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Abstract—We compare four equivalence relations defined in
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preserved in the class of equivalence and through aggregation
functions.

Index Terms—Aggregation function, fuzzy subgroup, level
subgroup, isomorphism, fuzzy isomorphism, sup property



XVIII Conferencia de la Asociación Española para la Inteligencia Artificial
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Abstract—In a recent paper, the authors have proposed an
axiomatic system for a modal logic of gradual preference on
fuzzy propositions that was claimed to be complete with respect
to the intended semantics. Unfortunately, the completeness proof
has a flaw, that leaves still open the question of whether the
proposed system is actually complete. In this paper, we propose
an alternative axiomatic system with a multi-modal language,
where the original modal operators are definable and their
semantics are preserved, and for which completeness results are
proved.

Index Terms—fuzzy preferences, fuzzy modal logic, complete-
ness

I. INTRODUCTION

Reasoning about preferences is a topic that has received a lot

of attention in Artificial Intelligence since many years, see for

instance [HGY12], [DHKP11], [Kac11]. Two main approaches

to representing and handling preferences have been developed:

the relational and the logic-based approaches.

In the classical setting, every preorder (i.e. reflexive and

transitive) relation R ⊆W×W on a set of alternatives W can

be regarded as a (weak) preference relation by understanding

(a, b) ∈ R as denoting b is not less preferred than a. From R
one can define three disjoint relations:

• the strict preference P = R ∩Rd,

• the indifference relation I = R ∩Rt, and

• the incomparability relation J = Rc ∩Rd.

where Rd = {(a, b) ∈ R : (b, a) /∈ R}, Rt = {(a, b) : (b, a) ∈
R} and Rc = {(a, b) ∈ R : (a, b) /∈ R}. It is clear that P is a

strict order (irreflexive, antisymmetric and transitive), I is an

equivalence relation (reflexive, symmetric and transitive) and

J is irreflexive and symmetric. The triple (P, I, J) is called a

preference structure, where the initial weak preference relation

can be recovered as R = P ∪ I .

In the fuzzy setting, preference relations can be attached

degrees (usually belonging to the unit interval [0, 1]) of fulfil-

ment or strength, so they become fuzzy relations. A weak fuzzy

preference relation on a set X will be now a fuzzy preorder

R : X×X → [0, 1], where R(a, b) is interpreted as the degree
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“Enhancing human resources for research in theoretical computer science”,
funded by the Operational Programme Research, Development and Education
of the Ministry of Education, Youth and Sports of the Czech Republic. Esteva
and Godo acknowledge partial support by the FEDER/MINECO project
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in which b is at least as preferred as a. Given a t-norm ⊙, a

fuzzy ⊙-preorder satisfies reflexivity (R(a, a) = 1 for each

a ∈ X) and ⊙-transitivity (R(a, b) ⊙ R(b, c) ≤ R(a, c) for

each a, b, c ∈ X). The most influential reference is the book

by Fodor and Roubens [FR94], that was followed by many

other works like, for example [DBM07], [DBM10], [DMB04],

[DBM08], [DGLM08]. In this setting, many questions have

been discusssed, like e.g. the definition of the strict fuzzy order

associated to a fuzzy preorder (see for example [Bod08a],

[Bod08b], [BD08], [EGV18]).

The basic assumption in logical-based approaches is that

preferences have structural properties that can be suitably

described in a fomalized language. This is the main goal

of the so-called preference logics, see e.g. [HGY12]. The

first logical systems to reason about preferences go back

to S. Halldén [Hal57] and to von Wright [vW63], [vW72],

[Liu10]. Others related works are [EP06], [vBvOR05]. More

recently van Benthem et al. in [vBGR09] have presented a

modal logic-based formalization of representing and reasoning

with preferences. In that paper the authors first define a

basic modal logic with two unary modal operators ♦≤ and

♦<, together with the universal and existential modalities,

A and E respectively, and axiomatize them. Using these

primitive modalities, they consider several (definable) binary

modalities to capture different notions of preference relations

on classical propositions, and show completeness with respect

to the intended preference semantics. Finally they discuss their

systems in relation to von Wright axioms for ceteris paribus

preferences [vW63]. On the other hand, with the motivation

of formalising a comparative notion of likelihood, Halpern

studies in [Hal97] different ways to extend preorders on a

set X to preorders on subsets of X and their associated

strict orders. He studies their properties and relations among

them, and he also provides an axiomatic system for a logic of

relative likelihood, that is proved to be complete with respect

to what he calls preferential structures, i.e. Kripke models with

preorders as accessibility relations. All these works relate to

the classical (modal) logic and crisp preference (accessibility)

relations.

In the fuzzy setting, as far as the authors are aware, there

are not many formal logic-based approaches to reasoning with

fuzzy preference relations, see e.g. [BEFG01]. More recently,

in the first part of [EGV18] we studied and characterized
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different forms to define fuzzy relations on the set P(W) of

subsets of W , from a fuzzy preorder on W , in a similar way to

the one followed in [Hal97], [vBGR09] for classical preorders,

while in the second part we have semantically defined and

axiomatized several two-tiered graded modal logics to reason

about different notions of preferences on crisp propositions,

see also [EGV17]. On the other hand, in [VEG17a] we

considered a modal framework over a many-valued logic with

the aim of generalizing Van Benthem et al.’s modal approach

to the case of both fuzzy preference accessibility relations

and fuzzy propositions. To do that, we first extended the

many-valued modal framework for only a necessity operator

� of [BEGR11], by defining an axiomatic system with both

necessity and possibility operators � and ♦ over the same class

of models. Unfortunately, in the last part of that paper, there

is a mistake in the proof of Theorem 3 (particularly, equation

(4)). This leaves open the question of properly axiomatizing

the logic of graded preferences defined there.

In this paper we address this problem, and propose an

alternative approach to provide a complete axiomatic system

for a logic of fuzzy preferences. Namely, given a finite MTL-

chain A (i.e. a finite totally ordered residuated lattice) as set of

truth values, and given an A-valued preference Kripke model

(W,R, e), with R a fuzzy preorder valued on A, we consider

the a-cuts Ra of the relation R for every a ∈ A, and for

each a-cut Ra, we consider the corresponding modal operators

�a,♦a. These operators are easier to be axiomatized, since the

relations Ra are not fuzzy any longer, they are a nested set

of classical (crisp) relations. The good news is that, in the

our rich (multi-modal) logical framework, we can show that

the original modal operators � and ♦ are definable, and vice-

versa if we expand the logic with Monteiro-Baaz’s ∆ operator.

So we obtain a different, but equivalent, system where the

original operators can be properly axiomatized in an indirect

way through the graded operators.

The paper is structured as follows. After this introduction,

in Section II we present the multi-modal language and the

intended semantics given by graded preference Kripke models,

which allows the formalization of different notions dealing

with preferences taking values in some arbitrary MTL-chain

A. In Section III, we discuss different possibilities to formalize

notions of preferences on fuzzy propositions in preference

Kripke models. In Section IV we will exhibit a complete

axiomatization of an alternative preference logic that is not,

however, equivalent to the one from [VEG17a], since the

language is intrinsically different. Nevertheless, we will see

in Section V how, by the addition to the logic of the so-called

Monteiro-Baaz ∆ operation, we can also provide an axiom-

atization of the original logic of graded preference models

pursued in [VEG17a]. We finish with some conclusions and

open problems.

II. A MULTI-MODAL PREFERENCE LOGIC: LANGUAGE AND

SEMANTICS

Let us begin by defining the formal language of our

underlying many-valued propositional setting. Let A =

(A,∧,∨,⊙,→, 0, 1) be a finite and linearly ordered (bounded,

integral, commutative) residuated lattice (equivalently, a finite

MTL-chain) [GJKO07], and consider its canonical expansion

Ac by adding a new constant a for every element a ∈ A
(canonical in the sense that the interpretation of a in Ac is

a itself). A negation operation ¬ can always be defined as

¬x = x→ 0.

The logic associated with Ac will be denoted by Λ(Ac),

and its logical consequence relation |=Ac is defined as follows:

for any set Γ∪{ϕ} ⊆ Fm of formulas built in the usual way

from a set of propositional variables V in the language of

residuated lattices (we will use the same symbol to denote

connectives and operations), including constants {a : a ∈ A},

• Γ |=Ac φ if, and only if,

∀h ∈ Hom(Fm,Ac), if h[Γ] ⊆ {1} then h(φ) = 1,

where Hom(Fm,Ac) denotes the set of evaluations of for-

mulas on Ac.

Lifting to the modal level, we extend the propositional

language by graded modal operators �a,♦a, one pair for each

element a of the algebra A. We let the set MFm of multi-

modal formulas defined as usual from a set V of propositional

variables, residuated lattice operations {∧,∨,⊙,→}, truth

constants {a : a ∈ A}, and modal operators {�a,♦a : a ∈ A}.

We are now ready to introduce A-valued preference Kripke

models.

Definition II.1. An A-preference model is a triple M =
〈W,R, e〉 such that

• W is a set of worlds,

• R : W × W → A is an A-valued fuzzy pre-order,

i.e. a reflexive and ⊙-transitive A-valued binary relation

between worlds, and

• e : W×V → A is a world-wise A-evaluation of variables.

This evaluation is uniquely extended to formulas of

MFm by using the operations in A for what concerns

propositional connectives, and letting for each a ∈ A,

e(v,�aϕ) =
∧

w:v�aw

{e(w,ϕ)}

e(v,♦aϕ) =
∨

w:v�aw

{e(w,ϕ)}

where v �a w stands for R(v, w) ≥ a.

We will denote by PA the class of A-preference models.

Given an A-preference model M ∈ PA and Γ∪{ϕ} ⊆ MFm,

we write Γ 
M ϕ whenever for any v ∈ W , if e(v, γ) = 1
for all γ ∈ Γ, then e(v, ϕ) = 1 too. Analogously, we write

Γ 
PA
ϕ whenever Γ 
M ϕ for any M ∈ PA.

We will denote by differentiated names some particular

definable modal operators that enjoy a special meaning in our

models. Namely:

• �ϕ :=
∧

a∈A a→ �aϕ and ♦ϕ :=
∨

a∈A a⊙�aϕ.

It is easy to check that the evaluation of these operators

in a preference model as defined here, coincides with the
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usual one for fuzzy Kripke models, i.e.,

e(v,�ϕ) =
∧

w∈W

{R(v, w) → e(w,ϕ)}

e(v,♦ϕ) =
∨

w∈W

{R(v, w)⊙ e(w,ϕ)}

• Aϕ := �0ϕ and Eϕ := ♦0ϕ.

Again, it is easy to see that these operators coincide

with the global necessity and possibility modal operators

respectively, i.e.,

e(v,Aϕ) =
∧

w∈W

{e(w,ϕ)}, e(v, Eϕ) =
∨

w∈W

{e(w,ϕ)}.

III. MODELING FUZZY PREFERENCES ON PROPOSITIONS

The preference models introduced above are a very natural

setting to formally address and reason over graded or fuzzy

preferences over non-classical contexts. They are similar to

the (classical) preference models studied by van Benthem

et. al in [vBGR09], but offering a lattice of values (and so,

a many-valued framework) where to evaluate both the truth

degrees of formulas and the accessibility (preference) relation.

The latter can be naturally interpreted as a graded preference

relation between possible worlds or states (assignments of

truth-values to variables). The question is then how to lift a

(fuzzy) preference relation ≤ on worlds to (fuzzy) preference

relations among formulas.

In the classical case, for instance in [vBGR09], [EGV18]

the following six extensions are considered, where [ϕ] and [ψ]
denote the set of models of propositions ϕ and ψ respectively:

• ϕ ≤∃∃ ψ iff ∃u ∈ [ϕ], v ∈ [ψ] such that u ≤ v
• ϕ ≤∃∀ ψ iff ∃u ∈ [ϕ], such that ∀v ∈ [ψ], u ≤ v
• ϕ ≤∀∃ ψ iff ∀u ∈ [ϕ], ∃v ∈ [ψ] such that u ≤ v
• ϕ ≤∀∀ ψ iff ∀u ∈ [ϕ] and v ∈ [ψ], u ≤ v
• ϕ ≤∃∀2 ψ iff ∃v ∈ [ψ], such that ∀u ∈ [ϕ], u ≤ v
• ϕ ≤∀∃2 ψ iff ∀v ∈ [ψ], ∃u ∈ [ϕ] such that u ≤ v

However, not all these extensions can be expressed in our

framework. For instance, we can express the orderings ≤∃∃

and ≤∀∀ as follows:

• ϕ ≤∃∃ ψ := E(ϕ ∧ ♦ψ)
• ϕ ≤∀∃ ψ := A(ϕ→ ♦ψ)

Some others would need to consider the inverse order ≥ of

≤ in the models or to assume the order ≤ be total, and some

other are not just expressible (see [vBGR09]). On the other

hand, not all the extensions above are also equally reasonable,

for instance some of them are not even preorders. This is not

the case of ≤∀∃ and ≤∀∃2, that are indeed preorders.

In the fuzzy case, the formulas

E(ϕ ∧ ♦ψ),
A(ϕ→ ♦ψ)

make full sense as a fuzzy generalizations of the ≤∃∃ and ≤∀∃

preference orderings respectively, and moreover, as shown in

[VEG17a], the expression A(ϕ → ♦ψ) models a fuzzy pre-

order in formulas (i.e. it satisfies reflexivity and ⊙-transitivity).

Using the graded modalities ♦a, one could also consider

other intermediate extensions like

E(ϕ ∧ ♦aψ),
A(ϕ→ ♦aψ)

which would correspond to the fuzzy extensions of the fol-

lowing preference orderings ≤a
∃∃ ≤a

∀∃ on crisp propositions

defined from the a-cut of the fuzzy preorder R:

• ϕ ≤a
∃∃ ψ iff ∃u ∈ [ϕ], ∃v ∈ [ψ] such that R(u, v) ≥ a.

• ϕ ≤a
∀∃ ψ iff ∀u ∈ [ϕ], ∃v ∈ [ψ] such that R(u, v) ≥ a.

Indeed, given an A-valued preference model M =
〈W,R, e〉, one can define the following fuzzy preference

relations on formulas:

• ϕ �a
∃∃ ψ iff there are worlds v, w ∈ W such that

R(v, w) ≥ a and e(v, ϕ) ≤ e(w,ψ)
• ϕ �a

∀∃ ψ iff for each world v ∈ W , there is a world

w ∈W such that R(v, w) ≥ a and e(v, ϕ) ≤ e(w,ψ).

Then, it is not difficult to check that


M E(ϕ ∧ ♦aψ) iff ϕ �a
∃∃ ψ


M A(ϕ→ ♦aψ) iff ϕ �a
∀∃ ψ .

So, we think our many-valued logical framework is expres-

sive enough to capture many notions of (fuzzy) preferences

among formulas. In the next section we provide an axiomati-

sation for this fuzzy multi-modal preference logic.

IV. AXIOMATIZING FUZZY PREFERENCE MODELS

In [VEG17a], we proposed the following axiomatic system

PA, in the language only with � and ♦ modal operators (i.e.

without the �a’s and ♦a’s):

• The axioms and rules of the minimal modal logic BMA

for the pairs (�,♦) and (A,E) of modal operators (see

[VEG17a, Def. 2])

• T: �ϕ→ ϕ,ϕ→ ♦ϕ, Aϕ→ ϕ,ϕ→ Eϕ
• 4: �ϕ→ ��ϕ,♦♦ϕ→ ♦ϕ, Aϕ→ AAϕ,EEϕ→ Eϕ
• B: ϕ→ AEϕ
• The inclusion axioms: Aϕ→ �ϕ, ♦ϕ→ Eϕ

In [VEG17a, Th. 3], this system was claimed to be complete

with respect to the class PA of preference models. Unfortu-

nately, we have discovered there is a flaw at the end of the

proof, so the claim of the theorem remains unproved. In this

section we remedy this problem by considering an alternative

axiomatic system, based on the use of the graded modalities

�a and ♦a, for a ∈ A, introduced in Section II.

To this end, we introduce next the axiomatic system mMA

defined by the following axioms and rules:

1) For each a ∈ A,

• Axioms of minimum modal logic BMA for each

pair of operators (�a,♦a) (see [VEG17a, Def. 2])

2) For each a ∈ A, the axiom

• Ca : �a(k ∨ ϕ) → k ∨�aϕ

3) For each a, b ∈ A, axioms K, T and 4:
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• Ka : �a(ϕ→ ψ) → (�aϕ→ �aψ)
• Ta : �aϕ→ ϕ, ϕ→ ♦aϕ
• 4a,b : �a⊙bϕ→ �a�bϕ, ♦a♦bϕ→ ♦a⊙bϕ

4) For each a ≤ b, nestedness axioms:

• �aϕ→ �bϕ, ♦bϕ→ ♦aϕ

5) For a = 0, axiom

• B0 : ϕ→ �0♦0A

6) Rules: Modus Ponens and the necessitation for �0:1

• from ϕ derive �0ϕ

Letting ⊢mMA
be the consequence relation of the previous

axiomatic system defined as usual, we can show that it is

indeed complete with respect to our intented semantics given

by the class of preference structures 
PA
. Formally,

Theorem IV.1. For any Γ, ϕ ⊆ MFm,

Γ ⊢mMA
ϕ if and only if Γ 
PA

ϕ.

Proof. Soundness (left to right direction) is easy to check. For

what concerns completeness (right to left direction), we can

define a canonical model

M
c = (W c, {Rc

a}a∈A, e
c)

with a set of crisp accessibility relations as follows, where

Th(mMA) = {ϕ : ⊢mMA
ϕ} denotes the set of theorems of

mMA:

• W c = {v ∈ Hom(MFm,A) : v(Th(mMA)) = {1}},

• Rc
a(v, w) if and only if v(�aϕ) = 1 ⇒ w(ϕ) = 1 for all

ϕ ∈ MFm,

• ec(v, p) = v(p), for any propositional variable p.

It is clear (since the only modal inference rules affects only

theorems of the logic) that if Γ 6⊢mMA
ϕ, then there is v ∈W c

such that v(Γ) ⊂ {1} and v(ϕ) < 1. It is then only necessary

to prove that the evaluation in the model can be defined in

that way, namely, to prove the corresponding Truth Lemma,

which follows from [BEGR11] and [VEG17a], i.e., for each

formula ϕ ∈ MFm and each v ∈W c, it holds that

ec(v,�aϕ) =
∧

Rc

a
(v,w)

w(ϕ) and ec(v,♦aϕ) =
∨

Rc

a
(v,w)

w(ϕ).

The nestedness axioms allow us to easily prove that for any

a ≤ b ∈ A, it holds that Rc
b ⊆ Rc

a. Consider then the fuzzy

relation Rc defined by

Rc(v, w) = max{a ∈ A : Rc
a(v, w)}.

It is clear that Rc(w, v) ≥ a if and only if Rc
a(v, w). Then,

the truth lemma for the original model directly implies both

ec(v,�aϕ) =
∧

w∈W c,Rc(v,w)≥a

w(ϕ),

ec(v,♦aϕ) =
∨

w∈W c,Rc(v,w)≥a

w(ϕ).

1Observe that, together with the nestedness axioms, this rule implies the
necessitation rule for each �a.

It follows from axioms Ta that each Rc
a is reflexive, and so,

Rc is a reflexive relation as well. Moreover, from axioms 4a,b,

we get that Rc is ⊙-transitive. The only remaining step is to

prove is that we can obtain an equivalent model (in the sense

of preserving the truth-values of formulas) in which Rc
0 is the

total relation (in order to really get that �0 and ♦0 are global

modalities). Observe that in the model defined above, thanks to

axioms T0, 40,0 and B0, Rc
0 can be proven to be an equivalence

relation, even though it is not necessarily the case that Rc
0 =

W c ×W c. Nevertheless, since Rc
b ⊆ Rc

0 for all b ∈ A, for

any arbitrary v ∈W c, we can define the model Mc
v from M

c

by restricting the universe to W c
v = {u ∈W c : Rc

0(v, u)} and

get that, for any u ∈W c
v and any formula ϕ ∈ MFm,

ec(u, ϕ) = ecv(u, ϕ).

All the previous considerations allow us to prove that if

Γ 6⊢mMA
ϕ there is v ∈ W c

v such that ecv(v,Γ) ⊆ 1 and

ecv(v, ϕ) < 1. Given that the model Mc
v defined above is in-

deed an A-preference model, this concludes the completeness

proof.

V. CLOSING THE LOOP: FROM GRADED TO FUZZY

MODALITIES

In the previous section, we have seen that we have been

able to provide a complete axiomatic system mMA for the

graded preference modalities �a’s and ♦a’s, and in Section

II we have seen that the original fuzzy modalities � and

♦ can be expressed from them. Thus, the system mMA can

be considered in fact as a sort of indirect axiomatization of

the modalities � and ♦ as well. In this section, generalising

an approach introduced in [BEGR09], we will see that, by

enriching our language with the well-known Monteiro-Baaz

∆ connective (see e.g. [Háj98]), the graded modalities �a,♦a

can also be expressed in terms of the original modal operators

� and ♦. Surprisingly enough we can do it using only the ♦

operator, while it is not clear using only � would suffice.

Recall that the Monteiro-Baaz ∆ operation over a linearly

ordered MTL-chain A is the operation defined as

∆(a) =

{

1 if a = 1

0 otherwise

for all a ∈ A.

In the following, we will write ϕ ≡ ψ to denote that ϕ and

ψ are logically equivalent in the class of preferece models PA.

We will also denote by ϕ ≈ b the formula ∆(ϕ↔ b).

Lemma V.1.

�aϕ ≡
∧

b∈A

(∆(a→ ♦(ϕ ≈ b)) → b)

♦aϕ ≡
∨

b∈A

(∆(a→ ♦(ϕ ≈ b))&b)

Proof. As in [BEGR09] we can check that

e(v,♦(ϕ ≈ b)) =
∨

e(w,ϕ)=b

R(v, w).
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Then e(v,∆(a → ♦(ϕ ≈ b))) = ∆(a →
∨

e(w,ϕ)≈b

R(v, w)),

and thus

e(v,∆(a → ♦(ϕ ≈ b))) =







1, if a ≤
∨

e(w,ϕ)=b

R(v, w)

0, otherwise

.

Letting S = {b ∈ A : a ≤
∨

e(w,ϕ)=b

R(v, w)}, the previous

trivially implies both that

e(v,∆(a→ ♦(ϕ = b)) → b) =

{

b, if b ∈ S

1, otherwise

e(v,∆(a→ ♦(ϕ = b))&b) =

{

b, if b ∈ S

0, otherwise
.

Moreover, it is easy to see that

{b ∈ A : a ≤
∨

e(w,ϕ)=b

R(v, w)} = {e(w,ϕ) : a ≤ Rvw}.

Then, we have

e(v,
∧

b∈A

(∆(a → ♦(ϕ = b)) → b)) =
∧

S =
∧

a≤R(v,w)

e(w,ϕ) = e(v,�aϕ)

and e(v,
∨

b∈A

(∆(a → ♦(ϕ = b))&b)) =
∨

S =
∨

a≤R(v,w)

e(w,ϕ) = e(v,♦aϕ), concluding the proof.

It is then the case that it is possible to provide an axiom-

atization for the fragment with only �,♦, A and E of the

logic 
PA
plus ∆. First, it is easy to provide an axiomatic

system for the whole logic 
PA
plus ∆ by adding to mMA

an axiomatization for ∆ (see eg. [Háj98], [VEG17b]) and the

interaction axioms

∆�aϕ→ �a∆ϕ.

From here, it is clear that we can use the interdefinability

of �a,♦a from ♦ proven above, and obtain in that way

an axiomatic system complete with respect to the intended

semantics.

This system is, however, quite more involved than the one

presented in [VEG17a] (that did not achieve completeness

with respect to its intended semantics). An open problem

for future works is to study possible simplifications of this

axiomatization, since the (�,♦, A,E)-fragment is possibly

the best suited to formalise graded preference relations while

maintaining a lower level of elements in the language (and so,

probably a lower complexity level).

As a side result, the previous characterization allows us to

get a definition of the � operation in terms of the ♦ very

different from the usual one arising in classical modal logic.

In particular, we get the following result.

Lemma V.2.

�ϕ ≡
∧

a∈A

∧

b<a∈A

∆(a→ ♦(ϕ ≈ b)) → (a→ b)

Proof. We know by definition that

�ϕ ≡
∧

a∈A

a→ �aϕ.

Then, using the previously proven equivalences, we prove

the lemma by the following chain of equalities

�ϕ ≡
∧

a∈A

(a→
∧

b∈A

(∆(a→ ♦(ϕ ≈ b)) → b))

≡
∧

a∈A

∧

b∈A

a→ (∆(a→ ♦(ϕ ≈ b)) → b)

≡
∧

a∈A

∧

b∈A

∆(a→ ♦(ϕ ≈ b)) → (a→ b)

≡
∧

a∈A

∧

b<a∈A

∆(a→ ♦(ϕ ≈ b)) → (a→ b)

VI. CONCLUSIONS AND ONGOING WORK

The aim of this work is to provide a formal framework

generalising the treatment of preferences in the style of eg.

[vBGR09] to a fuzzy context. We have presented an axiomatic

system encompassing reflexive and transitive modalities plus

global operators, that is shown to be the syntactical counterpart

of many-valued Kripke models with (reflexive and transitive)

graded (weak) preference relations between possible worlds

or states. It is based on considering the cuts of the relations

over the elements of the algebra of evaluation, solving in

this way some problems arising from [VEG17a], for what

concerns systems extended with the projection connective ∆.

This logical framework stands towards the use of modal many-

valued logics in the representation and management of graded

preferences, in the same fashion that (classical) modal logic

has served in the analogous Boolean preference setting.

The generalization of the previous logical system to cases

when strict preferences are taken into account is part of

ongoing work. The addition of those operators would allow

a richer axiomatic definition of preference relations between

formulas, in the sense of Section III. Moreover, further study

of the introduced preference models should be pursued towards

the formalisation of particular notions like indifference or

incomparability, and aiming towards the incorporation of these

systems in graded reasoners or recommender systems.

On the other hand, the study of the previous systems over

other classes of algebras of truth-values (e.g. including infinite

algebras like those defined on the real unit interval [0, 1]
underlying Łukasiewicz, Product or Gödel fuzzy logics) is also

of great interest, both from a theoretical point of view and

towards the modelization of situations needing of continuous

sets of values.
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negation operator in the underlying lattice. In the literature, we
can find different semantics for logic programs with negation [3]–
[5]. We are interested in considering the stable model semantics
in our logic programming framework. This paper summarizes a
broad study on the syntax and semantics of multi-adjoint normal
logic programming framework which has been recently published
in [1]. Specifically, we will analyze the existence and the unicity
of stable models for multi-adjoint normal logic programs.

Index Terms—multi-adjoint logic programs, negation operator,
stable models

I. INTRODUCTION

Multi-adjoint logic programming was introduced in [9] as

a general logic programming framework in which several

implications appear in the rules of a same logic program

and any order-preserving operator is allowed in the body of

its rules. An interesting consequence of considering order-

preserving operators in the body of the rules is associated

with the existence of a least model. This fact makes possible

to check whether a statement is a consequence of the logic

program by simply computing the truth value of the statement

under the least model. Therefore, the semantics of a multi-

adjoint logic program is based on the least model of the

program.

A well known fact in the logic programming literature is

that the use of a negation operator increases the flexibility of

a logic programming language. We are interested in enriching

the multi-adjoint logic programming environment with the

inclusion of a negation operator, which will give rise to a

new kind of logic programs called multi-adjoint normal logic

programs. It is important to emphasize that the existence of

minimal models in an arbitrary multi-adjoint normal logic

program cannot be ensured, in general. Furthermore, minimal

models are not enough in order to prove that a statement is

a consequence of a multi-adjoint normal logic program. As a

result, the semantics of multi-adjoint normal logic programs

will not be based on the notion of minimal model, but on the

notion of stable model.

Different semantics such as the well-founded semantics [3],

the stable models semantics [4] and the answer sets seman-

tics [5] have been developed for logic programs with negation.

Partially supported by the State Research Agency (AEI) and the European
Regional Development Fund (ERDF) project TIN2016-76653-P, and by the
research and transfer program of the University of Cádiz.

In this paper, we will focus on the study of the existence and

the unicity of stable models for multi-adjoint normal logic

programs. According to the literature, sufficient conditions to

ensure the existence of stable models have already been stated

in other logical approaches [2], [6], [7], [10]–[13].

This paper will present a brief summary on the syntax and

semantics defined for multi-adjoint normal logic programs

in [1], including the most important results related to the

existence and the unicity of stable models. In particular, we

will show sufficient conditions which ensure the existence of

stable models for multi-adjoint normal logic programs defined

on any convex compact set of an euclidean space. Besides,

in what regards the uniqueness of stable models, sufficient

conditions for multi-adjoint normal logic programs defined on

the set of subintervals [0, 1]× [0, 1] will be provided.

II. MULTI-ADJOINT NORMAL LOGIC PROGRAMS

The syntax of multi-adjoint normal logic programs is based

on an algebraic structure composed by a complete bounded

lattice together with various adjoint pairs and a negation

operator. This algebraic structure is usually known as multi-

adjoint normal lattice and it is formally defined as follows.

Definition 1. The tuple (L,�,←1,&1, . . . ,←n,&n,¬) is a

multi-adjoint normal lattice if the following properties are

verified:

1) (L,�) is a bounded lattice, i.e. it has a bottom (⊥) and

a top (⊤) element;

2) (&i,←i) is an adjoint pair in (L,�), for i ∈
{1, . . . , n};

3) ⊤&i ϑ = ϑ&i⊤ = ϑ, for all ϑ ∈ L and i ∈ {1, . . . , n}.
4) ¬ is a negation operator, that is, a decreasing mapping

¬ : L → L satisfying the equalities ¬(⊥) = ⊤ and

¬(⊤) = ⊥.

A multi-adjoint normal logic program is defined from a

multi-adjoint normal lattice as a set of weighted rules.

Definition 2. Let (L,�,←1,&1, . . . ,←n,&n,¬) be a multi-

adjoint normal lattice. A multi-adjoint normal logic program

(MANLP) P is a finite set of weighted rules of the form:

〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn];ϑ〉

where i ∈ {1, . . . , n}, @ is an aggregator operator, ϑ is an

element of L and p, p1, . . . , pn are propositional symbols such

that pj 6= pk, for all j, k ∈ {1, . . . , n}, with j 6= k.
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Let P be a MANLP and ΠP the set of propositional symbols

in P. Then, an interpretation is any mapping I : ΠP → L. We

will say that an interpretation I satisfies a rule in P of the

form 〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn];ϑ〉 if and only if

its evaluation under I is greater or equal than the confidence

factor associated with the rule, that is:

ϑ � Î (p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn])

A model is an interpretation that satisfies all rules in P. As it

was stated previously, the semantics of MANLPs is based on

stable models. The notion of stable model is closely related to

the notion of reduct given by Gelfond and Lifchitz [4]. Now,

we will define the notion of reduct for MANLPs.

Given a MANLP P and an interpretation I , we build the

reduct of P with respect to I , denoted by PI , by substituting

each rule in P of the form

〈p←i @[p1, . . . , pm,¬pm+1, . . . ,¬pn];ϑ〉

by the rule

〈p←i @I [p1, . . . , pm];ϑ〉

where the operator
.

@I : L
m → L is defined as

.

@I [ϑ1, . . . , ϑm]=
.

@[ϑ1, . . . , ϑm,
.

¬ I(pm+1), . . . ,
.

¬ I(pn)]

for all ϑ1, . . . , ϑm ∈ L.

Definition 3. Given a MANLP P and an L-interpretation I ,

we say that I is a stable model of P if and only if I is a

minimal model of PI .

III. ON THE EXISTENCE AND UNICITY OF STABLE MODELS

After introducing the main notions associated with the

syntax and semantics of multi-adjoint normal logic programs,

sufficient conditions which ensure the existence and the

uniqueness of stable models will be provided.

First of all, we will show that any MANLP defined on a

non-empty convex compact set in an euclidean space has at

least a stable model, whenever the operators appearing in the

MANLP are continuous operators. Formally:

Theorem 4. Let (K,�,←1,&1, . . . ,←n,&n,¬) be a multi-

adjoint normal lattice where K is a non-empty convex compact

set in an euclidean space and P be a finite MANLP defined

on this lattice. If &1, . . . ,&n, ¬ and the aggregator operators

in the body of the rules of P are continuous operators, then P

has at least a stable model.

As far as the uniqueness of stable models is concerned, a

special algebraic structure is considered and sufficient condi-

tions from which we can ensure the unicity of stable models

for multi-adjoint normal logic programs defined on the set of

subintervals of [0, 1] × [0, 1], denoted by C([0, 1]), are given.

The considered algebraic structure is mainly composed by

conjunctions defined as

&
αγ
βδ ([a, b], [c, d]) = [ aα ∗ cγ , bβ ∗ dδ ]

with a, b, c, d ∈ R, together with their residuated implica-

tions [8].

Theorem 5. Let P be a finite MANLP defined on (C([0, 1]),≤
,←α1γ1

β1δ1
,&

α1γ1

β1δ1
, . . . ,←αmγm

βmδm
,&

αmγm

βmδm
,¬) such that the only

possible operators in the body of the rules are &
αγ
βδ , with

α = β = γ = δ = 1, and [ϑ1
p, ϑ

2
p]=max{[ϑ1, ϑ2] | 〈p←αwγw

βwδw

B; [ϑ1, ϑ2]〉 ∈ P}. If the inequality

h
∑

j=1

(ϑ2)βw · δw · (ϑ
2
qj
)δw−1 ·

(

ϑ2
q1
· · ·ϑ2

qj−1
· ϑ2

qj+1
· · ·ϑ2

qh

)δw

+(ϑ2)βw · δw · (k − h)(ϑ2
q1
· · ·ϑ2

qh
)δw <1

holds for every rule 〈p ←αwγw

βwδw
q1 ∗ · · · ∗ qh ∗ ¬qh+1 ∗ · · · ∗

¬qk; [ϑ
1, ϑ2]〉 ∈ P, with w ∈ {1, . . . ,m}, then there exists a

unique stable model of P.

IV. CONCLUSIONS AND FUTURE WORK

The philosophy of the multi-adjoint paradigm has been

considered in order to define the syntax and semantics of a

novel and flexible logic programming framework with nega-

tion. Moreover, we have shown under what conditions the

existence and the unicity of stable models in multi-adjoint

normal logic programs are guaranteed.

As a future work, we are interested in applying the obtained

results to other logics with negation operators.
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EXTENDED ABSTRACT

Galois connections (both in isotone and in antitone forms)

can be found in different areas, and it is common to find papers

dealing with them either from a practical or a theoretical point

of view. In the literature, one can find numerous papers on

theoretical developments on (fuzzy) Galois connections [1],

[19], [21] and also on applications thereof [13], [14], [22],

[25], [28], [30], [33]. One important specific field of applica-

tion is that of (Fuzzy) Mathematical Morphology, in which the

(fuzzy) erosion and dilation operations are known to form a

Galois connection, consider [6], [11], [20], [31], [32]; another

important source of applications of Galois connections is

within the field of (Fuzzy) Formal Concept Analysis, in which

the concept-forming operators form either an antitone or iso-

tone Galois connection (depending on the specific definition);

in this research direction, one still can find recent papers on

the theoretical background of the discipline [2]–[4], [8], [24],

[29] and a number of applications [10], [26], [27].

Concerning the generalization of Galois connections to the

fuzzy case, to the best of our knowledge, after the initial

approach by Bělohlávek [1], a number of authors have in-

troduced different approaches to so-called fuzzy (isotone or

antitone) Galois connections; see [5], [14], [15], [19], [21],

[23], [34]. It is remarkable that the mappings forming the

Galois connection in all the above-mentioned approaches are

crisp rather than fuzzy. In our opinion the term ‘fuzzy Galois

connection’ should be reserved for the case in which the

involved mappings are actually fuzzy mappings, and that is

why we prefer to stick to the term ‘Galois connection’ rather

than ‘fuzzy Galois connection’, notwithstanding the fact that

we are working in the context of fuzzy structures.

In previous works, some of the authors have studied the

problem of constructing a right adjoint (or residual mapping)

associated to a given mapping f : A → B where A is endowed

with some order-like structure and B is unstructured: in [18],

we consider A to be a crisp partially (pre)ordered set 〈A,≤A〉;
later, in [7], we considered A to be a fuzzy preposet 〈A, ρA〉.

In this paper, we consider the case in which there are two

underlying fuzzy equivalence relations in both the domain

and the codomain of the mapping f , more specifically, f

is a morphism between the fuzzy structures 〈A,≈A〉 and

〈B,≈B〉 where, in addition, 〈A,≈A〉 has a fuzzy preordering

relation ρA. Firstly, we have to characterize when it is possible

to endow B with the adequate structure (namely, enrich it to a

fuzzy pre-ordered structure) and, then, construct a mapping g

from B to A compatible with the fuzzy equivalence relations

such that the pair (f, g) forms a Galois connection.

Although all the obtained results are stated in terms of

the existence and construction of right adjoints (or residual

mappings), they can be straightforwardly modified for the

existence and construction of left adjoints (or residuated

mappings). On the other hand, it is worth remarking that the

construction developed in this paper can be extended to the

different types of Galois connections (see [16]).

The core of the paper starts after introducing the prelimi-

nary notions on Galois connections between fuzzy preordered

structures. Specifically, given a mapping f : A → B from a

fuzzy preordered structure A into a fuzzy structure 〈B,≈B〉,
we characterize when it is possible to construct a fuzzy relation

ρB that induces a suitable fuzzy preorder structure on B and

such that there exists a mapping g : B → A such that the pair

(f, g) constitutes a Galois connection. In the case of existence

of right adjoint, it is worth remarking that the right adjoint

need not be unique since, actually, its construction is given

with several of degrees of freedom, in particular for extending

the fuzzy ordering from the image of f to the entire codomain.

Although a convenient extension has been given, our results

do not imply that every right adjoint can be constructed in this

way, and there may exist other constructions that are adequate

as well. This is a first topic for future work.

Then, we follow the structure of [17] where we consider

a mapping f : 〈A, ρA〉 → B (and ρA is a fuzzy relation

satisfying reflexivity, ⊗-transitivity and the weakest form of

antisymmetry, namely, ρA(a, b) = ρA(b, a) = ⊤ implies

a = b, for all a, b ∈ A); a further step was given in [7] for

the same case f : 〈A, ρA〉 → B, in which antisymmetry was

dropped. Both cases above can be seen as fuzzy preordered

structures, in the sense of this paper, just by considering the so-

called symmetric kernel relation (the conjunction of ρA(a, b)
and ρA(a, b)); the relationship between these and other kinds

of structures can be found in [35]. Summarizing, the problem
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in [7] can be seen as constructing a right adjoint of a mapping

f : 〈A, ρA〉 → B which involves the construction of ρB ,

whereas in this paper our problem is to find a right adjoint

to a mapping f : 〈A,≈A, ρA〉 → 〈B,≈B〉 in which the fuzzy

equivalence ≈B has to be preserved; therefore, the main result

in [7] is not exactly a particular case. We have considered a

fuzzy mapping as a morphism 〈A,≈A〉 → 〈B,≈B〉 between

fuzzy structures, adopting the approach of [12], while our

long-term goal is to study fuzzy Galois connections constituted

of truly fuzzy mappings.

In a few words, our approach is based on the canonical

decomposition of Galois connections in our framework, fol-

lowed by an analysis of conditions for the existence of the right

adjoint. As a consequence of the canonical decomposition, we

propose a two-step procedure for verifying the existence of the

right adjoint in a constructive manner.

CONCLUSIONS AND FUTURE WORK

Galois connections have found applications in areas such

as formal concept analysis, and in mathematical morphology

where, respectively, the intent and extent operators, and the

erosion and the dilation operations are required to form a

Galois connection. The results presented in this work pave

the way to build specific settings of mathematical morphology

parameterized by a fixed candidate to be an erosion (or

dilation) operator; and the same approach would also apply to

the development of new settings of formal concept analysis.

In general, the construction of new Galois connections is of

interest in fields in which there are two approaches to certain

reality and one has more information about one of them, since

the existence of a Galois connection allows to retrieve the

unknown information in the other approach. In this respect, we

will explore the application of the obtained results in the area

of compression of data (images, etc.) in which the existence of

the right adjoint of a given compressing mapping might allow

to recover as much information as possible.

Last but not least, it is worth to study the two following

extensions: on the one hand, we could consider an even more

general notion of fuzzy mapping, for instance that proposed

in [9]; on the other hand, we could consider L-valued sets as

a suitable generalization of our fuzzy structures.
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Abstract—For fuzzy multisets the membership values are
multisets in [0, 1]. These sets are a mathematically generalization
of the hesitant fuzzy sets, but in this general environment, the
information about repetition is not lost, so that, the opinions
given by the experts are better managed. Moreover, the order of
the different opinions is also considered and this information is
not lost either. In particular, we have studied in detail the basic
operations for these sets: complement, union and intersection.

Index Terms—fuzzy multiset, complement, aggregated union,
aggregated intersection.

I. INTRODUCTION

Fuzzy sets where introduced by Lotfi A. Zadeh (see [7])

as a way to deal with real-life situations where there is either

limited knowledge or some sort of implicit ambiguity about

whether an element should be considered a member of a

set. Thus, the membership degree for any element is a value

in the real interval [0, 1]. However, it could be paradoxical

that the membership value itself should be one precise real

number. Then, different generalizations appeared as a way to

solve this paradox. In that cases, the membership degree could

be, for example, an interval (interval-valued fuzzy sets [2]),

a function (type-2 fuzzy sets [2]) or an arbitrary subsets of

[0, 1] (hesitant fuzzy sets [5]). When the subsets are finite,

the hesitant fuzzy sets are called typical hesitant fuzzy sets

and they are the ones that have attracted the most attention

from researchers ( [1], [3], [6]). However, for hesitant fuzzy

sets the order of the elements in the set is not important

and moreover, the repetition are not allowed. Clearly, this

could be an important drawback. In fact, the need to account

for repeated membership values has been recognised in the

literature about hesitant fuzzy sets and, in fact, multiset-based

hesitant fuzzy sets were already mentioned in the original

paper that introduced the hesitant fuzzy sets [5]. Thus, fuzzy

multisets can be considered as an appropriate tool to deal with

repetitions. In that case, the membership degree is a multiset

in the [0, 1] interval. But despite the similarities, we cannot

regard the typical hesitant fuzzy sets as a particular case of

the fuzzy multisets and neither can we identify the fuzzy

multisets with the multiset-based hesitant fuzzy sets because

the definitions for the intersection and union are different

in each theory. In [4] we have established the appropriate

mathematical definitions for the main operations for fuzzy

This work was partially supported by the Spanish Ministry of Science and
Technology under projects TIN2014-59543-P and TIN-2017-87600-P.

multisets and show how the hesitant theory definitions can be

worked out from an extension of the fuzzy multiset definitions.

The main concepts and results obtained in [4] are summarized

in the next two sections.

II. FUZZY MULTISETS

As we mentioned in the introduction, the values that make

up a hesitant element in a hesitant fuzzy set are typically

the result of applying several criteria on membership. In a

common use case, it is assumed that there are a number of

“experts” or “decision-makers” for a hesitant fuzzy set who

produce a membership value for each element in the universe.

A problem with the hesitant fuzzy sets in the experts’ model

is that the information about repetition is lost. For example, if

there are five experts and four of them assign a membership

value of 0.1 to an element whereas the fifth expert assigns the

value 0.2, the hesitant element will be {0.1, 0.2}, regardless

of the fact that 0.1 was four times more popular among the

experts. This information loss can be avoided by using fuzzy

multisets [3] (also called fuzzy bags [6]), which we are going

to discuss now.

Definition 2.1: [3] Let X be the universe. A fuzzy multiset

Â over X is characterized by a function Â : X → N
[0,1]. The

family of all the fuzzy multisets over X is called the fuzzy

power multiset over X and is denoted by FM (X).
Example 2.2: Say we have a single-element universe

X = {x}. We can define a fuzzy multiset Â as

Â(x) = 〈0.1, 0.2, 0.2〉 in angular-bracket notation. Or in

other words, using Definition 2.1, the element x is be-

ing mapped into a function CountÂ(x) : [0, 1] → N de-

fined as CountÂ(x)(0.1) = 1, CountÂ(x)(0.2) = 2 and

CountÂ(x)(t) = 0 for any t 6= 0.1 and t 6= 0.2. This function

CountÂ(x) characterizes a crisp multiset for any x in X .

III. OPERATIONS BETWEEN FUZZY MULTISETS

The complement for the fuzzy multisets is quite intuitive.

Definition 3.1: [3] Let X be a universe and let Â ∈
FM (X) be a fuzzy multiset. The complement of Â is the

fuzzy multiset Âc defined by the following count function:

CountÂc(x)(t) = CountÂ(x)(1− t), ∀x ∈ X, ∀t ∈ [0, 1]

where Count : M :→ N mapping each element of the

universe to a natural number (including 0).
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Example 3.2: If we have a two-element universe X =
{x, y}, then a fuzzy multiset Â with Â(x) = 〈0.3〉 and

Â(y) = 〈0.5, 0.8, 0.8〉 has the complement

CountÂc(x)(t) =

{

1, if t = 0.7,
0, otherwise,

CountÂc(y)(t) =







1, if t = 0.5,
2, if t = 0.2,
0, otherwise,

that is, Âc(x) = 〈0.7〉 and Â(y) = 〈0.5, 0.2, 0.2〉.
By taking the multiset union of all the combinations, we can

define what we will call the aggregated intersection and union

of two fuzzy multisets, which do not privilege any particular

ordering.

Definition 3.3: Let X be a universe and let Â, B̂ ∈
FM (X) be two fuzzy multisets. The aggregated intersection

of Â and B̂ is a fuzzy multiset Â ∩a B̂ such that for any

element x ∈ X , Â ∩a B̂(x) is the union, in the crisp multiset

sense, of the regularised (sA, sB)-ordered intersections for all

the possible pairs of ordering strategies (sA, sB), that is,

Â ∩a B̂(x) =
⋃

s
Â
∈OS(Âr)

s
B̂
∈OS(B̂r)

Â ∩r
(sA,sB) B̂(x), ∀x ∈ X.

Definition 3.4: Let X be a universe and let Â, B̂ ∈
FM (X) be two fuzzy multisets. The aggregated union of

Â and B̂ is a fuzzy multiset Â∪a B̂ such that for any element

x ∈ X , Â ∪a B̂(x) is the union, in the crisp multiset sense,

of the regularised (sA, sB)-ordered unions for all the possible

pairs of ordering strategies (sA, sB), that is,

Â ∪a B̂(x) =
⋃

s
Â
∈OS(Âr)

s
B̂
∈OS(B̂r)

Â ∪r
(sA,sB) B̂(x), ∀x ∈ X.

Example 3.5: For two fuzzy multisets Ê(x) = 〈0.1, 0.4〉
and F̂ (x) = 〈0.2, 0.3〉, the Miyamoto intersection and union

are Ê ∩ F̂ (x) = 〈0.1, 0.3〉 and Ê ∪ F̂ (x) = 〈0.2, 0.4〉. In

order to calculate their aggregated intersection and union,

we need to first calculate the intersections and unions for

all the possible ordering strategies. There are two possible

ordering strategies for Ê, resulting in the sequences (0.1, 0.4)
and (0.4, 0.1), and two possible ordering strategies for F̂ ,

resulting in the sequences (0.2, 0.3) and (0.3, 0.2). This leads

to the four sequences of pairwise minima, (0.1, 0.3), (0.1, 0.2),
(0.2, 0.1), (0.3, 0.1), which result in two ordered intersections,

〈0.1, 0.3〉, 〈0.1, 0.2〉; and to the four sequences of pairwise

maxima, (0.2, 0.4), (0.3, 0.4), (0.4, 0.3), (0.4, 0.2), which

result in two ordered unions, 〈0.2, 0.4〉, 〈0.3, 0.4〉. By taking

the union, in the crisp multiset sense, we get the aggregated

intersection and union: Ê ∩a F̂ (x) = 〈0.1, 0.2, 0.3〉 and

Ê∪a F̂ (x) = 〈0.2, 0.3, 0.4〉. We have found the striking result

that the numeric values match those of the hesitant fuzzy set

intersection and union in the previous examples, a hint that

the hesitant theory is equivalent to the fuzzy multiset theory

when the aggregated operations are used, as we will prove in

the next section.

These definitions are coherent with the existing ones for

hesitant fuzzy sets and fuzzy sets, which can be seen as

particular cases of fuzzy multisets. These relations can be

summed up in the following diagram:

Fuzzy sets F(X)
φFH
−→ FH

1(X)⋂

Hesitant fuzzy sets FH (X)
φ
−1

MH
−→ FM (X)/ ∼r⋂

Fuzzy multisets FM (X)
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Resumen—Presentamos una generalización de la Lógica de
Simplificación para el razonamiento con reglas “si-entonces”
sobre atributos difusos. Las implicaciones y la lógica propuesta
están parametrizadas por sistemas de conexiones de Galois
isótonas que permiten manejar diferentes interpretaciones de
dependencias entre datos. Describimos la semántica de las reglas
y el sistema axiomático de la lógica.

Index Terms—Teorı́a de retı́culos, lógica difusa, implicaciones

I. PARAMETRIZACIONES POR CONEXIONES DE GALOIS

ISÓTONAS

En este trabajo resumimos el presentado en [9] que se

enmarca dentro del Análisis Formal de Conceptos (AFC) [1]

en su versión difusa. Ésta considera un retı́culo completo resi-

duado L y define un L-contexto como una terna I = 〈X,Y, I〉
donde X e Y son conjuntos no vacı́os de objetos y atributos

respectivamente e I es una L-relación difusa de X en Y . Para

cada objeto x ∈ X , se considera el conjunto difuso Ix ∈ LY

tal que Ix(y) = I(x, y) para todo y ∈ Y . Una implicación

de atributos es una expresión A ⇒ B donde A,B ∈ LY y se

dice que el contexto I la satisface si A ⊆ Ix implica B ⊆ Ix
para todo x ∈ X .

Nuestra propuesta explora sistemas de inferencia generales

para razonar con implicaciones entre atributos difusos. Toma-

mos como punto de partida la generalización presentada en

[3], donde el autor considera, como parámetros, un conjunto

S de conexiones de Galois isotonas que es cerrado bajo com-

posición y contiene a la identidad. Propone una axiomatización

completa basada en los Axiomas de Armstrong. En este marco

general, una implicación A ⇒ B es cierta en Ix si, para todo

〈f , g〉 ∈ S, se cumple que f(A) ⊆ Ix implica f(B) ⊆ Ix.

Como alternativa a los bien conocidos Axiomas de Arms-

tong [7], en [8] los autores propusieron una Lógica de Simplifi-

cación y nuevos métodos para la manipulación automática de

implicaciones [10], [11]. Posteriormente, en [4], se propuso

la lógica FASL (Fuzzy Attribute Simplification Logic) para

implicaciones de atributos con grados y parametrizados por

“hedges”.

En este resumen mostramos una generalización de la Lógica

de Simplificación, equivalente a la citada [3], para impli-

Supported by Grants TIN2014-59471-P and TIN2017-89023-P. V. Vychodil
was also supported the project no. CZ.1.07/2.3.00/20.0059.

caciones con grados cuya semántica está parametrizada por

conexiones de Galois isótonas.

II. MARCO TEÓRICO

En este marco general, consideramos, como estructura para

los grados, un retı́culo co-residuado completo, es decir, un

álgebra L = 〈L,≤,⊕,⊖, 0, 1〉 satisfaciendo las siguientes

condiciones:

〈L,≤, 0, 1〉 es un retı́culo completo donde 0 es el mı́nimo

y 1 es el máximo. Como es usual, usamos los sı́mbolos

∨ y ∧ para denotar respectivamente supremo e ı́nfimo.

〈L,⊕, 0〉 es un monoide conmutativo.

El par 〈⊕,⊖〉 satisface la siguiente propiedad de adjun-

ción: para todo a, b, c ∈ L,

a ≤ b⊕ c si y solo si a⊖ b ≤ c. (1)

LY denota el conjunto de todos los L-conjuntos difusos en

el universo Y . Las operaciones en L se extienden elemento a

elemento a los L-conjuntos difusos en la forma habitual: Para

A,B ∈ LY los L-conjuntos difusos A ⊕ B and A ⊖ B se

definen como (A ⊕ B)(y) = A(y) ⊕ B(y) y (A ⊖ B)(y) =
A(y)⊖B(y) para todo y ∈ Y .

Las parametrizaciones [3] que se usan en nuestra propuesta

se definen en términos de conexiones de Galois isótonas

en 〈LY ,⊆〉. En particular, consideramos pares 〈f , g〉 donde

f , g : LY → LY son tales que, para todo A,B ∈ LY ,

f(A) ⊆ B si y solo si A ⊆ g(B). (2)

Es bien conocido que esta definición es equivalente a pedir

que ambas funciones sean isótonas, que g ◦ f se inflacionaria

y que f ◦ g sea deflacionaria. Como consecuencia, g ◦ f es

un operador de cierre y f ◦ g es un operador de núcleo

(operador interior).

Además, para cualquier isomorfismo f in 〈LY ,⊆〉, el par

〈f ,f−1〉 es una conexión de Galois isótona y, en particular,

la función identidad IY : LY → LY lo es. Otro ejemplo in-

teresante es 〈0Y ,1Y 〉 donde 0Y (A)(y) = 0 y 1Y (A)(y) = 1,

para cualquier A ∈ LY e y ∈ Y .

Por último, dadas dos conexiones de Galois isótonas

〈f
1
, g

1
〉 y 〈f

2
, g

2
〉, su composición 〈f

1
◦ f

2
, g

2
◦ g

1
〉 es

también una conexión de Galois.
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Definición 1 ( [3]): Una familia de conexiones de Galois

isótonas S in 〈LY ,⊆〉 es una L-parametrización si S =
〈

S, ◦, 〈IY , IY 〉
〉

es un monoide. En otras palabras, si S es

es cerrada para la composición y contiene a la identidad.

III. LÓGICA DE SIMPLIFICACIÓN PARAMETRIZADA

Dado un alfabeto Y no vacı́o, cuyos elementos se deno-

minan atributos, el conjunto de fórmulas bien formadas del

lenguaje es:

LY = {A ⇒ B | A,B ∈ LY }.

Las fórmulas del lenguaje se denominan implicaciones y

para cada implicación, la primera y segunda componente se

denomina premisa y conclusion respectivamente. Finalmente,

los conjuntos de implicaciones Σ ⊆ L se denominan teorı́as.

Sobre este lenguaje, definimos la Lógica de Simplificación

presentando la semántica y un sistema axiomático. Finalmente,

en la publicación de referencia del presente resumen [9],

se prueba que la visión semántica y sintáctica coinciden,

probando la corrección y completitud de la lógica propuesta.

Antes de definir la interpretación de las fórmulas, introduci-

mos el concepto de L-conjuntos difusos S-aditivos que juegan

un papel fundamental en los modelos.

Definición 2: Sea Y un conjunto no vacı́o y S una L-

parametrización. Un L-conjunto difuso A ∈ LY se dice S-

aditivo si, para todo B,C ∈ LY y 〈f , g〉 ∈ S,

f(B) ⊆ A y f(C) ⊆ A implica f(B ⊕ C) ⊆ A.

La proposición siguiente es directa a partir de la Definción 2

y (2).

Proposición 1: Sea Y un conjunto no vacı́o y S una L-

parametrización. Un L-conjunto difuso A ∈ LY es S-aditivo

si y solo si g(A)⊕ g(A) = g(A).

Dada una L-parametrización S, los modelos de la lógica se

definen en términos de L-conjuntos S-aditivos de la siguiente

forma:

Definición 3: Sea A ⇒ B ∈ LY . Un conjunto S-aditivo

M ∈ LY es un modelo para A ⇒ B si, para todo 〈f , g〉 ∈ S,

f(A) ⊆ M implica que f(B) ⊆ M .

Denotamos el conjuntos de los modelos de A ⇒ B por

Mod(A ⇒ B). De forma usual, el conjunto de modelos para

una teorı́a Σ ⊆ LY se define como

Mod(Σ) =
⋂

A⇒B∈Σ

Mod(A ⇒ B).

Por extensión, un L-contexto I = 〈X,Y, I〉 es un modelo de

A ⇒ B cuando {Ix | x ∈ X} ⊆ Mod(A ⇒ B).

Definición 4: Sea A ⇒ B ∈ LY y Σ ⊆ LY . La implicación

A ⇒ B se dice semánticamente derivada de la teorı́a Σ,

denotado por Σ |= A ⇒ B, si Mod(Σ) ⊆ Mod(A ⇒ B).

Introducimos por último en el presente resumen el sistema

axiomático de la lógica.

Definición 5: El sistema axiomático está formado por un

esquema de axioma y tres reglas de inferencia:

Reflexividad: infiere A ⇒ A,

Composición: de A ⇒ B,A ⇒ C infiere A ⇒ B ⊕ C,

Simplificación: de A ⇒ B,C ⇒ D infiere A⊕ (C ⊖B) ⇒ D,

Extensión: de A ⇒ B infiere f(A) ⇒ f(B).

para todo A,B,C,D ∈ LY y 〈f , g〉 ∈ S.

Del modo habitual, se dice que una implicación A ⇒ B ∈
LY es sintácticamente derivada de (o inferida por) una teorı́a

Σ ⊆ LY , denotado por Σ ⊢ A ⇒ B, si existe una secuencia

σ1, . . . , σn ∈ LY tal que σn es A ⇒ B y, para todo 1 ≤ i ≤ n,

una de las siguientes condiciones se cumple:

σi ∈ Σ;

σi es un axioma (Reflexividad);

σi se obtiene aplicando reglas de inferencia (Compo-

sición, Simplificación o Extensión) a implicaciones de

{σj | 1 ≤ j < i}.

El siguiente teorema asegura que ambos pilares de la lógica,

las derivaciones semánticas y sintácticas, coinciden.

Teorema 1 (Corrección y completitud): Para cualquier im-

plicación A ⇒ B ∈ LY y cualquier teorı́a Σ ⊆ LY , las

siguientes afirmaciones se cumplen:

1. Σ ⊢ A ⇒ B implica Σ |= A ⇒ B.

2. Si LY es finito, Σ |= A ⇒ B implica Σ ⊢ A ⇒ B.

REFERENCIAS

[1] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foun-
dations. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edn.
(1997)

[2] Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles.
Kluwer Academic Publishers, Norwell, MA, USA (2002)

[3] Vychodil, V.: Parameterizing the semantics of fuzzy attribute implica-
tions by systems of isotone Galois connections. IEEE Trans. on Fuzzy
Systems 24, 645–660 (2016)

[4] Belohlavek, R., Cordero, P., Enciso, M., Mora, A., Vychodil, V.: Auto-
mated prover for attribute dependencies in data with grades. International
Journal of Approximate Reasoning 70, 51–67 (2016)

[5] Belohlavek, R., Vychodil, V.: Attribute dependencies for data with
grades I. International Journal of General Systems 45(7–8), 864–888
(2016)

[6] Belohlavek, R., Vychodil, V.: Attribute dependencies for data with
grades II. International Journal of General Systems 46(1), 66–92 (2017)

[7] Armstrong, W.W.: Dependency structures of data base relationships.
In: Rosenfeld, J.L., Freeman, H. (eds.) Information Processing 74:
Proceedings of IFIP Congress. pp. 580–583. North Holland, Amsterdam
(1974)

[8] Cordero, P., Enciso, M.M., Mora, A., de Guzmán, I.P.I., Mora, Á.,
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