
XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

763

Choosing population sizes to enhance Brain Storm

Optimization algorithms
Ricardo Garcı́a-Ródenas, Luis Jiménez Linares, and Julio Alberto López-Gómez

{Ricardo.Garcia, Luis.Jimenez, JulioAlberto.Lopez}@uclm.es

Abstract—Nature-inspired algorithms (NIA) are a very po-
werful tool to solve plenty of complex science and engineering
problems. In the last ten years, a new kind of NIA algorithms,
so-called human-inspired algorithms, has arisen in optimization
tasks obtaining promising results. In this paper, the effect of
population size in Brain Storm Optimization algorithm (BSO)
is studied with the purpose of choosing good enough population
sizes which improve its performance. Moreover, it is also analyzed
the possibility of using population samples instead of the whole
population, studying its performance in terms of time and
computational cost. To do that, hybrid functions of IEEE CEC
competitions have been used as benchmark problems. The results
show that twenty five individuals is a good enough population
size in BSO algorithms while population sampling improves the
performance of the algorithm.

Index Terms—Nature-inspired algorithms, Human-inspired al-
gorithms, Brain storm optimization, Population size, Population
sampling

I. INTRODUCTION

Traditionally, complex optimization problems have required

effective and sophisticated methods to deal with them. In this

context, Nature-Inspired Algorithms (NIA) appeared in the

1960s. One of the main features of NIA algorithms is they

take their knowledge, contents and procedures departing from

nature. Thus, algorithms like Particle Swarm Optimization

(PSO) [1], Genetic Algorithm (GA) [2] or Ant Colony Op-

timization (ACO) [3] among others, have been widely applied

in operational research.

During the last ten years, there has been a change in the source

of inspiration to build NIA algorithms. Nowadays there is a

trend which tries to model the behaviour of humans in problem

solving. Along this line, a new kind of NIA algorithms has

appeared which is called Human-Inspired Algorithms (HIA).

There are currently six HIA algorithms which are the follow-

ing: Seeker Optimization Algorithm (SOA) [4], Imperialist

Competitive Algorithm (ICA) [5] , Social Emotional Opti-

mization Algorithm (SEOA) [6], Teaching Learning-Based

Optimization (TLBO) [7], Team Effectiveness Based Opti-

mization (TEBO) [8] and Brain Storm Optimization algorithm

(BSO) [9] which is the algorithm used in this paper.

This paper has two targets: On the one hand, it tries to choose

good enough population sizes in Brain Storm Optimization

Ricardo Garcı́a-Ródenas, Department of Mathematics at University of
Castilla la Mancha, Spain

Luis Jiménez Linares, Department of Technology and Information Systems
of University of Castilla la Mancha, Spain

Julio Alberto López Gómez, Department of Technology and Information
Systems at University of Castilla la Mancha, Spain.

algorithm when it is applied to hybrid functions. On the other

hand, it studies whether is better to use the whole population in

the algorithm or only a sample of it, in terms of computational

cost and quality of solutions.

The rest of the document is structured as follows: section 2

studies the related work in BSO algorithm. Section 3 describes

BSO algorithm and ADMBSO algorithm, which is the version

used in the experiments of this paper. Later, section 4 defines

the experiments carried out and studies the results obtained

and finally, section 5 introduces the conclusions about this

work and some future works.

II. RELATED WORK

To the best of our knowledge, there are 75 papers, 8 theses

and 5 patents in total on the development and application of

the BSO algorithm. The current research in BSO is concerned

with three main research lines which are the following:

• Study and analysis of the algorithm. In this line, all

studies about new brainstorming operators [10], modifi-

cations [11], clustering methods [12], parameters adjust-

ment [13], hybridizations [14], etc are grouped.

• Algorithm’s variants. New variants of brain storm algo-

rithms are required to solve successfully different com-

plex optimization problems like multimodal [15], hybrid

or multiobjective problems [16], among others.

• BSO applications. There is a lack of BSO applications to

real world problems, although there are many applications

in fields like wireless sensor networks [17], multiple UAV

formation flights [18], stock index forecasting [19] and

economic dispatch [20].

III. BRAIN STORM OPTIMIZATION ALGORITHMS

Brain Storm Optimization (BSO) algorithm is a human-

inspired algorithm which was born in 2011 and developed by

Shi [9]. This NIA algorithm is inspired by the human brain-

storming process. In it, a group of people or brainstorming

group proposes different ideas to solve a problem. Then, new

ideas are generated from the existing ones in order to reach

the optimum idea. The brainstorming process ends when an

optimum idea has been achieved.

This way, brainstorming departs from a set of random ini-

tial solutions. After initialization, new ideas are generated

departing from the existing ones through convergence and

divergence operations. Convergence operation is focused on

searching new solutions in a set of search areas where good

solutions are found. Formally, these areas corresponds with

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

764

local minima in the objective function. To carry out conver-

gence operation, cluster analysis techniques have been widely

applied, using mainly the k−means algorithm. Moreover,

divergence operation is in charge of building new solutions. In

brainstorming, new solutions can be generated departing from

one or more existing solutions. For simplicity, BSO algorithm

considers only two possibilities: generating a new solution

departing from one existing solution or two. The first option

corresponds with local search in an optimization algorithm and

the second is related to exploration. The kind of generation

will be made using a set of probabilities. After BSO, different

variants of the algorithm have appeared with the purpose of

improving BSO capabilities and guaranteeing a good tradeoff

between exploration and exploitation. In this paper, Advanced

Discussion Mechanism based on Brain Storm Optimization

Algoritm (ADMBSO) [11] is used instead of the original

BSO. ADMBSO has been used since it is the most recent

and standard version of BSO algorithm. In it, exploration

is encouraged in the first iterations and exploitation in the

last iterations. Moreover, ADMBSO adds different rules to

generate new ideas in each epoch in intra and inter cluster

generation. On the one hand, inter cluster generation will

be possible in this algorithm building a new idea from two

ideas in the same cluster. Briefly, this algorithm is shown in

Algorithm 1.

IV. EXPERIMENTS

In this section, the two experiments carried out to choose

good enough population sizes in Advanced BSO algorithm

(ADMBSO) are described in detail.

A. Experiment 1: Choosing population size in BSO

The problem of choosing a good enough population size for

a NIA algorithm is difficult to address. The reason is because

it is generally problem-dependent and in general, the settings

of one algorithmic parameter could be related to the settings

of other algorithmic parameters, in terms of optimization

performance. Besides, it depends on the particular version of

BSO used, the dimensionality problem and the complexity of

the search space. That is why, in this experiment, different

population sizes widely applied in other algorithms have been

tested over ADMBSO algorithm and over a set of concrete

benchmark functions, in this case, hybrid functions from IEEE

CEC conference competition.

In order to recommend good population sizes for BSO algo-

rithms, the definition of robustness analysis proposed in [21]

is taken. According to that, an optimization algorithm is robust

if inequality

|f(x∗

alg)− f(x∗)| < ǫrel · |f(x
∗)|+ ǫabs (1)

holds, where x∗

alg is the best value reached by the algorithm,

x∗ is a global minimum of the objective function f (it is

assumed, given) and ǫrel, ǫabs are two parameters which

control the accuracy of the algorithm.

Thus, different population sizes can be proposed and tested

with different values of ǫabs in order to detect if different

Algorithm 1 Advanced Discussion Mechanism based on BSO

algorithm

1: POPULATION INITIALIZATION: Initialize n random solu-

tions in population pop.

2: while Termination Condition is not satisfied do

3: Pintra = Plow + Phigh
Ncurgen
Nmaxgen

4: Pinter = 1− Pintra

5: /* Update ǫ */

6: ǫ(t) = logsig
(maxiter

2
−niter

k

)

∗ random(t)

7: POPULATION EVOLUTION: Generate n new ideas de-

parting from the current population

8: BEGIN Converging Operation

9: Group pop in m clusters

10: END Converging Operation

11: for i = 1 to card(pop) do

12: BEGIN Diverging Operation

13: if rand() < Pintra then

14: /* Generate individuals from one cluster*/

15: if rand() < pceni then

16: /* Add noise to center of the cluster */

17: cinew = ciold + ǫ(t) ∗ random(t)
18: else if rand() < pindi then

19: /*Combine two ideas from this cluster and add

noise */

20: Select xold1 and xold2

21: xi
new = (xi

old1 − xi
old2) ∗ random(t)

22: else

23: /*Add noise to a random idea*/

24: xi
new = xi

old + ǫ(t) ∗ random(t)
25: end if

26: else

27: /*Generate individuals from two clusters*/

28: if rand() < pcenii then

29: /*Select two centroids cold1, cold2, combine

them and add noise/*

30: xi
old = w1 ∗ c

i
old1 + w2 ∗ c

i
old2

31: xi
new = (ciold1 − ciold2) ∗ random(t)

32: else if rand() < pindii then

33: /*Generate randomly an idea depart from two

individuals of two clusters/*

34: Select xold1 and xold2

35: xi
old = w1 ∗ x

i
old1 + w2 ∗ x

i
old2

36: xi
new = (xi

old1 − xi
old2) ∗ random(t)

37: else

38: /* Generate randomly a new idea */

39: end if

40: end if

41: END Diverging Operation

42: REPLACE MECHANISM: If the new solution built is

better than the current one, substitute it, otherwise,

maintain the current solution

43: /* Update Solution */

44: if f(xnew) < f(xold) then

45: xold = xnew

46: end if

47: end for

48: end while

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

765

population sizes are capable of reaching determined levels

of accuracy. Moreover, the convergence speeds of the same

algorithm with different population sizes can also be compared

using the expression proposed in [21] and shown in equation

2:

s =
NFEpop1

NFEpop2
(2)

where s is the convergence speed ratio, NFEpop1 is the

number of functions evaluations which the algorithm with

the population size pop1 needs to satisfy inequality (1) and

NFEpop2 is the same using pop2. To do that, three ǫabs
values have been proposed in order to test the performance

and robustness of different population sizes while ǫrel
has been fixed to 10e−4 like in [21]. These values are

ǫabs1 = 10e−1, ǫabs2 = 10e−3, ǫabs3 = 10e−5

Moreover, four population sizes have been tried in this

experiment. Firstly, one hundred ideas has been taken as

a reference value, since it is used in most of the articles

published in BSO and cited here. After that, and following

the fact that lower values are efficient in other metaheuristics

like in PSO, other population sizes have been proposed. Thus,

pop25 has twenty five ideas or individuals, pop50 has fifty

ideas, pop75 has seventy five individuals and pop100 has one

hundred ideas. The sample of benchmark functions consists

of eight objective functions with thirty dimensions taken from

IEEE CEC conference competitions. They are well-known

optimization problems. In this paper, we have focused on

hybrid functions, which are the most complex benchmarks

in CEC competition. They are the following: rotated hybrid

composition function 1, rotated hybrid composition function

1 with noise in fitness, rotated hybrid composition 2, rotated

hybrid composition 2 with a narrow basin for the global

optimum, rotated hybrid composition 3, rotated hybrid

composition 3 with high condition number matrix, rotated

hybrid composition function 4 and rotated hybrid composition

function 4 without bounds. These problems are named as

P1,P2,...,P8.

Then, ADMBSO algorithm has been executed for each

population size using the parameters employed in [11]. The

configuration is the following: m = 5, Pcen = 0.7, Pind =
0.2, Prnd = 0.1, Pcens = 0.7, Plow = 0.2, Phigh = 0.7.

The total number of function evaluations computed in each

execution is 100000. Ten trials have been run for each

population size in order to minimize the random effect in the

experiment.

Average values of mean, maximum, minimum, variance and

standard deviation have been obtained for each population

size. The total time spent in all executions is reported too.

These results are shown in table I. The minimum values for

each measure are typed in bold. Thus, it is possible to see

that pop25 needs less time than the rest of populations to

achieve its results and it is the population which reaches the

minimum values regarding the rest of population sizes in

more test functions. Moreover, figure 1 shows the temporal

cost of each population size for each problem. This way, it is

possible to see that pop25 provides the best results regarding

quality of solution and temporal cost.

Furthermore, regarding robustness analysis, table II shows the

Fig. 1. Temporal Cost for different population sizes

convergence speed of different population sizes in comparison

with the population of one hundred individuals (used in [11]

and considered as reference). Note that problems 3 and 4

do not appear in this table because they did not achieve any

robustness threshold. In this manner, when s values are less

than 1, it means that the proposed configuration is better

than pop100 taken as reference. If it is greater than 1, the

performance of pop100 is better. The best rates are typed in

bold. It is possible to conclude that all the sizes tested in

this paper are better than p100 used in the most of articles

published about BSO.

TABLE II
ANALYSIS OF CONVERGENCE SPEED IN ADMBSO ALGORITHM

s1 s2 s3

P1 25 0,86 - -
P1 50 0,90 - -
P1 75 0,93 - -

P2 25 - - -
P2 50 0,96 - -
P2 75 0,98 - -

P5 25 0,56 - -
P5 50 0,75 - -
P5 75 0,99 - -

P6 25 0,59 - -
P6 50 1,04 - -
P6 75 0,77 - -

P7 25 0,72 0,95
P7 50 0,82 1,01 1,01
P7 75 1,09 0,89 0,90

P8 25 1,05 1,19 1,17
P8 50 0,92 0,64 0,63

P8 75 1,01 0,96 0,94

B. Experiment 2: Population sampling in BSO

One solution to improve the quality of population could be

to choose a sample of the population in the search process.

It would imply a better initial population but include the

problematic of choosing a good sample which combines

good fitness values in the individuals chosen and good ideas

diversity. Besides, the sampling process adds computational

cost to the algorithm.

To do that, a multinomial probability distribution can be

established according to the fitness values. This way, it will

determine the probability of choosing an individual in the po-

pulation according the fitness values of the whole population.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

766

TABLE I
ADMBSO STATISTICAL RESULTS FOR HYBRID CEC BENCHMARK FUNCTIONS

Mean Best Worst Variance Std Time

P1 25 2,93E+02 2,08E+02 1,55E+03 1,79E+04 1,33E+02 1,82E+05

P1 50 2,96E+02 2,21E+02 1,10E+03 1,28E+04 1,13E+02 2,44E+05
P1 75 3,57E+02 1,66E+02 1,06E+03 3,86E+04 1,96E+02 3,68E+05
P1 100 3,38E+02 2,21E+02 1,123E+03 1,54E+04 1,24E+02 7,50E+05

P2 25 3,94E+02 2,81E+02 1,54E+03 3,87E+04 1,96E+02 1,84E+05

P2 50 3,74E+02 2,40E+02 1,21E+03 3,68E+04 1,91E+02 2,46E+05
P2 75 3,76E+02 2,38E+02 1,54E+03 2,93E+04 1,71E+02 3,72E+05
P2 100 3,58E+02 2,21E+02 1,39E+03 2,68E+04 1,64E+02 7,59E+05

P3 25 9,01E+02 9,00E+02 1,45E+03 3,17E+02 1,7E+01 1,84E+05

P3 50 9,00E+02 9,00E+02 1,02E+03 5,70E+01 7,59E+00 2,46E+05
P3 75 8,74E+02 8,57E+02 1,41E+03 1,98E+03 4,45E+01 3,93E+05
P3 100 8,68E+02 8,53E+02 9,06E+02 3,21E+01 1,79E+01 8,17E+05

P4 25 9,00E+02 9,00E+02 9,18E+02 5,39E+00 2,32E+00 1,84E+05

P4 50 8,78E+02 8,66E+02 1,17E+03 2,73E+02 1,65E+01 2,46E+05
P4 75 8,63E+02 8,47E+02 1,39E+03 2,39E+02 4,89E+01 3,74E+05
P4 100 8,82E+02 8,66E+02 1,43E+03 8,33E+02 2,88E+01 7,63E+05

P5 25 7,11E+02 5,15E+02 1,48E+03 7,75E+ 04 2,78E+02 2,33E+05

P5 50 7,43E+02 5,03E+02 1,54E+03 8,17E+04 2,85E+02 3,12E+05
P5 75 8,91E+02 5,99E+02 1,44E+03 8,48E+04 2,91E+02 4,70E+05
P5 100 7,93E+02 5,33E+02 1,48E+03 6,72E+04 2,59E+02 8,99E+05

P6 25 6,64E+02 5,38E+02 2,48E+03 6,65E+04 2,57E+02 2,29E+05

P6 50 8,14E+02 6,69E+02 2,08E+03 5,42E+04 2,32E+02 3.07E+05
P6 75 7,54E+02 5,83E+02 1,91E+03 6,97E+04 2,64E+02 4,60E+05
P6 100 7,93E+02 6,07E+02 1,87E+03 6,90E+04 2,62E+02 9,42E+05

P7 25 4,20E+02 2,29E+02 1,57E+03 1,37E+05 3,70E+02 1,97E+05

P7 50 4,52E+02 2,40E+02 1,53E+03 1,57E+05 3,96E+02 2,64E+05
P7 75 5,25E+02 2,39E+02 1,52E+03 1,97E+05 4,44E+02 3,99E+05
P7 100 4,90E+02 2,39E+02 1,52E+03 1,72E+05 4,15E+02 8,17E+05

P8 25 4,12E+02 2,31E+02 1,65E+03 1,22E+05 3,49E+02 1,98E+05

P8 50 4,03E+02 2,30E+02 1,48E+02 1,31E+05 3,62E+02 2,66E+05
P8 75 4,17E+02 2,37E+02 1,51E+03 1,15E+05 3,40E+02 4,00E+05
P8 100 4,35E+02 2,44E+02 1,525E+03 1,28E+05 3,58E+02 8,15E+05

Thus, the probability of choosing an individual i is computed

through equation.

P (i) =

1
f(i)

∑n

j=1
1

f(j) + ǫ
(3)

where n is the population size, f(i) is the fitness value for

individual i and ǫ is a value near to zero to avoid to divide

between 0. In previous experiment pop25 has been chosen as

the best option in terms of population size. Now, ADMBSO

algorithm has been executed using a population of one hundred

individuals, but in this case, only twenty five individuals are

selected to execute the algorithm. The selection mechanism is

based on the multinomial probability distribution.

Now, ADMBSO algorithm with a sampled population of

twenty five individuals have been executed under the same

conditions as Experiment 1. Mean values of mean, minimum,

maximum, variance and standard deviation as well as total

time (in seconds) have been computed. These results are shown

in table III. The results which improve the original results of

pop25 are typed in bold.

With regard to the results, it can be noted this way of

sampling population improves the original results of pop25.

Concretely, the major improvements are made in the last two

problems which corresponds with the most difficult in CEC

competitions (where pop25 did not improve the results of the

rest of population sizes) and it is now the best configuration.

Furthermore, it can be seen that the time is not improved in

this case. To show that, figure 2 shows the temporal cost of

the population sizes made in experiment 1 in comparison with

the temporal cost of population sampling.

Fig. 2. Temporal Cost with original population sizes and sampling

Regarding robustness analysis, table IV shows the conver-

gence speed (s) of sampling population with respect to pop100
which was considered as reference. Once again, values which

are equals or better than pop25 convergence speeds are typed

in bold. The results show that sampling population increase

the convergence speed of the algorithm in comparison with

the original version.

V. CONCLUSIONS AND FURTHER WORKS

In this article the problem of choosing good enough popu-

lation sizes in BSO algorithms, has been carried out. To do

XIII Congreso Español en Metaheuŕısticas y Algoritmos Evolutivos y Bioinspirados

767

TABLE III
STATISTICAL RESULST OF POPULATION SAMPLING

Mean Best Worst Variance Std Time

P1 25 Sam 2,91E+02 2,27E+02 9,11E+02 1,42E+04 1,19E+02 9,49E+05
P2 25 Sam 3,63E+02 2,81E+02 1,12E+02 1,46E+04 1,20E+02 9,68E+05
P3 25 Sam 9,00E+02 9,00E+02 1,29E+03 2,44E+02 1,56E+01 9,97E+05
P4 25 Sam 9,00E+02 9,00E+02 9,84E+01 7,51E+00 2,74E+00 1,29E+06
P5 25 Sam 7,14E+02 5,28E+02 1,56E+02 7,897E+04 2,81E+02 1,14E+06
P6 25 Sam 8,17E+02 6,78E+02 1,76E+03 4,51E+02 2,12E+02 1,21E+06
P7 25 Sam 3,76E+02 2,26E+01 1,64E+03 9,26E+04 3,04E+02 1,07E+06
P8 25 Sam 3,82E+02 2,63E+01 1,604E+02 9,84E+04 3,13E+02 1,24E+05

TABLE IV
CONVERGENCE SPEED OF SAMPLING POPULATION

s1 s2 s3

P1 Sam 0,55 0,88 0,86

P2 Sam 0 - -
P3 Sam 0,87 - -
P4 Sam - - -
P7 Sam 0,53 - -

P8 Sam 0,95 - -

P9 Sam 0,70 0,66 0,66

P10 Sam 0,85 0,66 0,65

that, different population sizes have been defined in order to

study the solutions achieved and the time spent for each size.

After that, the best population size has been chosen and an

strategy of sampling population has been carried out in order

to study if this strategy improves the results of the original

algorithm. The main conclusions reached are the following:

• Despite the fact that one hundred individuals have been

widely used in the majority of articles published about

BSO algorithms, it has been demonstrated that less in-

dividuals guarantee better results in terms of quality of

solution in hybrid functions.

• Sampling population is a good solution to enhance the

results of the original algorithm in terms of solutions

achieved in the case of hybrid functions.

• Sampling population strategy speeds up the convergence

speed of ADMBSO algorithm when it is applied over

hybrid functions.

As future works, these experiments can be applied over

different benchmark functions and new sampling strategies

can be studied in order to reduce the temporal cost of the

algorithm, as well as speeding up NIA algorithms through

local search procedures in order to guarantee better robustness

thresholds.

ACKNOWLEDGMENT

This research was supported by Ministerio de Economı́a,

Industria y Competitividad-FEDER EU grants with number

TRA2016-76914-C3-2-P

REFERENCES

[1] Y. Shi and R. C. Eberhart, “A Modified Particle Swarm Optimizer,”
in Proceedings of IEEE International Conference on Evolutionary

Computation. IEEE Computer Society, May 1998, pp. 69–73.
[2] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-

chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[3] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimiza-
tion by a colony of cooperating agents,” IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS-PART B, vol. 26, no. 1, pp. 29–
41, 1996.

[4] C. Dai, Y. Zhu, and W. Chen, “Seeker optimization algorithm,” in
Computational Intelligence and Security, Y. Wang, Y.-m. Cheung, and
H. Liu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp.
167–176.

[5] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm:
An algorithm for optimization inspired by imperialistic competition,”
2007 IEEE Congress on Evolutionary Computation, pp. 4661–4667,
2007.

[6] Z. Cui, Z. Shi, and J. Zeng, “Using social emotional optimization
algorithm to direct orbits of chaotic systems,” in Swarm, Evolutionary,

and Memetic Computing, B. K. Panigrahi, S. Das, P. N. Suganthan, and
S. S. Dash, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 389–395.

[7] R. Rao, V. Savsani, and D. Vakharia, “Teaching–learning-based opti-
mization: A novel method for constrained mechanical design optimiza-
tion problems,” Computer-Aided Design, vol. 43, no. 3, pp. 303 – 315,
2011.

[8] X. Feng, M. Ji, Z. Li, X. Qu, and B. Liu, “Team effectiveness based
optimization,” in 2017 IEEE Congress on Evolutionary Computation

(CEC), June 2017, pp. 2248–2257.

[9] Y. Shi, “Brain storm optimization algorithm,” in Advances in Swarm

Intelligence, Y. Tan, Y. Shi, Y. Chai, and G. Wang, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 303–309.

[10] D. Zhou, Y. Shi, and S. Cheng, “Brain storm optimization algorithm with
modified step-size and individual generation,” in Advances in Swarm

Intelligence, Y. Tan, Y. Shi, and Z. Ji, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 243–252.

[11] Y. Yang, Y. Shi, and S. Xia, “Advanced discussion mechanism-based
brain storm optimization algorithm,” vol. 19, 10 2015.

[12] J. Chen, Y. Xie, and J. Ni, “Brain storm optimization model based
on uncertainty information,” in 2014 Tenth International Conference on

Computational Intelligence and Security, Nov 2014, pp. 99–103.

[13] Z. Zhan, W. Chen, Y. Lin, Y. Gong, Y. Li, and J. Zhang, “Parameter
investigation in brain storm optimization,” in 2013 IEEE Symposium on

Swarm Intelligence (SIS), April 2013, pp. 103–110.

[14] R. Garcı́a-Ródenas, L. J. Linares, and J. A. López-Gómez, “A cooper-
ative brain storm optimization algorithm,” in 2017 IEEE Congress on

Evolutionary Computation (CEC), June 2017, pp. 838–845.

[15] X. Guo, Y. Wu, and L. Xie, “Modified brain storm optimization algo-
rithm for multimodal optimization,” in Advances in Swarm Intelligence,
Y. Tan, Y. Shi, and C. A. C. Coello, Eds. Cham: Springer International
Publishing, 2014, pp. 340–351.

[16] X. Guo, Y. Wu, L. Xie, S. Cheng, and J. Xin, “An adaptive brain
storm optimization algorithm for multiobjective optimization problems,”
in Advances in Swarm and Computational Intelligence, Y. Tan, Y. Shi,
F. Buarque, A. Gelbukh, S. Das, and A. Engelbrecht, Eds. Cham:
Springer International Publishing, 2015, pp. 365–372.

[17] R. Ramadan and A. Khedr, “Brain storming algorithm for coverage and
connectivity problem in wireless sensor network,” 04 2016.

[18] H. Qiu, H. Duan, and Y. Shi, “A decoupling receding horizon search
approach to agent routing and optical sensor tasking based on brain
storm optimization,” Optik - International Journal for Light and Electron

Optics, vol. 126, no. 7, pp. 690 – 696, 2015.

[19] J. Wang, R. Hou, C. Wang, and L. Shen, “Improved v -support vector
regression model based on variable selection and brain storm optimiza-
tion for stock price forecasting,” Applied Soft Computing, vol. 49, pp.
164 – 178, 2016.

XVIII Conferencia de la Asociación Española para la Inteligencia Artificial

768

[20] K. R. Ramanand, K. R. Krishnanand, B. K. Panigrahi, and M. K.
Mallick, “Brain storming incorporated teaching–learning–based algo-
rithm with application to electric power dispatch,” in Swarm, Evolution-

ary, and Memetic Computing, B. K. Panigrahi, S. Das, P. N. Suganthan,
and P. K. Nanda, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 476–483.

[21] F. Kang, J. Li, and Z. Ma, “Rosenbrock artificial bee colony algorithm
for accurate global optimization of numerical functions,” Information

Sciences, vol. 181, no. 16, pp. 3508 – 3531, 2011.

