However, in

large instances, our heuristics are able to obtain similar quality

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

530

results as CPLEX with lower CPU time. Note that GRASP +

PR is able to obtain a % gap of −0.12 which means that

on average beats CPLEX. LocalSolver obtains the largest

deviations in both % dev and % gap, even if it is executed

for longer CPU times than the competing heuristics.

VI. CONCLUSIONS

In this work, we propose a new mathematical model to

tackle the Multilayer Incremental Graph Drawing Problem.

We consider new constraints (by means of a paramenter K) to

preserve key characteristics when updating an existing draw-

ing. We develop a GRASP algorithm combined with a Path

Relinking to obtain high quality solutions in the long term. We

compare our heuristic with general solvers as CPLEX, which is

able to obtain optimal solutions in 572 out of the 609 instances,

and LocalSolver. GRASP+PR is competitive with them,

obtaining similar quality solutions as CPLEX in smaller times

on large instances, and outperforming LocalSolver.

REFERENCES

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:

Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1998.

[2] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Norwell, MA, USA, 1997.

[3] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach
to the multi-layer crossing minimization problem. In International

Symposium on Graph Drawing, pages 13–24. Springer, 1997.
[4] M. Kaufmann and D. Wagner, editors. Drawing Graphs: Methods and

Models. Springer-Verlag, London, UK, UK, 2001.
[5] M. Laguna, R. Martı́ and V. Valls. Arc crossing minimization in

hierarchical digraphs with tabu search. Computers and Operations

Research, 24:1175–1186, 1997.
[6] M. Laguna and R. Martı́. Grasp and path relinking for 2-layer straight

line crossing minimization. INFORMS Journal on Computing, 11:44–
52, 1999.

[7] R. Martı́, A. Martı́nez-Gavara, J. Snchez-Oro, and A. Duarte. Tabu
search for the dynamic bipartite drawing problem. Computers &

Operations Research, 91:1–12, 2018.
[8] J. Sánchez-Oro, A. Martı́nez-Gavara, M. Laguna, A. Duarte, and

A. Martı́. Variable neighborhood scatter search for the incremental
graph drawing problem. Computational Optimization and Applications,
68:775–797, 2017.

[9] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Trans. Syst. Man, Cybern.,
11:109–125, 1981.

