
XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

561

Genetic programming to evolve priority rules for

on-line scheduling on single machine with variable

capacity

Francisco Gil-Gala, Carlos Mencı́a, Marı́a R. Sierra, Ramiro Varela

Department of Computer Science, University of Oviedo,

Campus of Gijón, Gijón 33204, Spain

{giljavier, menciacarlos, sierramaria, ramiro}@uniovi.es

http://www.di.uniovi.es/ iscop

Abstract—On-line scheduling is often required in a number
of real-life settings. This is the case of distributing charging
times for a large fleet of electric vehicles arriving stochastically
to a charging station under power constraints. In this paper,
we consider a scheduling problem derived from a situation of
this type: one machine scheduling with variable capacity and
tardiness minimization, denoted (1, Cap(t)||

∑
Ti). The goal is

to develop new priority rules to improve the results from some
classical ones as Earliest Due Date (EDD) or Apparent Tardiness
Cost (ATC). To this end, we developed a Genetic Programming
(GP) approach. We conducted an experimental study showing
that it is possible to evolve new efficient rules that outperform
ATC and EDD using the same problem attributes and operations.

Index Terms—Scheduling, One machine scheduling, Priority
Rules, Genetic Programming, Hyperheuristics, Electric Vehicle
Charging Scheduling

I. INTRODUCTION

One machine scheduling problems have attracted an ever

increasing body of research over the last decades, due to

both their usual high computational complexity as well as for

acting as building blocks in the development of solutions to

more complex scheduling problems. This paper focuses on

a problem in this class in which a number of jobs must be

scheduled on a single machine, whose capacity varies over

time, with the objective of minimizing the total tardiness

objective function. This problem was introduced in [6] in the

context of scheduling the charging times of a large fleet of

Electric Vehicles (EVs), and it is denoted (1, Cap(t)||
∑

Ti).
Solving the Electric Vehicle Charging Scheduling Prob-

lem (EVCSP) tackled in [6] amounts to solving a number

of instances of the (1, Cap(t)||
∑

Ti) problem. Due to the

computational intractability of this problem and the tight real-

time requirements of the EVCSP, on-line scheduling repre-

sents the most (if not the only) suitable approach to the

(1, Cap(t)||
∑

Ti) problem. In [6], it is solved by means of

the Apparent Tardiness Cost (ATC) priority rule, commonly

used in the context of scheduling with tardiness objectives.

The aim of this paper is the automated development of

new, efficient, priority rules specifically adapted to address

the (1, Cap(t)||
∑

Ti) problem. A natural way to cope with

this task is the use of hyper-heuristics, as search needs to

be conducted in a space of heuristics rather than in a space

of solutions to the scheduling problem. Since priority rules

are arithmetic expressions that can be naturally represented

by trees, we opted to investigate a Genetic Programming (GP)

approach, which is proposed in this paper. Experimental results

indicate that GP is capable of evolving effective priority rules

for the (1, Cap(t)||
∑

Ti) problem, outperforming ATC and

other classical priority rules. The results also provide insights

of practical interest that motivate further research.

The remainder of the paper is organized as follows. Sec-

tion II reviews some GP approaches to evolve priority rules for

scheduling problems. In Section III, we describe the EVCSP

and show how the solving procedure proposed in [6] decom-

poses an instance of this problem into a number of instances

of the (1, Cap(t)||
∑

Ti) problem. In Section IV, we give the

formal definition of the (1, Cap(t)||
∑

Ti) problem. Section V

introduces a schedule builder for this problem and describes

its main properties. In Section VI, we present some classical

priority rules used to solve the problem. Section VII describes

the GP approach propose to evolve new priority rules. In

Section VIII, we report the results of the experimental study

conducted to evaluate the proposed GP approach. Finally, in

Section IX we summarize the main conclusions and outline

some ideas for future work.

II. EVOLVING PRIORITY RULES FOR SCHEDULING

PROBLEMS

The terms Dispatching Rule (DR) and Priority Rule (PR)

are commonly used in the scheduling literature to refer to

“a simple heuristic that derives a priority index of a job

from its attributes” [1]. Due to their low computational cost,

PRs are well suited for on-line scheduling: the job with the

highest priority among those available at a given time is

scheduled next. In this section, we review some existing GP

approaches proposed to discovering dispatching or priority

rules for scheduling problems, such as job shop (JSSP), one

machine or unrelated parallel machines scheduling problems,

among others. In some cases, the purpose is just to find a good

priority rule which is then embodied into a schedule builder.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

562

Other works notice that a single rule may not suffice and focus

on finding sets of rules to be applied collaboratively to solve

instances with different characteristics.

Branke, Schols-Reiter and Hildeblant analyze in [1] three

representation models for priority rules for the dynamic JSSP:

expression trees commonly used in GP, Artificial Neural

Networks (ANNs) and weighted linear combination of job

properties. Their results show that expression trees evolved

by GP perform slightly better than the other approaches.

In [5], the authors propose evolving sets of rules that are

used collaboratively to solve problems. They use GP to evolve

a set of PRs for the static JSSP. They consider single and

composite dispatching rules as terminal nodes, as for example

SPT or ATC, in addition to some parameters. The rules are

used in combination with various schedule builders, as for

example the well-known Giffler and Thompson algorithm

[4]. These rules are sequenced into heuristics. To produce a

solution to the problem, each rule in the heuristic is applied

in turn to schedule a single operation.

In [8], the authors consider composite PRs for the JSSP

given by linear combinations of 16 problem features, as for

example total remaining work for a job or total idle time for

all machines. The weights in the linear function are learned

from a set of optimal solutions obtained by a MILP solver.

Preference and imitation learning were used for this purpose.

In [13], GP is used to learn DRs for the Order Accep-

tance and Scheduling problem (OAS) directly from optimal

scheduling decisions. Instead of evolving just a single rule, a

set of rules is evolved that is used in a Forward Construction

Heuristic (FCH): at each step the rule that produces the best

local improvement is applied. One of the novelties of this

model is that the fitness of a rule depends on how well the rule

performs at each decision point (i.e., whether or not it takes

the optimal decision) rather than the final objective values of

the schedule.

In [3], the authors consider on-line scheduling for multiple

unrelated parallel machines. They also propose evolving new

priority rules with GP, incorporating some enhancements as

dimension awareness to guarantee semantically correct rules

and some GP variant as gene expression.

In [2], PRs are evolved by GP for the Resource Constrained

Project Scheduling Problem (RCPSP) that outperform many of

the existing ones for this problem.

III. WHERE THE (1, Cap(t)||
∑

Ti) PROBLEM COMES FROM

As pointed out, the (1, Cap(t)||
∑

Ti) comes from the EV

Charging Scheduling Problem (EVCSP) considered in [6]. In

turn, the EVCSP is motivated by the charging station designed

in [15] to be installed in a community park where each user

has its own space. Figure 1 shows the general structure and

the main components of this charging station. Each space has

a charging point which is connected to one of the three lines

of a three phase feeder. The system is controlled by a central

server and a number of masters and slaves. Each slave takes

control of two charging points and each master controls up

to eight slaves in the same line. The control system registers

Fig. 1. General structure of the charging station. (1) Three-phase electric
power 400v AC, (2) lines, (3) charging points Type 2/AC IEC 62196-2
with V2G communication interface ISO 15118, (4) masters, (5) server, (6)
communication Rs 485, (7) communication TCP/IP, (8) slaves, (9) active
vehicles, (10) inactive vehicles.

events as EVs arrivals and sends activation/deactivation signals

to the charging points in accordance with a schedule.

Due to the EVs arrivals being not known in advance, the

EVCSP is dynamic and so schedules must be computed at

different points over time. Furthermore, the physical charac-

teristics and the operating mode of the charging station impose

some restrictions to the EVCSP that make it hard to solve. In

particular, the contracted power is limited and so there is a

maximum load in each line. Besides, the load in the three

lines must be similar to avoid an excessive imbalance among

the three phases. Here, we assume two simplifications of the

model: (1) the contracted power is constant over time, and

(2) the EVs charge at constant rate in the so called Mode

1 in accordance with the regulation UNE-EN 61851-1 [7].

Therefore, there is a maximum number N of EVs that can be

charging in each line simultaneously.

Figure 2 shows a feasible schedule for the situation rep-

resented in Figure 1; dark bars represent the EVs that are

charging at time Tk and light bars represent EVs that are

scheduled at a later time. In this example, we consider that

the maximum number of active EVs in a line is 4 and that the

maximum difference in the number of active EVs in every two

lines is 2. For these reasons, none of the tasks 12 and 13 can

be scheduled at Tk because if some of them were scheduled

at Tk, lines 2 and 3 would be imbalanced after completion of

task 8, as there would be 4 EVs charging in line 2 and only

one (number 9) charging in line 3, so exceeding the maximum

difference of 2. The schedule built at Tk allows the EVs in

the system to complete their charging periods without violating

the constraints of the system. However, if new EVs arrive the

charging station after Tk, a new schedule must be built to

accommodate them.

To solve the EVCSP, in [6] the authors proposed an algo-

rithm that considers at each scheduling time Tk the active EVs

in each line (which cannot be rescheduled), the demanding

EVs (which have not yet started to charge), the maximum

number of active EVs in a line, N , and a profile of maximum

load in each line Nmax
i (t), i = 1, 2, 3, which is iteratively

adapted to keep the imbalance among the lines under control.

The objective is to schedule all the EVs in the three lines

such that all the constraints are satisfied and the total tardiness,

i.e., the delay w.r.t. to the times the users want to take their

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

563

Fig. 2. A feasible schedule for the problem in Figure 1. Tasks 1 - 10 are the
active EVs at time Tk in the lines 1, 2 and 3 respectively, while tasks 10 - 13
correspond to inactive EVs in the lines 2 and 3, which could be rescheduled
if it were neccesary to accomodate new EVs arriving after Tk .

Fig. 3. Definition of the capacity of the machine Cap(t) from the maximum
profile Nmax

j (t) and the active EVs at time Tk.

EVs away, is minimized. If two of the obtained schedules are

imbalanced at some time point, some of the maximum profiles

Ni(t) must be recalculated and a new schedule obtained for

the line i. The details of this process are given in [6].

Therefore, scheduling the EVs in each line, subject to the

maximum load and taking into account the active EVs, may

be viewed as the problem of scheduling a set of jobs on a

machine with variable capacity over time. The calculation

of the capacity of the machine from the active EVs and

the maximum load profile is illustrated in Figure 3. In this

example, we consider that at the scheduling time Tk there are

three EVs charging in line j as they were scheduled before

Tk, and that the maximum load of line j, Nmax
j (t), undergone

two adjustments due to lower load in the other two lines. So,

the capacity to accommodate new charging EVs, Cap(t), for

t ≥ Tk, is variable as shown in the upper part of the figure.

IV. PROBLEM DEFINITION

The (1, Cap(t)||
∑

Ti) problem may be defined as follows.

We are given a number of n jobs {1, . . . , n}, all of them

available at time t = 0, which have to be scheduled on a

machine whose capacity varies over time, such that Cap(t) ≥
0, t ≥ 0, is the capacity of the machine in the interval [t, t+1).
Job i has duration pi and due date di. The goal is to allocate

starting times sti, 1 ≤ i ≤ n to the jobs on the machine such

that the following constraints are satisfied:

i. At any time t ≥ 0 the number of jobs that are processed

in parallel on the machine, X(t), cannot exceed the

(a) Non left-shifted schedule

(b) Left-shifted schedule

Fig. 4. Two feasible schedules for an instance of the (1, Cap(t)||
∑

Ti)
problem with 7 jobs and a machine with capacity varying between 2 and 5.

capacity of the machine; i.e.,

X(t) ≤ Cap(t). (1)

ii. The processing of jobs on the machine cannot be pre-

empted; i.e.,

Ci = sti + pi, (2)

where Ci is the completion time of job i.

The objective function is the total tardiness, defined as:
∑

i=1,...,n

max(0, Ci − di) (3)

which should be minimized.

Figure 4 shows an example of two feasible schedules for

a problem with 7 jobs; the capacity of the machine varies

between 2 and 5 over time. Due dates are not represented

for the sake of clarity. As we can observe, in both schedules

X(t) ≤ Cap(t) for all t ≥ 0.

One particular case of this problem is when the capacity of

the machine is constant over time. This is the parallel identical

machines problem [10], denoted (P ||
∑

Ti), which is NP-

hard. Thus, it follows that the (1, Cap(t)||
∑

Ti) problem is

NP-hard as well.

V. SCHEDULE BUILDER

Schedule builders constitute an essential component for

designing efficient scheduling algorithms. Also known as

schedule generation schemes, these methods provide a way for

computing and enumerating a subset of the feasible schedules,

thus enabling the definition of a search space to look for

solutions to the problem. We use here the schedule builder

proposed in [12], which produces left-shifted schedules, in

which no job can be scheduled earlier without changing the

starting time of some other job. Figure 4 shows two feasible

schedules for a problem instance with 7 jobs, one is not left-

shifted (a), while the other one is left-shifted (b).

The schedule builder is depicted in Algorithm 1; it maintains

a set US with the unscheduled jobs, as well as the consumed

capacity X(t) due to the jobs scheduled so far. US is

initialized with all the jobs. In each iteration, the algorithm

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

564

Algorithm 1 Schedule Builder

Data: A (1, Cap(t)||
∑

Ti) problem instance P .
Result: A feasible schedule S for P .
US ← {1, 2, ..., n};
X(t)← 0; ∀t ≥ 0;
while US 6= ∅ do

γ(α) = min{t′|∃u ∈ US;X(t) < Cap(t), t′ ≤ t < t′ + pu};
US∗ = {u ∈ US|X(t) < Cap(t), γ(α) ≤ t < γ(α) + pu};
Non-deterministically pick job u ∈ US∗;
Assign stu = γ(α);
Update X(t)← X(t) + 1; ∀t with stu ≤ t < stu + pu;
US ← US − {u};

end

return The schedule S = (st1, st2, ..., stn);

selects one unscheduled job among the ones that can start at

the earliest time γ(α).
Note that the selection of a job to be scheduled at each

iteration is non-deterministic. Regardless of this, we can

guarantee that the application of Algorithm 1 always results in

a feasible left-shifted schedule; for example, the sequence of

choices (1, 3, 4, 5, 6, 7, 2) would lead to building the schedule

in Figure 4(b). Furthermore, any left-shifted schedule may be

obtained considering the appropriate choice in each iteration.

In other words, the scheduler searches in the whole space of

left-shifted schedules, which is dominant; i.e., it contains at

least one optimal schedule.

The schedule builder may be instantiated by using any

priority rule or heuristic, as we will see in the next section. In

[12] it was embedded as a decoder in a genetic algorithm.

VI. PRIORITY RULES FOR THE (1, Cap(t)||
∑

Ti)

A schedule builder, as the one shown in Algorithm 1, may

be used in combination with some priority rule to make the

non-deterministic choice in each iteration: the job having the

highest priority is chosen to be scheduled. This paradigm is

called priority scheduling, which is particularly appropriate for

on-line scheduling, where decisions must be made quickly.

In the literature there are a number of rules that could

be adapted to the (1, Cap(t)||
∑

Ti) problem. Among the

simplest ones, we may consider Earliest Due Date (EDD)

or Shortest Processing Time (SPT); the first one picks the

operation with the smallest due date, while SPT selects the

one with the least duration. These two rules are often used for

objective functions that are non decreasing with the completion

time of the jobs, as for example the makespan, the lateness

or even the tardiness. As they are quite simple rules, it often

happens that they produce rather moderate results. In contrast,

more sophisticated rules are usually able to produce (much)

better results as they take into account more knowledge on

the problem. This is the case of the Apparent Tardiness Cost

(ATC) rule, which was used with success to solve some

scheduling problems with tardiness objectives (e.g. [14], [9]);

with this rule, the priority of each job j ∈ US is give by

Equation (4).

πj =
1

pj
exp

[

−max(0, dj − γ(α)− pj)

gp̄

]

(4)

TABLE I
SUMMARY OF RESULTS FROM [12]. AVERAGE TOTAL TARDINESS.

ATC GA

n EDD SPT 0.25 0.5 0.75 1.0 Best Avg Time(s)

15 8.28 14.03 7.35 7.17 7.27 7.50 6.53 6.53 13.13
30 26.56 55.84 19.36 18.93 18.81 19.09 17.73 17.76 21.49
45 46.52 137.74 36.25 36.20 35.83 36.75 33.31 33.45 30.22
60 131.31 262.54 90.59 89.86 89.03 89.23 86.84 87.19 38.48

Avg 53.17 117.93 38.39 38.04 37.74 38.14 36.10 36.23 25.83

In Equation (4), p̄ is the average processing time of the jobs in

US and g is a look-ahead parameter to be introduced by the

user. As we can see, the ATC rule combines the information

exploited by SPT and EDD as the priority of a job i is in

inverse ratio with its duration pi and it is decreasing with the

slack time to its due date dj − γ(α)− pj .

Table I reproduces some results reported in [12] obtained by

the rules EDD, SPT and ATC with four values of the parameter

g, and by a genetic algorithm proposed therein (GA), over a

set of 120 instances distributed in four sets having different

number of jobs (15, 30, 45, 60) with 30 instances each. As

we can see, ATC produces much better results than both EDD

and SPT, the results of the latter being actually poor, as can

be expected due to the fact that this rule does not consider

any information related to the tardiness objective. Besides, the

performance of ATC depends on the value of the parameter g;

the best value of g depending on the the size of the instances

n. Furthermore, the ATC rule produces worse results than

the GA, which of course takes much longer time than the

priority rules. These facts lead us to formulate the following

hypotheses:

1) The ATC rule may be outperformed by new rules having

a different structure or more detailed information of the

problem domain, or just considering other parameters.

2) Given a benchmark containing instances with a similar

structure, there may exist priority rules that are well

adapted to this particular benchmark.

VII. EVOLVING NEW PRIORITY RULES WITH GENETIC

PROGRAMMING

From the hypotheses above, our purpose is to devise new

dispatching rules for the (1, Cap(t)||
∑

Ti) problem. To this

end, we propose using hyper-heuristics, as they provide a

natural way of searching over a (sub)space of the heuristics

that solve a given problem. As we are interested in devising

some arithmetic expression, as that of the ATC rule given in

Equation (4), Genetic Programming (GP) [11] is a good choice

as it provides a way of evolving tree structures.

The first step in the design of a GP solution is selecting

the sets of terminal and function nodes of the candidate trees.

Terminal symbols represent the elementary properties that are

considered relevant to establish jobs’ priorities as, for example,

processing times, due dates, etc., as well as some constants.

Function symbols are the elementary arithmetic operations and

some other unary and binary functions.

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

565

Fig. 5. Tree representing the ATC rule.

Looking at conventional rules as ATC, EDD or SPT, we

have chosen the functional and terminal sets of symbols

showed in Table II. The considered grammar generates any

feasible expression in accordance with the arithmetic rules,

without any other restrictions. For this reason, we could have

inconsistencies as division by 0. To dealing with that, we

make use of the EDD rule in the following way: when a rule

produces a division by 0 for some job, we assume that this rule

does not decide anything for that job. Then, we consider the

job having the largest priority together with all jobs for which

the rule did not decide and apply to these jobs the EDD rule.

This way, a rule producing many divisions by 0 gets penalized

as many decisions are taken by using EDD. Figure 5 shows

the tree representing the ATC rule.

We remark that the set of terminal symbols only include

information regarding jobs, but no information about the

machine, such as its capacity Cap(t), which is relevant in

this problem. The main reason to not include it is that in

a first stage we plan to analyze the extent to which it is

possible to improve the conventional rules without considering

new information. Besides, including new terminal symbols

augments the size of the search space.

TABLE II
FUNCTIONAL AND TERMINAL SETS USED TO BUILD EXPRESSION TREES.

SYMBOL “-” IS CONSIDERED IN UNARY AND BINARY VERSIONS.

Function - + / * pow max min exp

Terminal pi di γ(α) p̄ 0.00 0.01 . . . 0.99 1.0

We used a rather conventional GP as proposed in [11] with

only some small changes.

The evaluation of chromosomes is the most time consuming

component of the algorithm and consists in solving a battery

of instances of the (1, Cap(t)||
∑

Ti) problem. The fitness

of each individual being the inverse of the average cost (total

tardiness) of the solutions obtained. Therefore, if the instances

had a similar structure, for example if their data were generated

from the same probability distributions, we could expect the

GP to evolve rules well adapted to those instances.

The evolutionary schema used in our approach is gener-

ational, with a selection phase in which all chromosomes

are organized into pairs and tournament replacement is done

between every two parents and their two offsprings. The

strategy is combined with elitism.

TABLE III
GP PARAMETERS’ SETTING.

Cross., Mut., Init. pop. gen. Standard [11]

Cross. and Mutation ratio 0.8 and 0.02 resp.

Population size 500

Number of generations 500

Max. init. chrom. depth 6

Max. chromosome size 32

Elitism 1

Number of runs 30

To control the size of chromosomes, we limit the size of the

initial candidate solutions and also after crossover. In this case,

if an offspring exceeded the size limit, it is discarded and the

parents are mated again choosing different points until some

valid offspring is reached.

VIII. EXPERIMENTAL STUDY

We have conducted an experimental study aimed at assess-

ing the quality of the rules obtanied by the proposed approach

(GP). To this aim, we implemented a prototype in Java, and

ran a series of experiments on a Linux cluster (Intel Xeon 2.26

GHz. 128 GB RAM).

The experiments were carried out over a benchmark set

of 2000 instances, generated by means of the procedure

introduced in [12]. Each instance is characterized by the

number of jobs (n) and the maximum capacity of the machine

(MC). Given fixed n and MC, a random instance is generated

using uniform distributions as follows (all sampled values are

integers):

1) Each job i ∈ J = {1, ..., n} is assigned a random

processing time pi ∈ {1, ..., 100}.

2) Once all jobs have a processing time, they are assigned

a random due date di ∈ [pi,max(pi + 2,
∑

j∈J
pj/2)].

3) The capacity of the machine (Cap(t)) is generated as a

unimodal function, with each constant interval taking a

random duration in the range [1,
∑

pj/MC]. Both the

initial and the final capacity of the machine is a random

integer in {1, 2}.

This procedure aims at avoiding the generation of under-

constrained instances, which can be easily solved. All the

2000 instances considered in this experimental study have been

generated with n = 60 and MC = 10.

We ran GP considering a training subset of 50 instances

to evaluate each candidate solution and used the remaining

1950 instances for testing. The parameters of GP are given

in Table III. These parameters were chosen from a large

set of preliminary experiments. In these experiments we ran

GP 30 times and recorded the best priority rule evolved

in each run. Then, we report the average results of the 30

rules and the results from the best and worst rules (over

the training and test sets). These results are summarized in

Table IV, which includes the results from EDD, ATC (with

g ∈ {0.25, 0.5, 0.75, 1.0}) and the solutions by the genetic

algorithm from [12] (GA).

The results over the test set show that the best priority rule

obtained in the training phase (which in this case is the second

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

566

TABLE IV
SUMMARY OF RESULTS. AVERAGE VALUES OF THE TOTAL TARDINESS

OBTAINED FOR THE TRAINING AND TEST SETS BY THE BEST RULES

EVOLVED IN EACH ONE OF THE 30 RUNS OF GP, ATC, EDD AND GA.

Priority Rules Train. Test.

Best(in training) 636.0 548.0
Average(30 rules) 640.4 553.1
Worst(in training) 678.0 580.0

ATC(g=0.25) 660.2 565.0
ATC(g=0.50) 650.9 552.8
ATC(g=0.75) 650.0 557.1
ATC(g=1.00) 659.0 570.2
ATC(avg. 4 g-values) 655.0 561.3

EDD 833.3 695.7

GA 616.1 520.4

Fig. 6. Tree representing the best rule obtained.

best performing rule on the test set) performs better than the

four versions of the ATC rule. In addition, the average value of

the 30 evolved rules outperforms the average value of the four

ATC rules. We conducted Wilcoxon paired tests confirming

statistically significant differences in favor of the new best

and average results obtained by the proposed GP approach.

The worst performing rule evolved by GP lags behind the ATC

rules, although it yields better average total tardiness than the

EDD rule, which performs worst overall. The GA produces

the best results, at the expense of taking much longer time

(note that priority rules take negligible time).

A close look at the actual priority rules generated reveal

some interesting insights. Figure 6 shows the tree represen-

tation of the best priority rule obtained in the experiments.

Interestingly, we can observe that this rule contains some odd

expressions, such as (dj − 0.43) on the left-most part of the

tree. This may be due to using a grammar allowing for any

valid arithmetic expression, and motivates further research,

e.g., using a restricted grammar instead to deal with these

situations.

IX. CONCLUSIONS

This paper studies the one machine scheduling problem with

variable capacity, denoted (1, Cap(t)||
∑

Ti), and shows that

Genetic Programming is a suitable approach to generate new

priority rules, improving the best-performing classical ones

for total tardiness minimization such as EDD and ATC. In

order to make a fair comparison, we considered the same

problem attributes and operations as in these rules. At the same

time, we have seen that there is still room for improvement,

as a genetic algorithm running for much longer time than

a schedule builder guided by priority rules is able to obtain

even better solutions. Therefore, we conjecture that by using

more attributes of the problem, in particular some related to

the capacity of the machine, better rules may be evolved.

Besides, it seems clear that no single rule can be the best

one in every problem instance. Therefore, it may be more

appropriate to try to evolve sets of rules to cover different

subsets of instances, or to take decisions at different stages in

the schedule construction. These are some promising lines of

research we plan to explore in the future.

ACKNOWLEDGEMENTS

This research has been supported by the Spanish Govern-

ment under research project TIN2016-79190-R.

REFERENCES

[1] Branke, J., Hildebrandt, T., Scholz-Reiter, B.: Hyper-heuristic evolution
of dispatching rules: A comparison of rule representations. Evolutionary
Computation 23(2), 249–277 (2015)

[2] Chand, S., Huynh, Q., Singh, H., Ray, T., Wagner, M.: On the use of
genetic programming to evolve priority rules for resource constrained
project scheduling problems. Information Sciences 432, 146 – 163
(2018)

[3] Durasevic, M., Jakobovi, D., Kneevi, K.: Adaptive scheduling on unre-
lated machines with genetic programming. Applied Soft Computing 48,
419 – 430 (2016)

[4] Giffler, B., Thompson, G.L.: Algorithms for solving production schedul-
ing problems. Operations Research 8, 487–503 (1960)

[5] Hart, E., Sim, K.: A hyper-heuristic ensemble method for static job-shop
scheduling. Evolutionary Computation 24(4), 609–635 (2016)

[6] Hernández-Arauzo, A., Puente, J., Varela, R., Sedano, J.: Electric vehicle
charging under power and balance constraints as dynamic scheduling.
Computers & Industrial Engineering 85, 306 – 315 (2015)

[7] (IEC), T.I.E.C.: Electric Vehicle Conductive Charging System?Part 1:
General Requirement; IEC 61851-1. London, UK (2001)

[8] Ingimundardottir, H., Runarsson, T.P.: Discovering dispatching rules
from data using imitation learning: A case study for the job-shop
problem. Journal of Scheduling First Online: 13 June 2017 (2017)

[9] Kaplan, S., Rabadi, G.: Exact and heuristic algorithms for the aerial
refueling parallel machine scheduling problem with due date-to-deadline
window and ready times. Computers & Industrial Engineering 62(1),
276–285 (2012)

[10] Koulamas, C.: The total tardiness problem: Review and extensions.
Operations Research 42, 1025–1041 (1994)

[11] Koza, J.R.: Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press (1992)

[12] Mencı́a, C., Sierra, M.R., Mencı́a, R., Varela, R.: Genetic algorithm for
scheduling charging times of electric vehicles subject to time dependent
power availability. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R.,
de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) Natural and
Artificial Computation for Biomedicine and Neuroscience. pp. 160–169.
Springer International Publishing, Cham (2017)

[13] Nguyen, S., Zhang, M., Johnston, M.: A sequential genetic programming
method to learn forward construction heuristics for order acceptance and
scheduling. In: Proceedings of the 2014 IEEE Congress on Evolutionary
Computation, CEC 2014 (2014)

[14] Sang-Oh Shim, S.O., Kim, Y.D.: Scheduling on parallel identical ma-
chines to minimize total tardiness. European Journal of Operational
Research 177(1), 135–146 (2007)

[15] Sedano, J., Portal, M., Hernández-Arauzo, A., Villar, J.R., Puente, J.,
Varela, R.: Intelligent system for electric vehicle charging: Design and
operation. DYNA 88(6), 640–647 (2013)

