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Abstract—In gene-expression microarray data sets each sample
is defined by hundreds or thousands of measurements. High-
dimensionality data spaces have been reported as a significant
obstacle to apply machine learning algorithms, owing to the
associated phenomenon called ‘curse of dimensionality’. The
analysis and interpretation of these data sets have been defined
as a very challenging problem. The hypothesis proposed in
this paper is that there may exist some correlation between
dimensionality and the types of samples (safe, borderline, rare
and outlier). To examine our hypothesis, we have carried out
a series of experiments over four gene-expression microarray
databases because these data correspond to a typical example of
the so-called ‘curse of dimensionality’ phenomenon. The results
show that there indeed exist meaningful relationships between
dimensionality and the proportion of each type of samples,
demonstrating that the amount of safe samples increases and the
total number of borderline samples decreases as dimensionality
of the feature space decreases.

Index Terms—Gene-expression microarray, feature dimension-
ality, sample types, feature ranking, classification

I. INTRODUCTION

The ‘curse of dimensionality’ phenomenon (also known as

the Hughes phenomenon) constitutes a challenging problem in

many real-life applications. It refers to a situation in which the

number of samples needed to estimate an arbitrary function

with a given level of accuracy grows exponentially with

respect to the number of input variables (dimensionality) of

the function [1]. An illustrative example of this problem corre-

sponds to gene-expression microarray data [2], [3] where the

number of genes (G) massively exceeds the sample size (n):

there are typically over tens of thousands of gene-expression

levels and often less than 100 samples in the data set. This

is a problem in itself because it may increase the complexity

of classification/prediction, degrade the generalization ability

of classifiers and hinder the understanding of the underlying

relationships between the genes and the samples [4], [5].

Besides, overfitting is also a major issue in a high-dimensional,

low-sample scenario [6].

Feature selection is the standard way to tackle this problem

by choosing a subset of informative variables from the whole

set of features for further analysis. In the specific context

of microarray data, there exists an apparent need for dimen-

sionality reduction not only because of the huge number of

input variables, but also because many of them can be highly

correlated with other variables. Throughout the last decades,

many different feature (gene) selection algorithms have been

proposed using filter, wrapper, embedded, ensembles and

hybrid methods [7]–[11].

A particularly popular strategy for feature selection over

microarray data refers to the use of gene ranking algorithms,

which are filters that comprise some univariate scoring metric

to quantify how much more statistically significant each gene

is than the others [12]. These methods rank genes in decreasing

order of the estimated scores under the assumption that the

top-ranked genes correspond to the most informative (or

differentially expressed) ones across different classes without

redundancy.

The central question the present study intends to answer

is how dimensionality of the feature space and some intrinsic

data characteristics are related to each other. More specifically,

this paper examines whether or not dimensionality reduction

may alter the distribution of the different types of samples

defined by several authors [13], [14]. To gain some insight

into this question, we analyze the tendency of the amount of

each type of samples when varying the dimensionality of the

feature space. For the experiments, we consider four public

data sets of gene-expression microarrays.

Over the past years, the potential links between feature

dimensionality and several data complexities in microarrays

have been a matter of concern for researchers. For instance,

Baumgartner and Somorjai [15] used five real-life biomedical

databases of increasing difficulty to show how the data com-

plexity of a given classification problem can be related to the

performance of regularized linear classifiers. Okun and Pri-

isalu [16] explored the connections between data complexity

and classification performance defined by low-variance and

low-biased bolstered resubstitution error made by k-nearest

neighbor classifiers. Souto et al. [17] computed different
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measures characterizing the complexity of gene expression

data sets for cancer diagnosis, and then investigated how those

measures were related to the classification performances of

support vector machines. Bolón-Canedo et al. [18] presented

a review of a set of feature selection methods applied to DNA

microarray data and analyzed the impact of class imbalance,

class overlapping or data set shift on the classification results.

Similarly, Sánchez and Garcı́a [19] demonstrated that there

exist meaningful relationships between dimensionality and

class separability in gene-expression microarray data sets.

Lorena et al. [20] studied the complexity of several microarray

data sets with and without dimensionality reduction using

a support vector machine. Seijo-Pardo et al. [21] proposed

the use of three data complexity measures to automatically

set a threshold value, which is then employed to obtain a

subset of genes from the ordered ranking given by a ranker

algorithm. Morán-Fernández et al. [22] demonstrated that there

is some correlation between microarray data complexity and

the classification error rates of a set of classifiers. Sun et al [23]

proposed an ECOC algorithm to address the small sample size

and class imbalance problems in multi-class microarray data

sets by exploring data distributions based on data complexity

theory.

Henceforth, the rest of the paper is organized as follows.

Section II presents the types of samples according to the

taxonomy proposed by Napierala and Stefanowski [14]. Sec-

tion III provides the experimental set-up and the description

of the databases used in our experiments. Next, the results are

reported and discussed in Section IV. Finally, Section V sum-

marizes the main conclusions and points out some directions

for future research.

II. TYPES OF SAMPLES

Following the categorization proposed by several au-

thors [13], [14], [24], two main types of samples should be

distinguished: safe and unsafe. Safe samples refer to those

located in homogeneous regions with data of a single class

and are sufficiently separated from examples of other classes,

whereas the rest of samples have to be considered as unsafe.

The safe samples will be classified correctly by most models,

but the classification of unsafe samples will usually be a very

tricky task with a high error rate.

The general feature of unsafe samples is that they are placed

close to examples from some other classes. However, this type

of data can be further divided into three subgroups depending

on their particular characteristics [14], [25]: borderline, rare

and outlier. Borderline samples are located near the decision

boundaries between classes. Rare samples are small groups

of examples located far from the core of their class, creating

small data chunks or subclusters. Finally, the outliers are single

samples being surrounded by examples that belong to some

other class.

A simple method to identify each type of samples is based

on analyzing the local neighborhood of the examples. This

can be performed either by searching for the k neighbors of a

sample or by using some kernel function. Thus, one can guess

that a safe sample x will be characterized by having a neigh-

borhood with a majority of examples that belong to its same

class; rare examples and outliers will be mainly surrounded by

examples from different classes, whereas borderline samples

will be surrounded by examples both from their same class

and also from different classes.

Many authors often choose k = 5 because smaller values

may poorly distinguish the nature of samples, while higher

values would violate the assumption of the local neighbor-

hood [14], [24]–[26]. Following this procedure, we can define

the following cases:

• A sample x will be classified in the safe category if at

least 4 out of the 5 nearest neighbors belong to the class

of x.

• A sample x will be classified in the borderline category

if 2–3 out of its 5 nearest neighbors belong to the class

of x.

• A sample x will be classified in the rare category if only

one nearest neighbor belongs to the class of x, and this

has no more than one neighbor from its same class.

• A sample x will be classified in the outlier category if

all its nearest neighbors are from the opposite class.

III. DATABASES AND EXPERIMENTAL PROTOCOL

We conducted a pool of experiments on a collection of

publicly available gene-expression microarray data sets, which

were taken from the Kent Ridge Biomedical Data Set Repos-

itory (http://datam.i2r.a-star.edu.sg/datasets/krbd). Table I re-

ports the main characteristics of these databases, including the

number of genes (features), the number of samples, and the

size of each class (here designated as positive and negative).

TABLE I
CHARACTERISTICS OF THE GENE-EXPRESSION MICROARRAY DATA SETS

#Genes #Samples #Positive #Negative

Breast 24481 97 46 51
CNS 7129 60 21 39
Colon 2000 62 22 40
Prostate 12600 136 59 77

For the present study, we varied the percentage of genes

from 5% to 100% with a step size of 5% by using the ReliefF

algorithm, thus yielding 20 different subsets (each one with a

percentage of the top-ranked features) for each database. The

experiments have been circumscribed to the ReliefF algorithm

because this paper aims to analyze how dimensionality of

the feature space might affect the proportion of the different

types of samples, not to find the best feature selection/ranking

method.

A. The ReliefF Algorithm

The basic idea of the ReliefF algorithm [27] lies on adjust-

ing the weights of a vector W = [w(1), w(2), . . . , w(G)] with

the objective of giving more relevance to features that better

discriminate the samples from neighbors of some different

class.

http://datam.i2r.a-star.edu.sg/datasets/krbd
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It randomly picks out a sample x and searches for k nearest

neighbors of the same class (hits, hi) and k nearest neighbors

from each of the different classes (misses, mi). If x and hi

have different values on feature f , then the weight w(f) is

decreased because it is interpreted as a bad property of this

feature. In contrast, if x and mi have different values on the

feature f , then w(f) is increased. This process is repeated t

times, and the values of the weight vector W are updated as

follows:

w(f) = w(f)−

∑
k

i=1 dist(f, x, hi)

t · k
(1)

+
∑

c 6=class(x)

P (c)

1− P (class(x))
·

∑
k

i=1 dist(f, x,mi)

t · k

where P (c) is the prior probability of class c, P (class(x))
denotes the probability for the class of x, and dist(f, x,mi)
represents the absolute distance between samples x and mi in

the feature f .

The algorithm assigns negative values to features that are

completely irrelevant and the highest scores for the most

informative features. In general, one will then select the g

top-ranked features in order to build the classifier with a

presumably much smaller subset of features (g ≪ G). In

addition, unlike other well-known ranking methods such as

those based on information theory (e.g., mutual information

or information gain), the ReliefF algorithm takes care of the

dependencies between genes [28].

IV. RESULTS AND DISCUSSION

This section is devoted to explore how the number of

genes may have an effect on the amount of samples that

belong to each type. As far as we know, there has been no

systematic analysis on this problem; in fact, previous studies

have focused on identifying the types of samples from the

minority class in class imbalanced data sets and analyzing how

the resampling techniques may alter the distribution/proportion

of safe, borderline, rare and outlier samples [14], [24]–[26],

[29], [30]

Bearing our purpose in mind, the experiments were as

follows. First, we calculated the percentages of positive and

negative samples from each type when varying the percentage

of genes. Afterwards, we also run six classifiers of different

nature over each subset of features: the 1-nearest neighbor (1-

NN) rule with the Euclidean distance, a pruned C4.5 decision

tree, a support vector machine (SVM) with a linear kernel

using the sequential minimal optimization algorithm and a

soft-margin C = 1.0, a normalized Gaussian radial basis

function (RBF) neural network with the K-means clustering

algorithm to provide the basis functions, the naive Bayes

classifier (NBayes), and a multi-layer perceptron (MLP) with

one hidden layer, a learning rate of 0.3 and 500 training

epochs.

Fig. 1 shows the percentages of each positive sample type

when varying the dimensionality of the feature space for each

database. As can be seen, the percentage of safe samples in the

positive class increases and the percentage of borderline posi-

tive samples decreases as dimensionality decreases. Although

the percentages of rare and outlier samples are generally low, it

was observed a very similar behavior to that of the borderline

samples. This result could allow to gain some insight into

the reasons why classification in lower dimensions is usually

easier than in higher dimensions.

Analogously, Fig. 2 displays the percentages of the negative

sample types when varying the dimensionality of the feature

space for each database. In general, lines in these plots closely

match the trend patterns recognized in the plots of Fig. 1,

that is, the percentage of safe samples increases and the

percentages of the different types of unsafe samples decrease

as dimensionality decreases. Notwithstanding, for the safe and

borderline samples, we observed an essential difference of

behavior between the positive class and the negative class:

while the percentages of safe positive samples were usually

lower than those of the borderline positive samples, the

percentages of safe negative samples always resulted much

higher than those of the borderline negative samples. This

behavior agrees with the expected one because the negative

class corresponds to the majority class and therefore, the

probability for a negative sample to be identified as safe is

higher than the probability of being classified in some group

of the unsafe samples.

Regarding the rare and outlier samples that belong to the

negative class, we found that there was no substantial rela-

tionship between dimensionality of the feature space and the

number of samples in both these types. Nevertheless, this fact

should not become especially critical for a given classification

problem because the amount of samples that belong to the rare

and outlier types is minimal as compared to the total number

of safe and borderline samples.

Plots in Fig. 3 correspond to the accuracy achieved by each

classification model when applied to each of the 20 subsets.

It is possible to observe that the accuracy of all classifiers

tends to decrease as the amount of genes increases. A visual

comparison between this figure and those of the sample types

allows to demonstrate that there exists some significant link

(positive correlation) between the dimensionality of the feature

space and the distribution of sample types since the highest

accuracies were achieved for the subsets with the largest

number of safe samples and the smallest number of unsafe

samples.

V. CONCLUDING REMARKS

As one of the earliest works on investigating the potential

connections between feature dimensionality and sample types,

this paper has to be viewed as a preliminary study of the effects

of dimensionality reduction on the distribution of the different

types of samples in a data set.

From the experiments carried out, we have observed that

the proportions of safe, borderline, rare and outlier samples

vary as the dimensionality of the feature space changes. More

specifically, reduction in dimensionality generally leads to a
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Fig. 1. Plots of the percentage of each type of positive samples when varying the percentage of genes

significant decrease in the amount of borderline samples and

an increase in the number of safe samples. As showed in the

experiments, this has a direct impact on the performance of

classifiers because the classification of safe samples results

much easier than the classification of any type of unsafe

samples.

Through the characterization of databases by the distribution

of their sample types, our hypothesis for further research is

that it would be possible to define a meta-learning framework

to choose the feature subset with the highest classification

performance. Another direction for extending the present

paper consists in the combined use of sample types and

data complexity measures for the implementation of accurate

preprocessing methods.
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Systems, L. Liu and M. T. Özsu, Eds. Boston, MA: Springer, 2009,
pp. 545–546.

[2] R. Clarke, H. W. Ressom, A. Wang, J. Xuan, M. C. Liu, E. A. Gehan, and
Y. Wang, “The properties of high-dimensional data spaces: implications
for exploring gene and protein expression data,” Nat. Rev. Cancer, vol. 8,
no. 1, pp. 37–49, 2008.

[3] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos, “Re-
cent advances and emerging challenges of feature selection in the context
of big data,” Knowl.-Based Syst., vol. 86, pp. 33–45, 2015.

[4] E. R. Dougherty, “Small sample issues for microarray-based classifica-
tion,” Compar. Func. Genom., vol. 2, no. 1, pp. 28–34, 2001.

[5] L. Wang, F. Chu, and W. Xie, “Accurate cancer classification using
expressions of very few genes,” IEEE-ACM T. Comput. Biol. Bioinform.,
vol. 4, no. 1, pp. 40–53, 2007.

[6] R. Somorjai, B. Dolenko, and R. Baumgartner, “Class prediction and
discovery using gene microarray and proteomics mass spectroscopy data:
curses, caveats, cautions,” Bioinformatics, vol. 19, no. 12, pp. 1484–
1491, 2003.
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Resumen—Los avances en las Tecnologı́as de la Información
y las Comunicaciones han contribuido a la proliferación de
grandes bases de datos. En algunos casos estos datos ya están
distribuidos en su origen, pero en otros casos su gran escala
hace que el procesamiento en un único nodo sea imposible, y en
consecuencia la distribución en varios nodos de cómputo es una
opción natural para su manejo. En este trabajo, proponemos una
metodologı́a que nos permite distribuir el proceso de selección de
caracterı́sticas, la mayorı́a de las veces un paso de preprocesado
imprescindible en los conjuntos de alta dimensión actuales, ya
que nos permite reducir la dimensión de entrada, seleccionando
las caracterı́sticas relevantes y eliminando las redundantes y/o
irrelevantes. En particular, nuestra propuesta en este artı́culo se
centra en el problema de los conjuntos de datos desbalanceados,
bien porque la situación se da ya en origen o bien cuando este
contexto en que las distintas clases de datos no están igualmente
representadas en las distintas particiones se produce debido a
que se debe distribuir el conjunto único original para poder
tratarlo. Los resultados experimentales obtenidos demuestran
que nuestra aproximación distribuida obtiene resultados de error
comparables a la aproximación centralizada, aportando como
ventajas una reducción apreciable del tiempo computacional y la
capacidad de trabajar eficientemente en entornos de desbalanceo
de clases.

Index Terms—selección de caracterı́sticas, algoritmos distribui-
dos, conjuntos de datos desbalanceados.

I. INTRODUCCIÓN

La selección de caracterı́sticas (SC) es una técnica de apren-

dizaje automático en la que se seleccionan los atributos que

permiten que un problema esté claramente definido, mientras

que los irrelevantes o redundantes se ignoran [1]. Tradicional-

mente, un algoritmo de SC se aplica de manera centralizada,

es decir, se utiliza un único modelo selector de caracterı́sticas

sobre todos los datos del conjunto para resolver un problema

determinado. Sin embargo, en algunos casos, los datos pueden

o bien estar ya distribuidos en varias localizaciones, o bien

se puede usar una estrategia de aprendizaje distribuido para

repartir en varios nodos de cómputo un conjunto de datos que

es demasiado grande para poder ser procesado en un único

nodo. De esta forma podemos aprovechar el procesamiento

de estos múltiples subconjuntos de datos bien en secuencia o

Este trabajo ha sido parcialmente financiado por el Ministerio de Economı́a
y Competitividad (proyectos de investigación TIN 2015-65069-C2-1-R y la
Red Española de Big Data y Análisis de datos escalable, TIN2016-82013-
REDT), y por Fondos de Desarrollo Regional de la Unión Europea.

en paralelo. Existen varias formas de distribuir una tarea de

selección de caracterı́sticas, aunque las más comunes son:

los datos están juntos en un conjunto de datos muy

grande, por lo que se distribuyen en varios procesadores,

se ejecuta un algoritmo de SC idéntico en cada uno y

luego los resultados parciales se combinan para obtener

un resultado final, y

los datos pueden estar en diferentes conjuntos de datos

situados en diferentes ubicaciones, por lo que se ejecuta

un algoritmo de selección de caracterı́sticas idéntico en

cada uno y los resultados se combinan para obtener un

resultado final.

Al respecto, existen varios trabajos en la literatura que

realizan la selección de caracterı́sticas de forma distribuida

[2], [3]. Sin embargo, cuando los datos se distribuyen en varios

procesadores, pueden aparecer algunos problemas adicionales,

como un alto desequilibrio entre clases en algunos de los no-

dos, o incluso la situación extrema en la que algunas clases no

están representadas en absoluto en algunos de los subconjuntos

de datos. El problema de desequilibrio de clase o desbalanceo

se produce cuando un conjunto de datos está dominado por

una clase mayoritaria que tiene significativamente muchas

más instancias que las otras clases, llamadas minoritarias. En

este caso, los algoritmos de aprendizaje computacional suelen

presentar un sesgo hacia las clases mayoritarias, ya que las

reglas que predicen correctamente esas instancias se ponderan

positivamente a favor de la métrica de precisión, mientras

que las reglas especı́ficas que predicen ejemplos de la clase

minoritaria generalmente se ignoran. Por lo tanto, las muestras

de las clases minoritarias se clasifican erróneamente más a

menudo que las de las otras clases [4].º

En este trabajo presentamos una metodologı́a para distribuir

el proceso de SC, que tiene en cuenta este problema de la

posible heterogeneidad de los subconjuntos. Para ello usamos

dos alternativas: (i) forzar las particiones del conjunto de

datos para mantener el equilibrio entre las clases, y (ii)

aplicar técnicas de sobremuestreo (oversampling) cuando el

desequilibrio es inevitable.

II. METODOLOGÍA DISTRIBUIDA

En este trabajo, se detalla la aplicación de una metodologı́a

para distribuir el proceso de SC sobre la base de trabajos pre-
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(a) Centralizado (b) Partición aleatoria (c) Partición homogénea

Figura 1. Escenarios centralizado (a) y particiones aleatoria (b) y homogénea (c) en un proceso de selección de caracterı́sticas distribuido

vios [5], [6]. Esta metodologı́a consta de tres pasos principales,

que son los siguientes:

1. partición de los datos, si éstos no estuviesen ya distri-

buidos en origen,

2. aplicación del método de SC a cada una de las diferentes

particiones realizadas

3. combinación de los resultados.

Debemos de tener en cuenta que los dos primeros pasos

se repiten varias rondas (r), para garantizar la captura de

suficiente información para el paso de combinación de los

resultados parciales.

El primer paso de la metodologı́a anterior es el núcleo de

este trabajo y consiste en dividir sin reemplazo los datos del

conjunto original, asignando grupos de n muestras a cada

subconjunto de datos. Se seguirán dos enfoques principales:

partición aleatoria, en la que se realizará una distribución

aleatoria de los datos en los distintos nodos, y partición

homogénea, en la que se mantienen las proporciones del

conjunto original en cada uno de los subconjuntos obtenidos.

Un ejemplo de estos dos tipos de partición, junto con el

escenario centralizado en el que todos los datos están juntos,

se puede ver en la figura 1.

Después de realizar una partición, el conjunto de datos

podrı́a estar desequilibrado (ya sea porque la partición se

realizó al azar o porque el conjunto de datos ya estaba desba-

lanceado en origen). En este caso, nuestra propuesta consiste

en aplicar el método de sobremuestreo SMOTE [7], que agrega

ejemplos sintéticos de la clase minoritaria al conjunto de datos

original hasta que la distribución de clases se equilibre. Para

poder conseguir esto, SMOTE genera ejemplos sintéticos de

la clase minoritaria utilizando los ejemplos originales de la

misma de la siguiente manera: en primer lugar, busca los k

vecinos más cercanos de la muestra de la clase minoritaria que

se utilizará como base para la nueva muestra sintética. Luego,

en el segmento que une la muestra de la clase minoritaria

con uno o todos sus vecinos, se toma aleatoriamente una

muestra sintética y se agrega al nuevo conjunto de datos

sobremuestreados.

El siguiente paso en la metodologı́a general consiste en

aplicar un método de SC en cada partición. Las caracterı́sticas

que se seleccionan para ser eliminadas reciben un voto y

luego, se realiza una nueva ronda que conduce a una nueva

partición del conjunto de datos y se lleva a cabo una nueva

iteración de la votación hasta alcanzar el número predefinido

de rondas r. Finalmente, las caracterı́sticas que han recibido

una cantidad de votos por encima de un umbral predefinido

se eliminan. Por lo tanto, se obtiene finalmente un conjunto

único de caracterı́sticas que se pueden utilizar para entrenar un

clasificador C y probar su rendimiento en un nuevo conjunto

de muestras (conjunto de datos de test). Más detalles sobre

cómo elegir el umbral de votos se pueden encontrar en [5],

[6]. El pseudocódigo de la metodologı́a propuesta se muestra

en el algoritmo 1.

1 inicializar el vector de votos a 0
2 para cada ronda hacer
3 dividir el conjunto de datos d aleatoriamente o

mantener las proporciones de las clases en
subconjuntos de datos disjuntos

4 para cada subconjunto de datos hacer
5 si los datos están desbalanceados entonces
6 aplicar SMOTE

fin
7 aplicar un algoritmo de selección de caracterı́sticas
8 incrementar un voto para cada caracterı́stica a ser

eliminada
fin

fin
9 eliminar las caracterı́sticas cuyo número de votos sea

superior a un umbral
10 clasificar con el subconjunto de caracterı́sticas obtenido

Algoritmo 1: Pseudo-código de la metodologı́a propuesta

III. RESULTADOS EXPERIMENTALES

En esta sección presentaremos el esquema de experimenta-

ción y los resultados obtenidos. Recordemos que los objetivos

de la experimentación son dos, (i) poder establecer qué tipo

de partición es la más adecuada y (ii) cúal es la influencia del

algoritmo de sobremuestreo SMOTE cuando las particiones

presentan datos desbalanceados.

III-A. Comparación entre las aproximaciones distribuidas y

la centralizada

Con este objetivo, hemos seleccionado 6 conjuntos de datos,

cuyas caracterı́sticas se resumen en la Tabla I, y que están
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Cuadro I
CARACTERÍSTICAS DE LOS CONJUNTOS UTILIZADOS EN LA PRIMERA PARTE DE LA EXPERIMENTACIÓN, EN DONDE SOLAMENTE SE UTILIZA SMOTE EN

LA CLASE MINORITARIA.

Conjunto Nº Muestras Nº Caracterı́sticas Nº Clases % clase mayoritaria

Connect4 67557 42 3 65.83
Isolet 7797 617 26 3.85

Madelon 2400 500 2 50
Mnist 60000 717 2 50
Ozone 2536 72 2 97.12

Spambase 4601 57 2 60.6

disponibles para su descarga en el UCI Machine Learning

Repository 1.

Aunque la metodologı́a propuesta es genérica, y por lo

tanto se puede usar con cualquier método de SC, en este

trabajo hemos elegido una suite de cuatro filtros, basados

en diferentes tipos de métricas. Concretamente hemos utiliza-

do Correlation-Based Feature Selection (CFS), Consistency-

based, Information Gain y ReliefF, todos ellos disponibles en

la herramienta de software libre Weka 2. Para posteriormente

poder evaluar los resultados de la selección de caracterı́sticas

realizada, hemos elegido cuatro clasificadores populares en

el estado del arte: C4.5, Naive Bayes, IB1 y Vectores de

Máquinas Soporte (en inglés, Support Vector Machine –SVM–

). Los experimentos se realizaron en una CPU Core ™i3-6100

Intel ®3.70 GHz con 16 GB de memoria RAM.

En el primer estudio experimental se compararon tres esce-

narios diferentes: (i) la aproximación centralizada estándard,

(ii) la distribución aleatoria, y (iii) el particionado homogéneo.

Para las dos aproximaciones distribuidas (la aleatoria y la

homogénea), el número de rondas utilizado fue de 5. Para

asegurar una buena fiabilidad en los resultados obtenidos, se

realizó una validación hold-out estándard, es decir, se dividie-

ron los distintos conjuntos de la tabla I en dos subconjuntos

diferentes, con la proporción 2/3 para entrenamiento y 1/3

para prueba, y se repitió esta operación 5 veces. También se

han usado test de significación estadı́stica, en primer lugar

un test de Friedman para comprobar si existı́an diferencias

significativas para un nivel de significación α = 0,5, y

posteriormente de Nemenyi para obtener aquellos modelos

que no son significativamente diferentes a los que obtienen

la mayor precisión. Las tablas detalladas con los resultados

obtenidos para todas las combinaciones entre conjuntos de

datos, métodos de SC y clasificadores pueden verse en el

material suplementario que se encuentra en 3.

La Tabla II muestra un resumen de este primer conjunto

de experimentos, en los que la meta es comparar los tres

escenarios (centralizado, partición aleatoria y partición ho-

mogénea), independientemente de la aplicación de la técnica

de oversampling SMOTE. La tabla muestra los resultados

para cada combinación de conjunto de datos y escenario,

teniendo en cuenta dos medidas de evaluación diferentes: la

precisión de la clasificación y el valor del ı́ndice kappa. El

1http://archive.ics.uci.edu/ml/index.php
2http://www.cs.waikato.ac.nz/ ml/weka/
3http://lidiagroup.org/index.php/en/materials-en.html

motivo de incluir el valor de Kappa es porque éste evalúa

la calidad del aprendizaje teniendo en cuenta las situaciones

en las que el conjunto de datos está desequilibrado y el

clasificador aprende correctamente la clase mayoritaria, pero

sistemáticamente clasifica erróneamente las instancias de la

clase minoritaria. En las primeras dos filas de cada conjunto

de datos, se puede consultar el promedio de la precisión de

clasificación y Kappa; y en las últimas dos filas se muestran los

valores máximos de precisión y Kappa (y la combinación que

lo obtiene entre paréntesis). Como se puede ver, los enfoques

distribuidos (partición aleatoria y homogénea) son una buena

solución para disminuir el tiempo computacional sin implicar

una degradación en el rendimiento de clasificación. Compa-

rando los dos enfoques distribuidos, vale la pena señalar que,

en general, el enfoque homogéneo parece obtener resultados

más estables, mientras que con la partición aleatoria puede

ocurrir que en un caso particular la proporción de las clases

sea óptima y por esa razón obtiene los mejores resultados en

algunos casos.

Como era de esperar, los enfoques distribuidos reducen

significativamente el tiempo de ejecución en comparación con

el enfoque centralizado (ver detalles en el material comple-

mentario 30), aunque depende concretamente tanto del método

de selección empleado como del conjunto de datos. Cuando el

conjunto de datos es pequeño, la mejora es leve (por ejemplo,

de 0.40s a 0.34s en el conjunto Ozone) pero en conjuntos de

datos más grandes, la mejora es considerable (por ejemplo,

de 820.46s a 0.83s en el conjunto Connect-4). Es remarcable

también el buen rendimiento obtenido por los métodos de

selección ReliefF y Consistency-based.

III-B. Utilización de SMOTE en las particiones

El segundo grupo de experimentos consiste en la evaluación

de la efectividad de SMOTE ante el problema del desbalanceo

de clases. La comparación se realizó entre los dos escenarios

distribuidos (partición aleatoria y homogénea). Debemos tener

en cuenta que, al aplicar la partición aleatoria, es posible que

algunos subconjuntos de datos estén desbalanceados, incluso

si el conjunto de datos completo no lo estaba. Por lo tanto,

hemos aplicado SMOTE cuando el subconjunto de datos

no estaba balanceado (ya sea bien debido a la existencia

de esta circunstancia en clase original, o bien debido a la

partición aleatoria). Se han realizado diferentes experimentos

con diferentes porcentajes de sobremuestreo. Por ejemplo, si

la clase minoritaria tiene 40 muestras y aplicamos SMOTE
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Conjunto Centralizado Aleatorio Homogéneo

Connect4

Precisión (media) 65.72 67.52 67.52
Kappa (media) 0.175 0.184 0.188
Precisión (max) 73.37 (Cons+C4.5) 74.12 (Rel+C4.5) 72.81 (IG+C4.5)
Kappa (max) 0.454 (Cons+C4.5) 0.425 (Rel+C4.5) 0.399 (Rel+C4.5)

Isolet

Precisión (media) 63.92 69.12 68.64
Kappa (media) 0.624 0.678 0.673
Precisión (max) 84.60 (Rel+SVM) 85.51 (Rel+SVM) 83.87 (Rel+SVM)
Kappa (max) 0.839 (Rel+SVM) 0.849 (Rel+SVM) 0.832 (Rel+SVM)

Madelon

Accuracy (media) 74.64 72.25 75.32
Kappa (media) 0.492 0.444 0.506
Accuracy (max) 88.75 (Varios+IB1) 81.75 (Rel+C4.5) 89.62 (Rel+IB1)
Kappa (max) 0.774 (Varios+IB1) 0.636 (Rel+C4.5) 0.792 (Rel.+IB1)

MNIST

Precisión (media) 81.04 83.68 83.83
Kappa (media) 0.620 0.672 0.675
Precisión (max) 89.96 (Rel+IB1) 96.33 (Cons+IB1) 95.83 (Rel+IB1)
Kappa (max) 0.799 (Rel+IB1) 0.926 (Cons+IB1) 0.916 (Rel+IB1)

Ozone

Precisión (media) 92.09 91.06 90.87
Kappa (media) 0.1014 0.1012 0.092
Precisión (max) 97.12 (Todos+SVM) 96.99 (Todos+SVM) 96.97 (Todos+SVM)
Kappa (max) 0.189 (Cons+C4.5) 0.215 (Cons+C4.5) 0.180 (IG+IB1)

Spambase

Precisión (media) 86.66 87.18 87.63
Kappa (media) 0.723 0.732 0.742
Precisión (max) 91.42 (CFS+C4.5) 91.24 (CFS+C4.5) 91.73 (CFS+C4.5)
Kappa (max) 0.819 (CFS+C4.5) 0.816 (CFS+C4.5) 0.826 (CFS+C4.5)

Cuadro II
RESUMEN DE LOS RESULTADOS OBTENIDOS PARA LAS APROXIMACIONES DISTRIBUIDAS Y CENTRALIZADA. NO SE HA UTILIZADO EL MÉTODO SMOTE

EN LAS APROXIMACIONES DISTRIBUIDAS.

con un nivel de 100, significa que se generan 40 muestras

sintéticas, si el nivel es 200, significa que se generan 80

nuevas muestras. Además, incluimos la opción “auto”, que

consiste en aplicar SMOTE de tal forma que las clases queden

completamente balanceadas.

Conjunto Precisión Kappa Escenario Combinación SMOTE

Isolet 85.68 0.851 Aleatorio Rel+SVM Auto

Madelon 89.63 0.792 Homogéneo Rel+IB1 0

MNIST 96.34 0.926 Aleatorio Cons+IB1 0

Connect4
74.12 0.425 Aleatorio Rel+C4.5 0
72.90 0.442 Aleatorio Rel+C4.5 100

Ozone
97.28 0 Homogéneo All+SVM 100
90.82 0.302 Homogéneo Rel+SVM 600

Spambase
91.73 0.826 Homogéneo CFS+C4.5 0
91.68 0.827 Homogéneo CFS+C4.5 300

Cuadro III
RESUMEN DE LOS RESULTADOS OBTENIDOS USANDO SMOTE EN LAS

CLASES MINORITARIAS.

La tabla III muestra el resumen de los mejores resultados

obtenidos al aplicar diferentes niveles de sobremuestreo con

SMOTE a los subconjuntos de datos. En la primera fila de

cada conjunto de datos, se muestra la opción con la mayor

precisión, mientras que la segunda fila representa la opción

con el valor Kappa más alto. Cuando el mejor resultado para

ambas mediciones de evaluación se logra mediante la misma

combinación y escenario, solo se muestra una fila. Como era

de esperar, la aplicación de una técnica de sobremuestreo no

es necesaria en el caso de conjuntos de datos equilibrados

(Isolet, Madelon, MNIST). En el caso de Isolet, la aplicación

de SMOTE en el escenario de partición aleatoria ha resultado

provechosa, ya que en este caso es posible que los conjuntos

de datos equilibrados produzcan subconjuntos de datos no

balanceados (especialmente para Isolet, con un alto número

1 para repeticiones hacer
2 dividir el conjunto de datos d aleatoriamente en

subconjuntos disjuntos de datos train y test
3 calcular la clase mayoritaria del conjunto de train
4 para cada nivel Smote minoritaria hacer
5 para cada nivel Smote mayoritaria hacer
6 train = SMOTE(clase mayoritaria, train)
7 train = SMOTE(clase minoritaria, train)
8 para filtros hacer
9 train filtrado = sel car(filtro,train)

10 para clasificador hacer
11 clasificar(clasificador, train filtrado,

test)
fin

fin
fin

fin
fin

Algoritmo 2: Pseudo-código de la metodologı́a propuesta

usando SMOTE también en la clase mayoritaria

de clases). Por el contrario, los conjuntos de datos desbalan-

ceados (Connect4, Ozone y Spambase) son buenos candidatos

para mejorar sus resultados después de aplicar SMOTE. De

hecho, la Tabla III muestra que la aplicación del método de

sobremuestreo mejora los valores Kappa, lo que significa que

el aprendizaje de las clases es mejor. Hay que recordar que la

clase mayoritaria de ozono tiene el 97.12 % de las muestras,

por lo que al obtener una precisión de clasificación del 97.28 %

es posible que clasifique correctamente todas las muestras

de la clase mayoritaria, pero solo unas pocas de la clase

minoritaria. Después de aplicar el método de sobremuestreo, la

precisión cae al 90.82 %, probablemente porque el clasificador

no está tan sobreajustado para aprender la clase mayoritaria
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y tiene una tasa de verdaderos positivos más alta en la clase

minoritaria.

Finalmente, se realizó un tercer conjunto de experimentos,

en los que se utiliza también la técnica SMOTE para añadir

también muestras sintéticas en la clase mayoritaria, no sólo

en la minoritaria, de forma que todas las clases, mayoritarias

y minoritarias, cuenten en sus subconjuntos con muestras

sintéticas, como se puede ver en el algoritmo 2.

Para realizar este tercer bloque de experimentos se utilizaron

dos tipos de conjuntos, los que denominamos con la etiqueta

normal en la tabla IV, que son conjuntos de datos en los que

el número de muestras es mucho mayor que el número de

caracterı́sticas, y conjuntos de datos del tipo Microarrays [8],

obtenidos de investigaciones sobre la clasificación de casos

de cáncer, que tienen un elevado número de caracterı́sticas

y un número muy pequeño de muestras (ver tabla IV). La

idea es comprobar no sólo si el realizar SMOTE en todas

las clases mejora el resultado, al tener muestras sintéticas

en todas ellas, sino también si el balance entre muestras y

caracterı́sticas influye en los resultados. Se han repetido de

nuevo los experimentos, pero en este caso además se han

añadido muestras sintéticas también en la clase mayoritaria,

utilizando SMOTE con porcentajes de 20, 40 y 100. Al igual

que anteriormente, se han obtenido valores para todas las

posibles combinaciones de clasificador, filtro y combinación

de porcentajes de SMOTE en la clase mayoritaria. En la

tabla V se pueden ver los resultados obtenidos para todos los

conjuntos de la tabla IV sin SMOTE, con la alternativa de

SMOTE en la clase minoritaria y con la alternativa de usar

SMOTE en todas las clases.

Como podemos ver en la tabla V, la alternativa SMOTE en

las clases minoritaria y mayoritaria conjuntamente es siempre

la opción que alcanza la precisión máxima, con los valores

de ı́ndice kappa más altos (en ocasiones, otras alternativas

consiguen idénticas kappas, y la alternativa SMOTE sólo

en minoritaria empata en precisión máxima en 5 de los 12

conjuntos). No parecen existir grandes diferencias entre los

dos tipos de conjuntos, si bien la diferencia en precisión media

entre las dos alternativas usando SMOTE en los conjuntos

microarray es menor que en el caso de los conjuntos que

hemos denominado normales.

IV. CONCLUSIONES Y TRABAJO FUTURO

Hemos presentado una metodologı́a para la selección de

caracterı́sticas distribuida, tratando de resolver el problema

del desbalanceo de los datos en las diferentes particiones.

Para ello, hemos forzado a las particiones de datos en los

diferentes nodos a mantener la misma distribución de clase

que el conjunto de datos original y hemos aplicado la técnica

de sobremuestreo (oversampling) SMOTE. Los resultados

experimentales en siete conocidos conjuntos de datos han

demostrado que:

El enfoque distribuido — partición aleatoria u ho-

mogénea — es competitivo cuando se compara con el

enfoque centralizado estándar, incluso en algunos casos

mejorando el rendimiento de clasificación.

La partición homogénea obtiene resultados más estables

que la partición aleatoria.

La aplicación de SMOTE en las clases minoritarias

(uso estándard del procedimiento), mejora la calidad del

aprendizaje en conjuntos de datos desbalanceados, en

algunos casos a expensas de una ligera disminución en

la precisión general.

Además al aplicar el método propuesto con un porcentaje

pequeño de SMOTE también en la clase mayoritaria se

aprecia una mejora en la precisión máxima obtenida en

todos los conjuntos de datos. Además, si bien es cierto

que esta última alternativa no obtiene prácticamente en

ningún caso los mejores valores de precisiones medias,

sı́ que consigue obtener los valores de kappa más altos,

por lo que el método presenta una mayor robustez.

Como trabajo futuro, nos planteamos probar otros métodos

para tratar la heterogeneidad, como puede ser el caso de las

técnicas de submuestreo (undersampling en inglés), pondera-

ción, etc.
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Cuadro IV
CARACTERÍSTICAS DE LOS CONJUNTOS DEL TERCER BLOQUE DE EXPERIMENTACIÓN, CON MUESTRAS SINTÉTICAS EN LA CLASE MAYORITARIA

Conjunto Tipo Nº Muestras Nº Caracterı́sticas Nº Clases % clase mayoritaria

Arrhythmia Normal 452 279 16 54.2
Connect4 Normal 67557 42 3 65.83

Musk2 Normal 6598 168 2 63
Nomao Normal 34465 120 2 71.44
Ozone Normal 2536 72 2 97.12

Spambase Normal 4601 57 2 60.6
Weight Normal 4024 90 5 34.04

Brain Microarray 21 12625 2 67
CNS Microarray 60 7129 2 75

Colon Microarray 62 2000 2 65
Gli85 Microarray 85 22283 2 69

Ovarian Microarray 253 15154 2 64

Conjunto Sin SMOTE Solo SMOTE minoritaria SMOTE minoritaria + mayoritaria

Arrhythmia

Precisión (media) 63.07 62.63 62.07
Kappa (media) 0.739 0.746 0.774
Precisión (max) 68.34 (CFS+Naive) 67.68 (CFS+Naive+100) 68.74 (Rel+SVM+300+40)
Kappa (max) 1 (Todos+IB1) 1 (Todos+IB1+Todos) 1 (Todos+IB1+Todos+Todos)

Connect4

Precisión (media) 66.14 66.20 62.15
Kappa (media) 0.163 0.430 0.478
Precisión (max) 76.12 (Cons+C4.5) 77.88 (Cons+C4.5+600) 78.21 (Cons+C4.5+100+20)
Kappa (max) 0.777 (Cons+C4.5) 1 (Cons+IB1+Todos) 1 (Cons+IB1+Todos+Todos)

Musk2

Precisión (media) 89.41 87.35 85.17
Kappa (media) 0.672 0.687 0.739
Precisión (max) 95.62 (Cons+C4.5) 95.44 (CFS+C4.5+100) 95.72 (Cons+C4.5+100+40)
Kappa (max) 1 (Todos+IB1) 1 (Varios+IB1+Varios) 1 (Varios+IB1+Todos+Todos)

Nomao

Precisión (media) 85.75 84.22 83.94
Kappa (media) 0.646 0.693 0.723
Precisión (max) 94.34 (Cons+C4.5) 94.52 (Cons+C4.5+300) 94.70 (Cons+C4.5+Auto+100)
Kappa (max) 0.964 (Cons+C4.5) 1 (Cons+IB1+Todos) 1 (Cons+IB1+Todos+Todos)

Ozone

Precisión (media) 92.36 91.88 88.58
Kappa (media) 0.271 0.506 0.628
Precisión (max) 96.99 (Cons+Todos) 97.02 (Rel+SVM+600) 97.02 (Rel+SVM+300+Varios)
Kappa (max) 0.982 (Info+Rel) 1 (CFS+IB1+Todos) 1 (CFS+IB1+Todos+Todos)

Spambase

Precisión (media) 85.92 87.45 87.11
Kappa (media) 0.800 0.858 0.859
Precisión (max) 92.27 (CFS+C4.5) 92.79 (CFS+C4.5+300) 92.85 (CFS+C4.5+Auto+100)
Kappa (max) 0.998 (Cons+IB1) 1 (Cons+IB1+Auto) 1 (Cons+IB1+Varios+Varios)

Weight

Precisión (media) 84.40 85.44 86.33
Kappa (media) 0.803 0.829 0.851
Precisión (max) 100 (Cons+Varios) 100 (Cons+Varios+Todos) 100 (Varios+C4.5+Todos+Todos)
Kappa (max) 1 (Cons+Varios) 1 (Varios+IB1+Varios) 1 (Varios+IB1+Varios+Varios)

Brain

Precisión (media) 59.11 62.27 62.14
Kappa (media) 0.882 0.889 0.904
Precisión (max) 82.86 (Info+C4.5) 94.29 (CFS+C4.5+Todos) 94.29 (CFS+C4.5+Todos+Todos)
Kappa (max) 1 (CFS+Todos, Info+Todos) 1 (CFS+Todos, Info+Todos) 1 (CFS+Todos, Info+Todos)

CNS

Precisión (media) 55.38 58.98 58.13
Kappa (media) 0.867 0.910 0.921
Precisión (max) 65 (Cons+SVM) 70 (CFS+C4.5+600) 70 (CFS+Naive+300+20)
Kappa (max) 1 (Todos+IB1) 1 (Todos+IB1+Todos) 1 (Todos+IB1+Todos+Todos)

Colon

Precisión (media) 77.62 77.17 76.81
Kappa (media) 0.861 0.913 0.920
Precisión (max) 86.67 (Naive+Rel) 87.62 (Info+Naive+Auto) 88.67 (Rel+Naive+Auto+20)
Kappa (max) 1 (Todos+IB1) 1 (Todos+IB1+Todos) 1 (Todos+IB1+Todos+Todos)

Gli85

Precisión (media) 77.99 80.40 80.08
Kappa (media) 0.944 0.969 0.976
Precisión (max) 85.71 (Info+SVM) 88.57 (Cons+IB1+Varios) 90 (CFS+IB1+Auto+100)
Kappa (max) 1 (Todos+IB1) 1 (Todos+IB1+Todos) 1 (Todos+IB1+Todos+Todos)

Ovarian

Precisión (media) 97.68 98.04 98.09
Kappa (media) 0.989 0.994 0.995
Precisión (max) 100 (CFS+SVM) 100 (CFS+SVM+Todos) 100 (CFS+Varios+Varios)
Kappa (max) 1 (CFS+SVM, Todos+IB1) 1 (CFS+SVM+Todos, Todos+IB1+Todos) 1 (Todos+IB1+Todos+Todos)

Cuadro V
RESUMEN DE LOS RESULTADOS OBTENIDOS UTILIZANDO LAS TRES APROXIMACIONES, SIN UTILIZAR SMOTE, USANDO SMOTE SÓLO EN LA CLASE

MINORITARIA–UTILIZACIÓN ESTÁNDARD– Y USANDO SMOTE EN TODAS LAS CLASES.
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I. SUMMARY

Single-label classification is a predictive data mining task

that consists of assigning a label to an instance for which

the label is unknown. Multi-label classification presents a

similar task, although the difference is that the instances have

a collection of labels, known as a labelset, rather than only one

label. The maximum size of the labelset is determined by the

number of different labels in the data set. The aforementioned

labelset concept can also be considered as a sequence of

binary output attributes (as many attributes as there are labels

in the whole data set). Each attribute indicates whether the

corresponding label is applicable to the instance. Only one of

the attributes is active in single-label problems, while several

attributes may be active in multi-label problems [5]. In other

words, the labels in multi-label learning are not mutually

exclusive [8]. This feature implies a much harder and more

challenging problem, due to the high relevance of the relations

between the different labels [10].

Despite the well-established usefulness of single-label in-

stance selection, there are still very few methods for multi-

label classification. To the best of our knowledge, only two in-

stance selection methods for multi-label have been developed.

Since both algorithms are based on Wilson Editing (ENN) [9],

to avoid any confusion with the acronyms, we refer to them

by the initials of their authors: the KADT method [6] and

the CRJH method [3]. In this paper, we have attempted to fill

that gap by proposing a new technique for computing local

sets in multi-label data sets. This new proposal was used to

adapt two single-label instance selection methods, LSSm and

LSBo, for multi-label problems. The adaptation was tested

against the few instance selection methods existing for multi-

label learning and against the classifiers (MLkNN [11] and

IBLR-ML [4]) trained on the whole data sets.

The main contributions of the paper were:

We would like to thank the Ministerio de Economı́a y Competitividad

of the Spanish Government for financing the project TIN2015-67534-P
(MINECO/FEDER, UE) and the Junta de Castilla y León for financing the
project BU085P17 (JCyL/FEDER, UE) both cofinanced from European Union
FEDER funds.

• The definition of the local set concept in the context of

multi-label data sets.

• The proposal that defines two new instance selection

methods, based on the adaptation of single-label clas-

sification algorithms to multi-label learning: LSBo and

LSSm [7].

• The experimental evaluation of the new algorithms. The

new methods were compared with the few existing algo-

rithms.

Instance selection methods usually focus on boundaries

between classes. Boundaries are the keystone of the predictive

process, because they define whether an instance belongs to

one class or another. The simplest classification problem is a

binary class data set: there is only one class, thus one instance

may or may not belong to it (in practice, this task is similar

to determining one of two categories to which the instance

belongs). In multi-class classification, more classes are present

but, as in the previous case, each instance can only belong to

one. The challenge that emerges in multi-label data sets is that

instances can belong to more than one class at the same time,

which blurs the boundaries (because different labels overlap).

The concept of local set has been used for designing several

instance selection algorithms for single-label data sets [2],

[7]. Local sets are defined by the nearest enemy, which

is straightforward to compute in single-label data sets. The

problem with multi-label data sets is how the nearest enemy

is defined: it is no trivial task, because every single instance

has a set of labels, rather than only one, as in single-label

classification. An intuitive solution would be to consider each

labelset (the vector of labels of an instance) as a class in itself.

However, the results of several experiments have demonstrated

that this approach is of little or no use, due to the large amount

of different labelsets that multi-label data sets usually have. For

example, for a data set with three different classes, the number

of different labelsets could be up to 23 = 8; if a data set has

nine labels, the number of labelsets could reach 29 = 512. The

number of possible labelsets therefore increases exponentially

with the number of labels. Hence, local sets calculated in this

way will be too small (many of them only made up of a single

instance) and, therefore, the algorithms based on local sets

would not work properly.

The proposal that was presented in the paper was to use

the Hamming loss (calculated over labelsets) to measure the
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degree of difference in the labelsets1. If the Hamming loss

between the labelsets of two instances is greater than a

predefined threshold, the instances are considered to be of

different ‘classes’. This concept of class can be seen as a

‘soft-class’ in the same sense as in regression data sets. The

Hamming distance is computed as follows:

Hamming distance(a,b) = |ωa △ ωb| (1)

where, ωa and ωb are the labelsets of instances a and b,

respectively, and △ is the symmetric difference between two

labelsets2.

The Hamming distance according to the previous definition

is a whole number. The Hamming loss value is commonly

used in multi-label learning HL ∈ [0, 1].

Hamming loss(a,b) =
1

|Ω|
|ωa △ ωb| (2)

Pseudocode 1 shows the proposed method for local set

calculation in multi-label data sets. It has two inputs: the multi-

label data set and the value of the Hamming loss threshold

that determines when two labelsets are considered distinct.

The function has two outputs: an array of local sets and an

array of nearest enemies. Every single instance has its local

set (made of one or more instances) and its nearest enemy.

Algorithm 1: Function computeLocalSets: computes

the local sets of a multi-label data set.

Input: A training set X = {(x1, ω1), ..., (xn, ωn)}, a

threshold θ

Output: The local sets LSS = {lss1, ..., lssn}, the

nearest enemy of each instance

NE = {ne1, ..., nen}
1 for i ∈ {1...n} do

2 lssi ← ∅

3 dist nei ←∞
/* Find the nearest enemy of xi */

4 for j ∈ {1...n} do

5 d← EuclideanDistance(xi,xj)
6 if HammingLoss(ωi, ωj) > θ and d < dist nei

then

7 nei ← xj

8 dist nei ← d

/* Compute the local set of xi */

9 for j ∈ {1...n} do

10 if EuclideanDistance(xi,xj) < dist nei then

11 lssi ← lssi ∪ {xj}

After the calculation of local sets, any local set-based

algorithm can be used without changes. In the experimental

1We decided to use Hamming loss, because its computation is fast and it
is a commonly used measure in multi-label learning.

2The symmetric difference is the exclusive disjunction (XOR) of two sets,
that is the set of all elements that are in one set, but not in the other set.

study, we considered LSSm and LSBo, because their use of

local sets is more robust than the use of local sets in ICF

(the heuristic used in ICF has fundamental problems that were

reported in [7]).

The experimental study used a broad range of data sets from

different domains, several multi-label measures and statistical

tests. The results revealed the two main benefits of our

proposal: i) HDLSSm, as an edition algorithm, is not only

capable of outperforming the other instance selection methods

in terms of its results, but it also capable of outperforming

the classifier trained with the whole data set; ii) HDLSBo, as

a condensed algorithm, achieved a remarkable compression,

while maintaining a statistically equivalent performance to the

performance of the other methods. Furthermore, the existence

of a threshold for controlling local set sizes implies an

adaptable and versatile proposal.
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IX Simposio de Teoŕıa y Aplicaciones de la Mineŕıa de Datos
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I. SUMMARY

Learning from noisy data is an important topic in machine

learning, data mining and pattern recognition, as real world

data sets may suffer from imperfections in data acquisition,

transmission, storage, integration and categorization. Indeed,

over the last few decades, noisy data has attracted a consid-

erable amount of attention from researchers and practitioners,

and the research community has developed numerous tech-

niques and algorithms in order to deal with the issue [2]–[4].

These approaches include the development of learning algo-

rithms which are robust to noise as well as data pre-processing

techniques that remove or “repair” noisy instances. Although

noise can affect both input and class attributes, class noise

is generally considered more harmful to the learning process,

and methods for dealing with class noise are becoming more

frequent in the literature [3].

Class noise may have many reasons, such as errors or

subjectivity in the data labeling process, as well as the use

of inadequate information for labeling. For instance, in some

medical applications, the true status of some diseases can only

be determined by expensive or intrusive procedures, some

of which can only be carried out after a patient’s death.

Another reason is that data labeling by domain experts is

This work have been partially supported by the São Paulo State (Brazil)
research council FAPESP under project 2015/20606-6, the Spanish Ministry of
Science and Technology under project TIN2014-57251-P and the Andalusian
Research Plan under project P12-TIC-2958.

generally costly, and several applications use labels which are

automatically defined by autonomous taggers (e.g., sentiment

analysis polarization [5]), or by non-domain experts. This

approach is common in, e.g., social media analysis [5], where

hashtags used by users or information provided by a pool of

non-domain experts (crowdsourcing) are used to derive labels.

Even though class noise is predominant in the literature

(see [2], [6] for recent surveys and comparison studies),

most of the research has been focused on noise handling

in binary class problems. However, new real-life problems

have motivated the development of classification paradigms

beyond binary classification [7]. These paradigms include

ordinal class [8], multiclass [9], multilabel [10] and multi-

instance [11] as well as learning from data streams and

non-stationary environments [12] and joint exploiting related

tasks [13]. Due to the ubiquity of noise, it is of fundamental

importance to better understand the relationships and impli-

cations of class noise within these paradigms. Each paradigm

has its own particularities which impose new challenges and

research questions for noise handling. Although research for

class noise handling in these paradigms is somewhat present in

the literature, it remains quite scarce and requires general dis-

cussion of issues, challenges and research practices regarding

it.

The related paper aims to discuss open-ended challenges

and future research directions for learning with class noise

data, focusing on the aforementioned non-binary classification

domains. The main contributions of such a paper are:

• We discuss some current research, as well as the need of

adaptation or development of new techniques for handling

class noise within non-binary classification paradigms.

• We also discuss issues related to the simulation of

noise scenarios (inclusion of artificial noise) within these

paradigms, an experimental artifact frequently adopted
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890

for analysis of noise dealing techniques. These issues are

important for simulating noise scenarios that may occur

in real world applications, and can serve as the basis for

uniforming procedures by providing an objective ground

in order to assess the robustness of the learning methods.

• We present some important open-ended issues and offer

some possible solutions to the existing problems.

We are aware of some studies already considering multiclass

noise problems. Different multiclass noise patterns impose nu-

merous challenges, some of them infrequently addressed in the

literature. Even state of the art methods for dealing with binary

class noise present considerable variation in performance when

considering different multiclass noise patterns at the same

noise ratio. Despite this, these issued are seldom considered

in the literature. In the related paper we focus on some of

aspects that could be studied further, providing a guideline of

open challenges for researchers, such as:

• Would these different types of noise patterns pose the

same or different challenges when dealing with multiple

class noise?

• Which one would be more difficult to tackle?

• Which aspects of the problem would be more affected by

considering different noise multiclass pattern?

• How do existing methods behave considering these dif-

ferent noise patterns?

One interesting topic for further research is how to extend

methods, originally developed only for binary class, to the

multiclass case. Some data transformation approaches for

transforming multiclass to binary problems, e.g., One-versus-

One (OVO) or One-versus-ALL (OVA), could be applied [14].

However, research on this topic generally involves random

noise completely at random, with uniform class noise dis-

tribution. Investigating how these approaches are affected by

different noise patterns is an interesting topic for research. For

instance, when applying a filter using a OVA decomposition,

does the order in which class noise is removed matter? If so,

is this influence stronger for different noise distribution among

the classes?

Another open-ended problem is the relationship with im-

balanced classification [15] and multiclass noise. It is re-

ported in the literature that noise in minority classes is more

harmful than in majority classes [16]. However, multiclass

imbalance [17] has further issues to consider, as multiple

predominant or infrequent classes may occur. It is unclear what

learning difficulties multiclass noise can cause under highly

imbalanced class distributions, and how to handle it effectively

is an open-ended issue. Furthermore, different noise patterns

can change the observed class ratio, which may influence the

behavior of class imbalance techniques. Uniform class noise,

for instance, may mask the observed class ratio of multiple

rare classes even for low noise levels. Default class may also

introduce an artificial predominant class, thus generating an

artificial imbalanced problem due to the presence of noise.

Possible ways to handle noise in imbalanced problems include

cost sensitive noise handling [18], [19], attributing and the

development of class ratio aware filtering approaches [20]

considering the multiclass context.

We believe this discussion will encourage researchers and

practitioners to explore the problem of class noise handling in

new scenarios and different learning paradigms in more detail.
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[20] J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera, “Smote–ipf:
Addressing the noisy and borderline examples problem in imbalanced
classification by a re-sampling method with filtering,” Inf. Sci., vol. 291,
pp. 184–203, 2015.
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I. SUMMARY

Learning with ordinal data sets has increased the attention

of the machine learning community in recent years. These data

sets are characterized by the presence of an ordinal output and

they are commonly found in real life.

Monotonic classification is an ordinal classification problem

where monotonic constraints are present in the sense that a

higher value of a feature in an instance, fixing the other values,

should not decrease its class assignment [2]. Monotonicity

is a property commonly found in many environments of our

lives like economics, natural language or game theory [4]. A

classical example of monotonicity is in the case of bankruptcy

prediction in companies, where appropriate actions can be

taken in time, considering the information based on financial

indicators taken from their annual reports. The comparison of

two companies where one dominates the other on all financial

indicators shows clearly where the monotonicity is present,

which supposes that the overall evaluation of the second

cannot be higher than the evaluation of the first. This strategy

could be applied to the credit rating score used by banks as

well as for the bankruptcy prediction strategy .

In the specialized literature we can find multiple monotonic

classifiers proposed. As a restriction, some of them require

the training set to be purely monotone to work properly. Other

classifiers can handle non-monotonic data sets, but they do not

guarantee monotone predictions.

In addition, real-life data sets are likely to have noise,

which obscures the relationship between features and the class.

This fact affects the prediction capabilities of the learning

algorithms which learn models from those data sets.

This work was supported by TIN2014-57251-P, by the Spanish ”Ministerio
de Economı́a y Competitividad” and by ”Fondo Europeo de Desarrollo
Regional” (FEDER) under Project TEC2015-69496-R and the Foundation
BBVA project 75/2016 BigDaPTOOLS.

In order to address these shortcomings and to test the

prediction competences of the monotonic classifiers, the usual

trend is to generate data sets which completely satisfy the

monotonicity conditions. The intuitive idea behind this is

that the models trained on monotonic data sets should offer

better predictive performance than the models trained on the

original data. In the specialized literature, we find two possible

techniques to generate monotonic data sets. Monotonic data

sets can be created by generating artificial data [5] and by

relabeling the real data [6]. The latter restores the monotonicity

of the data set by changing the class labels in those instances

which violate the monotonicity constraints. Class relabeling is

the only approach which can be applied in real life data sets,

and has shown promising results in the literature.

As an alternative to relabel, Training Set Selection (TSS)

is known as an application of instance selection methods [3]

over the training set used to build any predictive model. The

effects produced by TSS are: reduction in space complexity,

decrease in computational cost and the selection of the most

representative instances by discarding noisy ones.

In this paper we propose a TSS algorithm to manage mono-

tonic classification problems, called Monotonic Training Set

Selection (MonTSS). MonTSS can be considered as the first in

the literature for performing TSS in monotonic classification

problems. It is a data preprocessing technique which, by means

of a suitable TSS process for monotonic domains, offers an

alternative without modifying the class labels of the data set,

it instead removes harmful instances. MonTSS incorporates

proper measurements to identify and select the most suitable

instances in the training set to enhance both the accuracy and

the monotonic nature of the models produced by different

classifiers.

The whole process is presented in Figure 1, and as can be

seen it is composed of three stages:

1) The MonTSS process starts with a preprocessing step

where MonTSS analyzes the original data set by quan-

tifying the relationship between each input feature and

the output class. This relation is estimated with a metric

called Rank Mutual Information (RMI). With it, we
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Fig. 1. MonTSS process.

know the features which have a real direct or inverse

monotonic relation with the class or no relation as well

(including unordered categorical features). The RMI

value is evaluated in the training data set to decide

which features are used in the computation of collisions

between instances.

In essence, rank mutual information can be considered

as the degree of monotonicity between features A1,...,Af

and the feature class Y . Given any feature Aj and feature

class Y , the value of RMI for the feature Aj is calculated

as follows:

RMI(Aj , Y ) = −
1

n

n
∑

i=1

log
#[xi]

≤

Aj
·#[xi]

≤

Y

n ·#([xi]
≤

Aj
∩ [xi]

≤

Y )
(1)

where n is the number of instances in data set D, [xi]
≤

Aj

is the set formed by all the instances of the set D whose

feature Aj is less or equal than feature Aj of instance

xi, and [xi]
≤

Y is the set composed of the instances of

the set D whose feature class Y is less or equal than

feature class Y of instance xi.

2) In the second stage, the probabilistic collision removal

mechanism is applied, which eliminates most of the

instances which produce collisions. The remaining in-

stances are used as input in the last stage.

3) Here, the quality metrics are computed and based on

them, the selection procedure is developed considering

the following rule:

Select xi =







true if Del(xi) < Infl(xi)
or Del(xi) ≥ 0.9

false otherwise.

(2)

The rationale behind this rule is to retain the instances which

are closer to the class boundaries, using a straightforward

threshold of 0.9 which is independent from the diversity

of their neighborhood. Furthermore, a relationship between

Del(xi) and Infl(xi) can be easily established as they represent

a measurement in the same range of the relative rate of the

situation and the neighborhood variety of every instance. In

this respect, the rule is built as a function of both measures. As
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Fig. 2. Artificial data set (Artiset) preprocessed by Relabeling and MonTSS
with the borders calculated by MkNN with 3 neighbors.

a result, for instance, the rule preserves the instances belonging

to central areas if there are instances of other classes around.

We have compared the results offered by well-known clas-

sical monotonic classifiers over 30 data sets with and without

the use of MonTSS as a data preprocessing stage. As graphical

example of use we present the Fig. 2.

The results show that MonTSS is able to select the most

representative instances, which leads monotonic classifiers to

always offer equal or better results than without preprocessing.

MonTSS is able to select the most representative instances

independently of the classifier to be applied later. This leads

monotonic classifiers to always offer equal or better results

than without preprocessing. Furthermore, data related met-

rics are notably improved, fully satisfying the monotonicity

restrictions without affecting or modifying the nature of the

original data. At the same time, it reduces the number of non-

comparable pairs of instances and the size of the training data

sets before the learning stage starts.
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Abstract— Mood disorders have been a relevant topic for the 

last few years. Nowadays, there are projects in the mental health 

area which are supported by technological devices that improve 

the efficiency of treatments by effortlessly allowing the gathering 

of biological and psychological indicators from patients. One of 

the goals of this document is to describe the most common 

methods for collecting most of those indicators and to study 

which of them can be applied to the Bip4Cast project.  The 

purpose of this article is to analyze the sources of information 

that have been used successfully in the study of emotional 

disorders as well as alternative sources of information from the 

monitoring of movement and sounds in the patient's 

environment. This article shows the results of the analysis of 

traditional information sources. The results show a lack of 

precision in the data on fundamental variables such as sleep 

quality and motor activity. Therefore, the study demonstrates the 

need to include new sources of information to increase the quality 

of the data before applying crisis prediction algorithms. The need 

to monitor the sleep and movement of patients in order to achieve 

a sufficient quality in the source data from the evolutionary 

analysis of patients is concluded. 

Keywords—bipolar disorder; mood disorder; data gathering; 

machine learning; data analysis. 

I.  INTRODUCTION 

The quality of treatments in mood disorders has acquired a 
high attention for researchers in the mental health field. 
However, despite current efforts, there is still plenty of room 
for improvement. Many practicians agree that knowing how 
patients react to treatments in advance and predicting when 
their mood could vary significantly are two of the most 
important issues to solve in order to ensure the quality of new 
treatments.  

The proposal of the Bip4Cast project is to keep using the 
current monitoring of personal sessions between patients and 
psychiatrists, but also to add new data sources and their 
analysis to improve the prediction of Bipolar Disorder crises in 
patients. The main idea is to get advantage of the new 
developments in data gathering, data cleaning, and Machine 

Learning to monitor a set of patients and make a new approach 
with these data. The patients are encouraged to follow certain 
methods for gathering psychological and biological indicators 
during a particular period of time. The goal is to analyze the 
data gathered in order to find some common patterns that could 
trigger a crisis. For the process of pattern detection, some 
Machine Learning tools and mathematical models are being 
used.  

The goal of this document is to cover a discussion about 
some methods for gathering indicators and the feasibility of 
their usage in this project. Apart from this introduction, this 
document includes the following sections: section 2 presents 
the state of the art related research in mood changes and patient 
monitoring. In section 3, several methods for gathering 
psychological and biological parameters are described. Section 
4 covers the preliminary analytics on the Bip4Cast data sets 
and, finally, section 5 includes the conclusions. 

II. STATE OF THE ART 

Several studies about Bipolar Disorder state that a 
relationship exists between the different behaviors of the 
patients before the occurrence of a crisis [1-2]. For example, 
during a manic or a depressive crisis, some of these studies 
agree that sleeping rates are very important indicators. Vocal 
features as well as the rate of speech are other important 
indicators and  there are some studies stating that the pitch is 
lower in a depressed state [3]. Also, parameters like the time of 
exposure to dark or sunny places and the physical activity are 
considered. 

In [4], the author introduces a mobile health system using 
several sensors for mood detection. In [5], the author presents a 
research that includes Machine Learning models in a mobile 
application in order to estimate the mood in depressive 
patients. However, no objective psychological or psychiatric 
markers are considered due to the recording of the data being 
done manually by patients. Furthermore, there is an interesting 
study which describes the use of electroencephalography for 
the gathering of brain signals. It also uses non-linear features 
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like Higuchi’s Fractal Dimension and Sample Entropy to feed 
different Machine Learning methods [6]. In [7], a mobile 
application is presented for supporting the treatments of 
patients with Bipolar Disorder. Its key is to compare objective 
and subjective data. It records objective data using some 
features given by mobile phones like accelerometers and phone 
call rates. This information is used for predicting trends in the 
mood of the patients. However, the focus of this application is 
to record subjective data using a self-reporting approach. 

At the present time, there are some projects within the 
scope of mental health which have similar approaches and try 
to obtain certain markers from which a common pattern can be 
inferred to help with the treatments. One of these projects is 
PSYCHE [8], whose main idea is for the patients to use a 
special garment made of a proper material, of which the main 
goal is to collect parameters from the patient in his/her daily 
life. The outcomes of PSYCHE are positive. However, patients 
said that the main inconvenient was to use the same clothes all 
the time, which implicates a high discomfort for the patient and 
therefore its non-use. Another really interesting project is 
MONARCA [9]. It emphasizes the use of mobile phones for 
the electronical monitoring of patients. The number of 
parameters that can be obtained through the use of a mobile 
phone is really high, but nevertheless, none of them are 
physiological parameters. Furthermore, after 3 years of activity 
with this application, an analysis of some non-functional 
requirements for the treatment of patients with Bipolar 
Disorder concluded that, for new developments, some details 
have to be taken into consideration in order to improve the ease 
of use, e.g.: ensuring that the patients have a data plan for their 
3G connection, the need for teaching the clinicians how to 
operate the system, and the overheating of the smart phone 
from the use of an application that requires both GPS and 
Bluetooth. 

Since few years ago, Body Sensor Networks (BSN) have 
made an appearance, which are a branch of wireless sensor 
networks (WSNs) that conform one of the core technologies of 
IoT developments in the healthcare system [10]. Its purpose is 
to provide an integrated hardware and software platform which 
facilitates the future development of pervasive monitoring 
systems. BSN allow the monitoring of patients by using a 
collection of tiny-powered and lightweight wireless sensor 
nodes. These nodes are placed on the skin and sometimes 
integrated with different garments, so that the patient’s health-
related data can be collected and transferred to the healthcare 
staff in real time. However, the development of this new 
technology in healthcare applications without considering 
security makes patient privacy vulnerable. For this reason, 
several research projects are currently being carried out to try 
to cover this vulnerability [11].  

III. DATA SOURCE ANALYSIS 

All the research that is currently being conducted suggests a 
wide variety of indicators for taking mood disorder treatments 
into account. The indicators themselves and the way in which 
they are collected are strongly related. In this section, several 
data sources for gathering those indicators are described. 
Depending on the indicator they gather or the type of device, 
they are classified into 6 groups as shown below. 

1. Smart wristband/smart band. These devices include a set 
of sensors which measure daily activity by means of 
accelerometers. They create variables such as an activity 
tracker (resting, moving or sleeping), a pedometer (steps taken 
and distance traveled), the calories burned, a sleep monitor 
(awake, slight and deep sleeping), the heart rate and the blood 
oxygen level. The most relevant variable measured from this 
type of device is the sleep indicator. Almost all researchers 
agree that sleep quality is the best indicator in Bipolar Disorder 
treatments. The CHOICE [12] study states that lower levels of 
depression are correlated with improvements in insomnia 
treatments, and on the other hand, high levels of mania are 
correlated with less need for sleep. Furthermore, a pilot 
randomized controlled trial demonstrated that sleep disturbance 
appears to be an important pathway contributing to Bipolar 
Disorder [13]. These data can easily be gathered from popular 
apps. Fig. 1 (a) shows one of the monitors used in the Bip4Cast 
project.  

                

        

Fig. 1. Two sleep monitors in Bip4Cast (a- Garmin Vivofit3; b- Sleep Cycle 

for iPhone) 

2. Medical bands. They allow measuring more parameters 
because they usually include more hardware and better features 
like atmospheric pressure (barometer), GPS location and 
magnetometer. There is some research which links episodes to 
disturbances in circadian rhythms and lifestyle regularity. 
Those indicators can be collected through these devices using 
the activity tracker or gyroscope. Furthermore, this research 
suggests that methods for tracking behavior, nutrition, blood 
pressure and lipid profile as well as physical/social activity and 
sleep-awake routines may improve treatments. In the Bip4Cast 
project we are using GENEActif v.1.2 for a total of 25 patients, 
(see [14] for more details about their use in Bip4Cast).  

3. Mobile Sensors. In this group, any other kind of sensors 
that can be worn by the user on any other part of the body is 
included, e.g. for wearing on the leg, ActivPAL is a kind of 
device used to investigate the correlation between physical 
behaviors and chronic disease [15]. For using as a necklace, 
LeafUrban is an option (there are some versions for wearing on 
the wrist or attached to the clothes). It is a device designed for 
women and what it makes different from other devices is the 
tracking of the menstrual cycle, the fertility and the breathing 
[16]. For wearing on the head, ELF Emmit is a headband that 
helps the user improve the state of both mind and body by 
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895

using pulsed electromagnetic stimulation (PEMS) [17]. 
Relevant variables include skin and breath changes, 
electrocardiogram and respirogram data, stress level and 
menstrual cycle among others.  

4. Sleep Activity Recording Devices. In this group, any 
device specialized in recording sounds and activities during 
sleep is included. There are hundreds of mobile applications 
that record sounds during sleep. One of the main objectives is 
to detect snoring, for which four of the most popular 
applications at the moment are SleepGenius, SleepCycle (see 
Fig. 1 (b)), SleepBot and SleepTime. However, there are other 
kinds of devices with different non-invasive designs, e.g. 
devices attached to the mattress which can track sounds as well 
as heart rate, breathing, movement, etc. The reason for using 
these methods is to improve sleeping conditions. Almost all of 
these methods have one parameter in common: “breathing”, 
which allows the detection of snoring. Habitual snoring is a 
prevalent condition that is not only a marker for Obstructive 
Sleep Apnea (OSA) but can also lead to vascular risks [18].  
Some researchers have found a relationship between OSA and 
Major Depressive Disorder/Bipolar Disorder. 

5. Forms and Questionnaires. This group contains any 
method which uses a questionnaire or a form for the self-
reporting of mood. In current literature, these methods were 
designed by psychiatrists and are presented as scales. There are 
several scales for detecting the risk of a euphoria episode 
outbreak: Altman Self-Rating Mania Scale (ASRM) [19], the 
Clinician-Administered Rating Scale for Mania (CARS-M), the 
Internal State Scale (ISS), the Self-Report Manic Inventory 
(SRMI), etc. For depression episodes, there are several scales, 
like the Patient Health Questionnaire (PHQ-9) [20]. All of 
them consist in questionnaires which can be performed by 
patients. This presents the opportunity of developing digital 
forms based on these patients in order to facilitate their use. 

Scales for detecting the risk of euphoria or mania episodes, 
like the Young Mania Rating Scale (YMRS) and the Bech-
Rafaelsen Mania Scale (MAS), or the Hamilton Depression 
Rating Scale (HDRS), which detects the risk of depression, are 
not included because they are performed by the clinician 
(however, for the scope of this project, these scales are 
included in normal monitoring sessions).  All of these 
questionnaires collect variables from which it is possible to 
measure the presence and severity of mania, depression, 
affective, psychological and somatic symptoms. Fig. 2 shows 
the interface of an application developed for collecting these 
data. All the details about this work are in [21]. 

6. Mobile Apps / Time Consumption. This group includes 
mobile applications that support BPD treatments and/or record 
smart phone use. For the aim of this project, these mobile 
applications were classified into two subclasses: the first one, 
named Bipolar Disorder Apps (BPDA) in this document, 
includes any applications that have been developed for 
supporting the treatment itself, and the second one, named 
Time Consumption Apps (TCA) in this document, includes any 
application that is able to measure the time spent using a 
specific mobile application.  

 

 

Fig. 2. First version of the app for collecting daily personal data 

 

7. Conventional methods. Finally, patients are also being 
assessed periodically through interviews. This evaluation is 
done by psychiatrists in medical centers. For the patient, this 
does not imply any kind of alteration in the current treatment. 
However, the procedure will need the psychiatrist to send the 
collected data from those sessions to the data server. It is 
important to mention that in this phase, the Young Mania 
Rating Scale (YMRS) and the Hamilton Depression Rating 
Scale (HRDS) are included for detecting mania or depression 
episodes.  

Also, psychiatrists can take advantage of these interviews 
for downloading the data recorded from wristbands and 
medical bands in order to later send them to a dedicated server 
(just in case these devices are not able to send the recorded data 
automatically).  

IV. THE BIP4CAST PROJECT 

Patients with Bipolar Disorder are characterized by a 
behavior which is difficult to predict. There is great deal of 
information which can be retrieved from biological, 
physiological and physical signals in order to detect episodes. 
Knowing which variables are correlated and which features or 
parameters are important is essential to build a model that will 
successfully predict the target of a study. The aim of this study 
is to investigate which features have the highest importance in 
health. In order to achieve this, Machine Learning algorithms 
and techniques are used for feature ranking.  

The data used for this project is anonymized patient data 
gathered by psychiatrists at Clínica Nuestra Señora de la Paz in 
Madrid. All the data were available in an Excel file with 
different sheets. Even though 25 patients are already wearing a 
medical band (GENEActif 1.2) and we have developed an 
application for gathering their daily activity, for this study most 
of the data have been gathered in a supervised manner during 
medical appointments with four different patients that suffer 
from Bipolar Disorder. The goal for the future is that these data 
are both recorded by the psychiatrists in appointments and with 
the help of mobile applications. This way, the patients can 
actively participate in their own diagnosis. The data consist of 
4 data sets: Episodes, which represents different episode 
periods in the patients (depression/mania) from a total of four 
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patients; YMRS  data set, which contains Young Mania Rating 
Scale [22] data (to assess mania symptoms) from a total of 48 
days; HDRS data set, which contains Hamilton Depression 
Rating Scale [23] data (for depression), also from a total of 48 
days; Interview data set, which contains 728 registers about 
physical and psychological items, the latter including variables 
like anxiety, irritability or concentration problems, and the 
former including more objective data, as could be the number 
of cigarettes smoked by the patient or the time in which the 
patient woke up or went to bed. The last data set used in the 
study is Interventions. It includes data about all the medical 
interventions that different doctors have had with the patients, 
in a total of 92 registers. For the gathering of data included in 
the Interview data set, a mobile application [21] has been 
developed, which patients can use daily to store quantitative 
data (number of cigarettes, menstruation, etc.) and qualitative 
data (feeling of stress, anxiety, etc.). In the project, we have 
also included studies with data from a medical bracelet 
(GENEActif 2.1 for 25 patients) and an application for 
recording night sounds. The data collected by these last two 
exercises will be included in subsequent studies. 

The programming language used in this project is Python 
2.7, which has a lot of libraries that make data cleaning and 
visualization less complicated, as well as applying Machine 
Learning algorithms. The environment used is Jupyter 
Notebook [24]. Scikit-learn [25] is the Machine Learning 
library of choice for this project because it includes 
preprocessing and cross-validation tools as well as all the 
known baseline Machine Learning algorithms. This project is 
shared in a public GitHub repository, which can be found at 
[26].  

A. Data Cleaning  

The first step of the project consisted in the data cleaning 
which included the gathering of the data that we would be 
working with. In order to gather the data, we exported each 
sheet, from the Excel file that was given to us by the hospital, 
to csv format. The initial Excel file was divided into five 
different sheets:  Episodes, YMRS, HDRS, Interview Data Set 
(IDS) and Interventions. In order to export them to a format 
readable by Pandas [27], we saved each sheet as CSV UTF-8 in 
Microsoft Excel. Some other improvement was done in relation 
to data cleaning: filling the empty values, converting them 
from Float to Integer and data type revision.  

B. Exploratory Data Analysis 

After the data cleaning, we performed an Exploratory Data 
Analysis, in order to visualize how the data behaved. We used 
histograms, heatmaps and scatterplots in this part. For instance, 
the YMRS data set correlation heatmap showed that 
aggressiveness and verbal expression were correlated. This 
could mean that if the patient talks a lot (excessive speech rate), 
this behavior would probably be accompanied by excessive 
energy or hyperactivity (Disruptive-Aggressive Behavior). The 
scattterplot matrix from the YMRS data showed that 
hyperactivity and irritability have a similar distribution as well 
as a correlation between verbal expression and euphoria. The 
HDRS data set analysis showed a similar distribution between 
suicide and precocious insomnia (difficulty of sleep early in the 

night). The HDRS data set correlation heatmap showed a high 
correlation between depressed mood and work: the less a 
patient is willing to work or do other activities, the more 
depressed he or she will probably feel.  At this stage of the 
research, the best data set regarding both size and accuracy was 
the Interview Data Set (IDS). During its analysis, we found a 
clear linear relationship between the variables mood and 
motivation. The Intervention data set presented a lack of 
correlation between the level of relief in a patient and the GAF 
(Global Assessment of Functioning). A good summary of all 
these results can be read at [26].   

 

Fig. 3. 2D kernel density plot of mood and motivation in Interview data set 

C. Data Combination 

 The goal of this phase was to find data set combinations 
that had enough data for the algorithms to process so that we 
could later see which data sets returned the highest accuracy. In 
order to get the combinations right, we defined a function that 
obtained the date of each entry and compared it with the 
different episodes of depression and mania in the Episode data 
set, which was the target of the prediction. For the entries or 
rows that were not recorded in the Episode data set, we 
assumed that the patient was in a euthymic state. This way, we 
got three possible states that a patient could be in: Depression 
(D), Mania (M) and Euthymic (N).  For instance, with the 
HDRS and Episode combination we could see that when the 
patients had a depression episode, the value of depressed mood 
was much higher, almost always between 2 and 3, which meant 
that they either spontaneously reported feeling depressed or 
they communicated feeling depressed in a non-verbal way, 
judging by the rating items from the Hamilton Depression 
Rating Scale (HDRS). We could also see that when the 
patients were in a depression state (because of the 
predominance of green points on higher values of the work 
axis, where green represented patients in a state of 
depression), they started feeling loss of interest in activities 
they usually performed or there was a decrease in the time 
spent on work and other activities, which made perfect sense 
according to this rating scale.  

D. Application of the Algorithms 

The data sets on which we tested the algorithms were: 
YMRS (Young Mania Rating Scale data), HDRS (Hamilton 
Depression Rating Scale data), Interviews (interview data, 
IDS), Interventions (intervention data), YMRS-HDRS 
(combination of the YMRS and HDRS data) and Interviews-
Interventions (combination of the Interview and Intervention 
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data). Fig.4 shows the diagram of the process followed during 
this study. 

   

Fig. 4. Diagram of the Machine Learning algorithm application process 

The algorithms that we used for this part were: Decision 
Tree [27], Random Forest [28], Support Vector Machines [29] 
and Logistic Regression [30]. The reason why these algorithms 
have been chosen for this project is explained in [26], in the 
section belonging to each algorithm.  

The fact that these algorithms have been applied in this 
project does not mean that they are the best option for the 
classification of Bipolar Disorder states, but rather that they are 
the most suitable ones given the amount of data and the number 
of features used for the project. In future studies that make use 
of this project, if the data sets are larger it could be interesting 
to apply other algorithms too, like the Naïve Bayes [31] 
algorithm or any kind of Boosting algorithm [32], as to see 
how they perform on this particular classification problem.  

Before applying each algorithm, as is necessary for every 
classification problem, the original data needed to be split into 
training and testing sets. Later, the training data would be used 
to train the prediction models and the testing data would be 
used to compare the output of the model with the real targets 
by cross-validation, a technique presented first by M. Stone in 
1974 [33], that is used widely in Machine Learning for 
algorithm performance comparison. 

The testing set is used for obtaining the accuracy of the 
model, as mentioned above, which is done by comparing the 
output obtained from the testing input and the real output of the 
testing set. In order to divide the original data sets into training 
and testing sets, we used the train_test_split() function from the 
scikit-learn library [25], where the test size represents the 
percentage of the data that is used for the testing set. After the 
algorithms were applied, the cross_val_score() function, which 
is also included in the scikit-learn library, was called in order to 
evaluate the score by k-fold cross-validation [33]. 

The best way to compare the accuracies obtained with the 
different algorithms on all the data sets was to make an 
algorithm performance matrix, which is shown in Table 1. This 

matrix showed that, in average, the data set that returned the 
best prediction accuracy (69%) with the algorithms was the 
Interview data set, as seen on the right column. The algorithm 
that performed the best, also in average (62%), was the 
Logistic Regression algorithm, as seen on the column farthest 
down. 

Even though the algorithm that had the best accuracy 
average was the Logistic Regression, we stated that the 
Random Forest algorithm made the most accurate predictions 
in the sense that they were very reasonable given the behavior 
of the patients, which we tested with randomized data. These 
predictions made possible the implementation of a small 
program with the Random Forest classifier that we obtained, 
and which can be seen in [26]. 

TABLE I.  ACCURACIES WITH DIFFERENT ALGORITHMS 

 

 

V. CONCLUSIONS AND FUTURE WORK 

Having a deep understanding of the data is essential in any 
Machine Learning project focused on a branch of medical 
science like psychiatry, where knowing which behaviors are 
normal and abnormal in the patients can help us create much 
more precise prediction models. The amount of data used and 
the nature of the data source are very important factors because 
with a larger suitable amount of data we will be able to get 
prediction accuracies with a much higher level of confidence. 
In the same way that understanding the data is important, 
having a deep perception of the theory behind each algorithm 
used, as well as their many implementations, is crucial in order 
to get the models to perform in the best possible way. 

In this project, several groups of data collected in a 
supervised way have been analyzed and a set of Machine 
Learning algorithms has been applied. The results allow us to 
make decisions about the new sources of relevant information 
to be incorporated in consequent studies. It is concluded that 
the data from sleep and daily activity, measured both by 
movement and sounds, are relevant for improving the 
prediction of a crisis in patients with Bipolar Disorder. 
Therefore, a future project that includes group 1 bracelets 
instead of the current medical wristbands is proposed, because 
the latter are too expensive and invasive, and the development 
of a new mobile application that, in addition to the daily data, 
includes sensitization data and sounds. Future work will also 
analyze the EEG data collected during supervised monitoring 
for the purpose of performing a comparative analysis. The 
implementation with Jupyter will also allow us to perform the 
same studies on larger databases when the number of patients 
in the experiment is higher.   

The most immediate use of the results obtained in this 
project would be to train the same algorithms used but with 
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larger amounts of data, in order to see if they perform in a 
similar way. Gathering objective data from devices like phones 
or wristbands is something that can be accomplished quite 
easily according to the work already done in this sense.  The 
goal of this task would be to compare the performance of 
different algorithms on the objective data gathered from these 
devices with the performance results obtained on the subjective 
data used in this project. 

As for other more indirect applications of the results 
obtained during this project, the implementation of a drug 
recommending system for patients with Bipolar Disorder could 
be made by predicting the states in which the patients are 
during a certain period of time. These predictions could be 
stored in a database which also contains the medicine that these 
patients have been prescribed with during the same period of 
time, thus providing the possibility of seeing how each patient 
reacts to the different types of drugs used. 
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