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Abstract—The use of unmanned aerial vehicles (UAVs) is
gaining popularity in contexts such as smart cities, city logistics,
humanitarian logistics, natural disasters, or military operations.
One optimization challenge directly related to the use of UAVs is
the so-called team orienteering problem (TOP). In a TOP, each
customer can either be visited only once by a single vehicle or not
visited at all. Visiting each customer has associated a predefined
reward, and the driving ranges of vehicles are typically limited
by the duration of electric batteries. Due to the latter constraint,
it is usual that not all customers can be visited. The main
goal is then to find a set of open tours that maximizes the
total collected reward without exceeding the fleet capacity nor
the driving range limitation. In this paper, we consider the
stochastic version of the problem, in which travel times are
modeled as random variables following theoretical probability
distributions. To solve this stochastic version of the TOP, a
simheuristic algorithm combining a biased-randomized heuristic
with simulation techniques is proposed. One of the main goals of
our approach is to provide an ‘agile’ optimization methodology,
i.e., one lightweight algorithm that can be easily implemented in
real-life scenarios under uncertainty and, at the same time, can
provide solutions in real-time (just a few seconds or even less).

Index Terms—Metaheuristics, simulation, team orienteering
problem, unmanned aerial vehicles, agile optimization.

I. INTRODUCTION

The term ‘smart city’ refers to a series of urban systems and

domains that are interconnected, via information technologies

(ITs), with the purpose of optimizing their operations and

management [1]. Smart cities represent a multidisciplinary

research field that is under a continuous updating process

driven by urban, social, and technology evolution [2]. These

advances are generating new services and products for citizens,

which also arises new challenges in data gathering, data

analytics, and efficient decision making.

Unmanned aerial vehicles (UAVs) are known for au-

tonomous operation and mobility. Though there are first stud-

ies available [3] [4], the usage of UAVs in smart cities is not

fully explored yet. Until today they were mainly used for and

effectively integrated in military activities, surveillance, secu-

rity, precision agriculture and goods and services deliveries [5]

[6], while there are still concerns on their effective and reliable

implementation in smart cities. With the use of a reliable and

intelligent transportation system (ITS), it would be possible to

replace human road support teams by a set of UAVs overflying

highways to monitor possible traffic violations and accidents,

or for providing specific information to other transport users.

Technological support for interacting with other transport users

is given by the ITS, dedicating a short-range communication

interface to UAV, which transmit information either vehicle-to-

vehicle or vehicle-to-infrastructure. Using wireless links when

being close to each other, connected UAV impose improved

road safety and traffic efficiency. The execution of these

specific roles requires coordination of and collaboration within

a group of UAVs. In particular, there is a need to design

effective routing plans for a group of UAVs that need to visit

a series of locations in order to gather some information (e.g.,

aerial pictures or videos, etc.). Thus, technological progress

is required in the fields of advanced algorithms and other

IT-based support tools to ensure: (i) a safe and effective

navigation of UAV within the transportation infrastructure

[7]; (ii) predictive analytics fed by critical data, which are

needed for an efficient use of energy; and (iii) the use of

computer vision techniques and remote sensing information

for processing aerial real-time video footage.

Initially proposed by [8], the team orienteering problem

(TOP) is one realistic variation of the well-known vehicle

routing problem [9]. The TOP is gaining interest both in the

scientific community and the industry due to the increasing

use of electric vehicles and unmanned aerial vehicles, where

driving range limitations need to be taken into account [10].

Consider the following elements: (i) a set of customer nodes,

each of them with an associated reward score that can be

collected the first time a customer is visited by any UAV; and

(ii) a team of m UAVs with limited driving-range capabilities.

Then, the goal is to determine a set of m open routes (each of

them connecting an origin depot with a destination depot),

which maximizes the total collected reward by visiting a subset

of available customers without violating the driving range

constraint.

Notice that each customer can either be visited once or

not visited at all. Also, due to the driving range limitation,

it is possible that not all customers can be visited. Being an
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636

Des$na$on	

(Node	n+1)	

Origin	

(Node	0)	

7

6

7

8
4

4

8

6

3

9

2

10 

7

12 

Route 2 

Route 1 

T~ LogN(µ, σ) 

Fig. 1: Routing UAVs and the team orienteering problem

extension of the vehicle routing problem in which a subset

of customers have to be selected and a set of routes cover-

ing them constructed, the TOP is also a NP-hard problem.

Accordingly, different metaheuristic approaches have been

proposed in recent years to deal with large-scale instances

of the deterministic version of the problem. However, the

stochastic counterpart, which considers real-life uncertainty in

the form of random service and travel times, has received much

less attention. This paper analyzes a stochastic TOP variant in

which travel times are modeled as random variables (Figure 1).

In particular, we consider the problem of recollecting as much

reward as possible from visiting customers using a fleet of m

UAVs with driving ranges limited by the time-duration of their

batteries. An example of practical application could be the use

of UAVs to take pictures of different locations after a natural

disaster, a terrorist attack, or a humanitarian crisis. Notice

that each of these pictures can provide valuable information

that can help to improve the conditions of the people affected

by the event or even to save their lives by making informed

decisions on the more reliable evacuation paths.

Finding a solution (set of open routes) that maximizes

the total expected reward is usually the main goal of the

stochastic team orienteering problem (STOP). However, since

solutions to the STOP are applied in a stochastic environment,

other statistical properties should be considered too. Thus, for

instance, one could be interested in solutions offering a high

reliability level, i.e., routing plans with a low probability of

violating the driving-range threshold.

This paper proposes a simulation-optimization algorithm to

efficiently cope with the STOP. First, a biased-randomized

heuristic for solving the deterministic TOP is introduced. This

heuristic is then extended into a simheuristic algorithm [11] to

solve the stochastic TOP. Due to their effectiveness, simheuris-

tic algorithms are being increasingly used in solving different

stochastic variants of the vehicle routing problem, like the

stochastic inventory routing problem [12], the stochastic waste

collection problem [13], or the stochastic arc routing problem

[14].

The remaining sections of this paper are structured as

follows: Section II reviews related work on the TOP. Sec-

tion III describes our biased-randomized heuristic for solving

the deterministic TOP. Section IV describes our extension to

a simheuristic to solve the STOP. A round of computational

experiments for the STOP are described in Section V. Finally,

Section VI summarizes the highlights of this paper and pro-

poses some future research lines.

II. RELATED WORK

The team orienteering problem was first introduced in

[8]. To solve the TOP, they propose a heuristic approach

where the stops that are farthest from the start and the finish

nodes are selected as seeds for the team members, and all

possible remaining points are inserted into the routes using the

cheapest insertion rule. If unassigned points remain, new team

routes are constructed. Additional approaches used to solve

the deterministic TOP have been proposed in the literature.

Although we can find some exact methods, such as branch-

and-cut [15] or branch-and-cut-and-price algorithms [16] to

solve the TOP, only small-scale instances can be solved with

these methods.

[15] propose a particle swarm optimization (PSO) method

to solve the TOP. Similarly, [17] present a multi-start simulated

annealing (SA) algorithm to address the TOP. It integrates an

SA stage inside a multi-start procedure to reduce the possi-

bility of getting trapped in a local optima. Genetic algorithms

(GA) have been also proposed in this area. For instance, [18]

introduce a GA which imitates the natural process of evolution

to solve the TOP. Other approach to solve the TOP is proposed

by [19]. These authors present a Pareto mimic algorithm,

which uses a mimic operator to generate a new solution by

imitating an incumbent solution.

The stochastic version of the orienteering problem has

only received attention in recent years. To the best of our

knowledge, previous work has only considered the single-route

problem rather than the STOP that we analyze here. There

is also some variation in which aspects of the problem are

stochastic. For example, the original stochastic single-vehicle

orienteering problem (OP) [20] defines the OP with stochastic

profits, which assumes that only the scores associated with

each node are stochastic – in particular, it is assumed they

follow a Normal probability distribution. There are also other

works that study the OP with stochastic travel times [21]–

[24]. This version can be classified as the orienteering problem

with stochastic weights. Notice that our work extends these

previous ones by considering multiple vehicles or routes.

In developing solutions to the STOP, one critical question

is how to deal with open routes which exceed the designated

time limit imposed by the driving-range constraint. In [25],

exceeding the time limit incurs in a penalty cost that is

proportional to the amount exceeding it. A similar approach is

used in [26]. An alternative concept is presented in [27], where

the probability of exceeding the time limit must be lower than

a threshold value. The problem presented by [21] is partially

different, since they do not force the vehicle to return to a set

of depots but, instead, it can stop at any location once the time

limit is reached. Also, penalties are incurred if a vehicle does
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not manage to visit a scheduled node within the time limit.

In contrast, [24] keep the hard constraint on the tour length

that is used in the deterministic version of the problem and

abort the route if the expected arrival time to the destination

depot is equal to the remaining time. In the previous works,

solving methodologies such as VNS metaheuristics and two-

stage stochastic optimization were employed.

III. A BIASED-RANDOMIZED HEURISTIC FOR ROUTING

UAVS

A novel constructive heuristic for the TOP has been de-

signed as a first step in our solving approach. One of the

main goals of our proposed heuristic is to provide an ‘agile‘

optimization methodology. The term ‘agile‘ referring to sot-

fware development methodologies (‘agile‘ programming) was

introduced by Beck et. al. [28], and it refers to any rapid and

easy software development of high-quality. Inspired in this

definition, we propose an ‘agile‘ optimization methodology

to develop optimization lightweight algorithms, which can be

easily implemented in a short period of time, and they can be

used in a efficient way in real-life scenarios under uncertainty,

providing solutions in real-time (just a few seconds).

The proposed heuristic, which has been designed following

this ‘agile‘ optimization methodology, it is inspired on the

well-known savings heuristic for the vehicle routing problem

[29]. It has to be adapted to consider the particular character-

istics of the TOP, i.e.: (i) the origin depot could be different

from the destination one; (ii) not all the customers have to

be visited; and (iii) the reward collected by visiting nodes

must be considered during the construction of the routing plan.

The goal was to design a new savings-based heuristic able to

outperform the traditional one employed for solving the TOP

[30].

Algorithm 1 provides a high-level description of the con-

structive heuristic. It starts by generating an initial dummy

solution (line 1), in which one route per customer is considered

–i.e., for each customer i ∈ A, a vehicle departs from the

origin depot (node 0), visits i, and then resumes its trip

towards the destination depot (node n + 1) (Figure 2a). If

any route in this dummy solution does not satisfy the driving-

range constraint, the associated customer is discarded from

the problem, since it cannot be reached with the current fleet

of vehicles. Next, we compute the ‘savings’ associated with

each edge connecting two different customers (line 2), i.e.: the

benefits obtained by visiting both customers in the same route

instead of using distinct routes.

In order to compute the savings associated with an edge, one

has to consider both the travel time required to traverse that

edge as well as the aggregated reward generated by visiting

both customers. Thus, we define the concept of savings, s′ij
as described in Equation 1. Notice that it takes into account

the trade-off between the classical time-based savings, sij , and

the aggregated reward, ui + uj , i.e.:

s′ij = α · sij + (1− α) · (ui + uj) (1)

Algorithm 1 Savings-based heuristic for the TOP

1: sol ← generateDummySolution(Inputs)
2: savingsList ← computeSortedSanvingsList(Inputs, α)
3: while (savingsList is not empty) do

4: arc ← selectNextArcAtRandom(savingsList, β )
5: iRoute ← getStartingRoute(arc)
6: jRoute ← getClosingRoute(arc)
7: newRoute ← mergeRoutes(iRoute, jRoute)
8: travelTimeNewRoute ← calcRouteTravelTime(newRoute)
9: isMergeValid ← validateMergeDrivingCon-

straints(travelTimeNewRoute, drivingRange)
10: if (isMergeValid) then

11: sol ← updateSolution(newRoute, iRoute, jRoute, sol)
12: end if

13: deleteEdgeFromSavingList(arc)
14: end while

15: sortRoutesByProfit(sol)
16: deleteRoutesByProfit(sol, maxVehicles)
17: return sol

where sij = ti(n+1) + t0j − tij (Figure 2b), and α ∈ (0, 1).
The specific value of α needs to be empirically tuned, since it

will depend on the heterogeneity of the customers in terms of

rewards. Thus, in a scenario with high heterogeneity, α will

be close to zero. On the contrary, α will be close to one for

homogeneous scenarios. Notice that for each edge there are

two associated savings, depending on the actual direction in

which the edge is traversed. Thus, each edge generates two

different arcs.

After computing all the savings, the list of arcs can be

sorted from higher to lower savings. Then, a route-merging

process, based on the savings list, is started. In each iteration,

the savings list of arcs is randomized using a biased probability

distribution, and an arc is selected (line 4). As discussed in

detail in Juan et al [31], the biased randomization of the

savings list allows arcs to be selected in a different order

in each iteration, where arcs with higher savings are more

likely to be selected than those with lower savings, while

at the same time, the logic behind the savings heuristic is

maintained. In our case, a skewed Geometric Distribution is

employed to induce this biased randomization behaviour. The

Geometric Distribution uses one single parameter, β, which

is relatively easy to set since 0 < β < 1. After completing

some preliminary tests with different values for and analysing

the corresponding outcomes, we decided to set β = 0.3 in

our computational experiments. The selected arc connects two

routes, which are merged into a new route as far as this new

route does not violate the driving-range constraint (line 9).

Finally, the list of routes are sorted according to the total

reward provided (line 15) to select as many routes from this

list as possible taking into account the restricted number of

vehicles in the fleet.

This heuristic is encapsulated within a multi-start process.

This allows to run the biased-randomised heuristic several

times, thus increasing our chances of finding a better solution.

IV. A SIMHEURISTIC FOR ROUTING UAVS UNDER

UNCERTAINTY

Algorithm 2 provides an overview of our multi-stage

simheuristic approach, which extends the biased-randomized
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Fig. 2: Dummy solution (top) and time-based savings (down).

heuristic in order to deal with the STOP. In the first stage,

a feasible initial solution (initSolution) is constructed using

the savings-based heuristic described in Section III (line 1).

During the second stage, an adaptive heuristic enhances the

initial feasible solution by iteratively exploring the search

space and conducting a ‘reduced’ number of simulation runs

that allow to: (i) obtain observations on the total time em-

ployed by the current solution (from which the expected time

and other statistics can be estimated); and (ii) provide feedback

that can be used by the heuristic to better guide the search

(e.g., by updating the base solution according to the estimated

statistics). From this stage, a reduced set of ‘elite’ solutions is

obtained.

Notice that during the second stage, whenever a newSol is

‘promising’, it is sent through a fast Monte Carlo simulation

process (line 8) to estimate the following values: (i) the

Algorithm 2 Simheuristic approach

1: initSolution ← ComputeInitSolution(Inputs)
2: fastSimulation(solution) ⊲ Monte Carlo Simulation
3: baseSol ← initSolution
4: while (ending condition is not met) do

5: newSol ← savingBasedHeuristic(Inputs, α, β) ⊲ biased-randomized
heuristic

6: if (detProfit(newSol) improves detProfit(baseSol) then

7: fastSimulation(newSol) ⊲ Monte Carlo Simulation
8: if (stochProfit(newSol) improves stochProfit(baseSol) then

9: baseSol ← newSol
10: if (stochProfit(baseSol) improves worstStochProfit(eliteSols)

then

11: eliteSols ← update(eliteSols, baseSol)
12: end if

13: end if
14: end if

15: end while

16: return eliteSols

expected return; and (ii) its reliability, measured in terms of

the percentage of routes that are effectively completed without

violating the driving range constraint. Also, whenever the

stochastic value of the newSol outperforms that of the baseSol

and / or that of some elite solution (eliteSols), these solutions

are updated to newSol.

V. COMPUTATIONAL EXPERIMENTS: STOCHASTIC CASE

There are not STOP instances to compare with in the

literature. For that reason, we have extended the deterministic

instances proposed in [8] into stochastic ones.

In our computational experiments, we have modeled the

travel times Tij using Log-Normal probability distributions.

As discussed in [32], the Log-Normal distribution is a more

natural choice than the Normal distribution when modeling

non-negative random variables, such as the elapsed time until

an event occurs (e.g., the time it takes the vehicle to traverse

a given edge). In a real-world application, historical data

could be used to model each Tij by a different probability

distribution. The Log-Normal has two parameters, namely: the

location parameter, µ, and the scale parameter, σ. According

to the properties of the Log-Normal distribution, these param-

eters will be given by the following expressions considering

stochastic travel times between nodes i and j:

µij = ln(E[Tij ])−
1

2
ln

(

1 +
V ar[Tij ]

E[Tij ]2

)

(2)

σij =

∣

∣

∣

∣

∣

√

ln

(

1 +
V ar[Tij ]

E[Tij ]2

)

∣

∣

∣

∣

∣

(3)

In our experiments, which extend classical deterministic in-

stances into stochastic ones, it is assumed that E[Tij ] = tij
(∀i, j ∈ N ), being tij the travel time provided in the determin-

istic instance. Similarly, it is considered that V ar[Tij ] = c·tij ,

being c ≥ 0 a design parameter. Notice that the deterministic

instances are a particular case of the stochastic ones, which

are obtained for c = 0. In our experiments, we have used the

value c = 0.05.

The classic deterministic benchmarks consist of 7 different

classes, Table I refers to class 1, and it shows: (i) the best-

known solution for the deterministic variant of the problem

(BKS), obtained from the existing TOP literature; (ii) our best

solution for the deterministic variant of the problem (OBS-D);

(iii) the computational time in seconds to obtain the OBS-D;

(iv) the gap between the BKS and the OBS-D; (v) the reward

of OBS-D when it is applied as a solution of the stochastic

variant of the problem (OBS-D-S); (vi) our best solution for

the stochastic variant of the problem (OBS-S); and (vii) the

computational time in seconds to obtain the OBS-S.

Figure 3 shows, for the analyzed class, the percentage

gaps between: (i) the best-found deterministic solution when

applied into stochastic conditions (OBS-D-S) and itself when

applied in a deterministic environment (OBS-D); and (ii) the

best-found stochastic solution when applied into stochastic

conditions (OBS-S) and the best-found solution for the deter-

ministic version (OBS-D). Notice that the OBS-S boxplot is
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TABLE I: Results for class 1 benchmark instances.

Deterministic execution Stochastic execution

Instance BKS OBS-D Time (s) Gap (%) OBS-D-S OBS-S Time (s)
Reward [1] Reward [2] [3] [4](1-2) E[Reward] [5] E[Reward] [6] [7]

p1.2.b 15 15 0 0.0 14.3 14.3 4
p1.2.c 20 20 0 0.0 18.2 18.2 4
p1.2.d 30 30 0 0.0 26.0 26.3 4
p1.2.e 45 45 0 0.0 41.7 42.2 4
p1.2.f 80 80 0 0.0 64.6 70.5 5
p1.2.g 90 90 0 0.0 75.8 83.7 4
p1.2.h 110 110 0 0.0 97.5 103.6 17
p1.2.i 135 135 0 0.0 94.5 122.9 4
p1.2.j 155 155 0 0.0 123.1 141.0 5
p1.2.k 175 175 0 0.0 124.2 163.3 7
p1.2.l 195 195 5 0.0 125.8 179.5 9
p1.2.m 215 215 9 0.0 170.2 201.4 16
p1.2.n 235 235 0 0.0 152.9 218.8 5
p1.2.o 240 240 4 0.0 204.4 230.7 7
p1.2.p 250 250 0 0.0 167.3 230.9 5
p1.2.q 265 265 1 0.0 205.4 247.8 7
p1.2.r 280 280 21 0.0 168.9 259.9 4
p1.3.c 15 15 0 0.0 14.3 14.3 6
p1.3.d 15 15 0 0.0 15.0 15.0 6
p1.3.e 30 30 0 0.0 24.9 27.0 6
p1.3.f 40 40 0 0.0 31.8 32.6 23
p1.3.g 50 50 0 0.0 44.2 48.4 6
p1.3.h 70 70 1 0.0 66.3 66.3 11
p1.3.i 105 105 0 0.0 87.2 94.1 6
p1.3.j 115 115 0 0.0 90.7 102.2 6
p1.3.k 135 135 0 0.0 109.2 121.4 17
p1.3.l 155 155 0 0.0 124.0 138.8 13
p1.3.m 175 175 16 0.0 127.7 159.5 9
p1.3.n 190 190 1 0.0 152.2 175.1 15
p1.3.o 205 205 0 0.0 163.5 183.0 11
p1.3.p 220 220 1 0.0 177.5 199.0 32
p1.3.q 230 230 1 0.0 190.0 218.0 6
p1.3.r 250 250 17 0.0 207.2 233.5 27
p1.4.d 15 15 0 0.0 14.3 14.3 8
p1.4.e 15 15 0 0.0 15.0 15.0 8
p1.4.f 25 25 0 0.0 23.2 23.2 8
p1.4.g 35 35 0 0.0 30.1 34.3 8
p1.4.h 45 45 0 0.0 37.9 40.8 9
p1.4.i 60 60 0 0.0 48.5 55.0 8
p1.4.j 75 75 8 0.0 63.1 67.2 8
p1.4.k 100 100 27 0.0 86.3 86.3 8
p1.4.l 120 120 0 0.0 107.1 116.0 9
p1.4.m 130 130 0 0.0 112.0 124.9 10
p1.4.n 155 155 0 0.0 121.4 135.7 8
p1.4.o 165 165 0 0.0 129.6 149.0 28
p1.4.p 175 175 6 0.0 152.2 159.1 16
p1.4.q 190 190 6 0.0 167.1 171.9 8
p1.4.r 210 210 0 0.0 170.8 191.1 9

Average: 3 0.0 10

Fig. 3: Boxplot comparison of gaps OBS-D-S and OBS-S w.r.t.

OBS-D.

always closer to the OBS-D value than the OBS-D-S boxplot.

In other words, employing the best-found deterministic plan

into a stochastic environment usually leads to suboptimal

solutions. Notice also that the OBS-D value can be seen

as an upper bound for the expected reward under stochastic

conditions.

VI. CONCLUSION

The incorporation of unmanned aerial vehicles in urban

areas describe promising research fields whose full potential

are still to be explored in future. Still, these innovations raise a

number of concerns and challenges that complicate decision-

making processes for citizens and city managers. New hybrid

optimization-simulation and optimization-machine-learning al-

gorithms have to be developed to efficiently face these chal-

lenges. Scenarios for dynamic and uncertain real-life features

have to be included.
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