Doctoral Consortium

Sesión 2
AN STUDY OF THE INFLUENCE OF FUZZY VARIABLES ON THE ECONOMIC ANALYSIS

Javier Bonilla
Facultad de Ciencias Matemáticas
Universidad Complutense de Madrid
Madrid, Spain
javierlb@ucm.es
Started October 2015

Javier Montero
Facultad de Ciencias Matemáticas
Universidad Complutense de Madrid
Madrid, Spain
monty@mat.ucm.es

J. Tinguerdo Rodríguez
Facultad de Ciencias Matemáticas
Universidad Complutense de Madrid
Madrid, Spain
jtrodrig@mat.ucm.es

Abstract—Predicting Gross Domestic Product is very important because until the final data is available, either temporarily or permanently, several weeks get spend after the quarter ends. So, we propose a new estimation based on text mining in economics documents based on a new proposed fuzzy clustering method with a new objective function.

Keywords—fuzzy logic; fuzzy clustering; intuitionistic fuzzy sets; fuzzy entropy; intuitionistic fuzzy generator; paired fuzzy sets; text mining; Gross Domestic Product estimation.

I. Resume

A. Description

Fuzzy logic enables to assign a membership degree between zero and one to each object to indicate the degree up to which that object belongs to a cluster, as introduced in [30]. After several decades, the work in [1] introduced an extension of fuzzy sets called intuitionistic fuzzy sets, which allow to also measure the non-membership degree and hesitation degree of an object with respect to a cluster, in order to try to find a better classification of reality. More information about different types of fuzzy sets can be find at [2] or [15].

Fuzzy models based on Belnap’s logic further extends the intuitionistic model, so that the hesitation degree is divided in two fuzzy set, one is a degree of ignorance or lack of information and the second fuzzy set is contraction, ambiguity or excess of information [11,17]. Moreover, in [16] and [20] the hesitation degree was divided in three fuzzy sets, indeterminacy, ambivalence and conflict, under the paired fuzzy sets approach. Other example of fuzzy model is the picture fuzzy sets [25] where a new fuzzy set appears, the refusal degree, which is different from the neutral degree which is in turn more or less similar to the hesitation degree.

Text mining started in the sixties of last century with the work in [23] aimed to create the computer program General Inquirer1, which had the ability to extract information from data text using contextual analysis or programming natural language, with the use of dictionaries to classification of works. Other relevant papers about this topic are: [4,19] and [28].

Predicting Gross Domestic Product (GDP) is very important because until the final data is available, either temporarily or permanently, several weeks get spend after the quarter ends. So, different statistical methods as time series, confidence indicators or other economic variables can be used to predict the evolution of GDP. In order to apply the previous developments, we analyzed a data set consisting of the speeches of the president of the US Federal Reserve to build a new confidence index for predicting the quarterly evolution of US GDP. Examples for others authors with others statistical methods such as time series can be found in [7,10,12,13,21,22].

B. General objectives

The general objective of this study is: To develop a new objective function and a new method of fuzzy clustering based on paired fuzzy sets [16] or intuitionistics fuzzy sets [1], with the application of the interactive descendent gradient method as the Fuzzy C-means Method [3,9]. The aim is enabling the classification of economic texts in order to create an advanced estimator of GDP.

1 http://www.wjh.harvard.edu/~inquier/
C. Specific objectives

The specific objectives we pursue are the following:

The development of the new mathematical methods for fuzzy clustering in order to classify data sets in clusters providing a better resume of information [5].

The estimation of some parameters of the models studied in [5], with the idea of not having to search a value for each of them with a grid or others methods such us genetic algorithms or particle swarm optimization.

The skills to extract information from text data sets [19], with the idea of splitting the text data sets on subjects or topics [28].

The comparison of the new methods developed with existing methods in the literature [3,8,14] and [25].

An application of the new methods is the classification of economics texts in order to create an advanced estimation of GDP.

II. Methodology in the research plan

The methodology to be applied is based on the development of new fuzzy methods through the modification of the objective function of Fuzzy C-Means to allow the use of Tsallis entropy [27], and introducing a new parameter to link the entropy and tolerance of the model, as well as the application of intuitionistic fuzzy sets as part of the models or as a refinement of the solution.

We develop the estimation of the parameters of some negation fuzzy complement of Yager [29] and Sugeno [24], in order to generate fuzzy intuitionistic sets [6,18,26]. For example, the mode is used as part of the new estimators.

We compare the new methods with Fuzzy C-Means [3,9] and K-means [14] methods, with statistically significant differences between the new methods versus old methods. So we obtained better results on classification with the proposed methods.

These three first ideas appeared in the authors’ work [5], containing proofs of the properties of both the new methods and the estimators of parameters.

To extract the information from text we change the way how to do it, in order to lemmatizer [4] versus stemmer the words [28], with the idea to get better results. Other important points [28] on this process are the tokentification of text, elimination of stopwords and the use of term frequency and the inverse document frequency (tf-idf) metric. In [5] we used eight text dataset from [28].

About the application on GDP estimation, we use the speeches of the President of the US Federal Reserve, specifically Ben S. Bernanke and Alan Greenspan. The first has been president since 2006 to 2014 and the second from 1987 to 2006. Thus, we create the dataset speeches from the speeches of the President of US Federal Reserve (discarding the testimony or statements). To generate this dataset we use the General Inquirer program, as shown in [5].

III. Relevancy

The main relevancy of this research is linked to the development of new methods of unsupervised classification, with the main idea of obtaining better partitions than those the previous methods offered. From a scientific point of view, we develop advances on the understanding of the behavior of objective functions and parameter settings.

The proposed methods can be applied to several fields, for example in economic analysis, social networks analysis, engineering, biostatistics or statistics.

A specific application of this research is in the estimation of GDP, a quite relevant issue in most economic processes, and thus in their associated decision making.

References

Modelos descriptivos basados en aprendizaje supervisado para el tratamiento de grandes volúmenes de datos y flujos continuos de datos

Doctorando: Ángel Miguel García Vico
Directores: Pedro González García y Cristóbal José Carmona del Jesus
Grupo de Investigación “Sistemas Inteligentes y Minería de Datos” (SiMiDat)
Departamento de Informática
Universidad de Jaén, Jaén, España
agvico@ujaen.es

Index Terms—Descubrimiento de reglas descriptivas supervisadas, minería de patrones emergentes, algoritmos evolutivos multi-objetivo, sistemas difusos evolutivos.

I. INTRODUCCIÓN

La minería de datos se ha dividido fundamentalmente en dos enfoques: predictivo, cuyo objetivo es la predicción del valor de una variable de interés en nuevas instancias no vistas anteriormente, utilizando para ello aprendizaje supervisado; y descriptivo con el objetivo de encontrar y definir relaciones interesantes en los datos utilizando para ello aprendizaje no supervisado. No obstante, a lo largo de la literatura se han ido desarrollando técnicas que se encuentran a medio camino entre ambos enfoques, agrupadas en el marco denominado “descubrimiento de reglas descriptivas basadas en aprendizaje supervisado” (SIRD) [1], [2] cuyo propósito es la descripción de conocimiento relevante sobre la variable de interés en un conjunto de datos. Dentro del SIRD, las técnicas más destacadas son el descubrimiento de subgrupos (SD) [3], [4], la minería de patrones emergentes (EPM) [5], [6] y la minería de conjuntos de contraste (CSM) [7].

El principal objetivo de las técnicas SIRD no es la extracción de un modelo con el fin de clasificar nuevas instancias, sino la obtención de un modelo que permita describir de una manera simple y fácilmente comprensible el fenómeno subyacente en los datos por parte de los expertos. En concreto, el objetivo de SD se define como la extracción de reglas cuya distribución estadística sea inusual respecto a una clase de interés. En CSM el objetivo principal es la búsqueda de reglas que definen conjuntos de una población con amplias diferencias de soporte entre grupos del conjunto de datos. Por último, EPM tiene como objetivo la extracción de reglas respecto a una variable objetivo cuyo soporte sea muy alto en la clase de interés o muy bajo o nulo para el resto, con el objetivo de buscar tendencias emergentes a lo largo del tiempo.

Actualmente vivimos en la era de la información. El desarrollo de dispositivos de generación y transmisión de datos de forma continua como redes de sensores, smartphones, dispositivos wearables, sistemas de vigilancia, aplicaciones web, banca online, proveedores de energía, etc., han incrementado enormemente la cantidad de flujos continuos de datos existentes. En estos ámbitos, los datos muy antiguos son completamente irrelevantes e incluso contraproducentes en un análisis. Uno de los grandes desafíos en este tipo de problemas es que un análisis tradicional con un gran conjunto de datos históricos no puede ser realizado de la misma manera. En este caso, un análisis continuo de la información conforme los datos llegan al sistema se convierte en un problema de interés práctico.

Para la extracción de conocimiento en flujos de datos hay que tener en cuenta varios factores que hacen que su extracción sea un desafío en comparación con la minería de datos tradicional. En concreto, se necesita de la actualización continua del modelo de aprendizaje, así como de estrategias para desechar información antigua debido a que no se puede almacenar todo el flujo en memoria. Además, muchos sensores y dispositivos generadores de datos, debido principalmente al abaratamiento de los sistemas de almacenamiento y sensores generadores de datos [8]. Toda esta cantidad de datos contiene conocimiento muy relevante para las empresas para poder mejorar sus servicios [9]. Esto ha propiciado en los últimos años el desarrollo de técnicas de extracción de conocimiento en estos enormes volúmenes de información heterogénea, comúnmente conocido como Big Data. El Big Data no solo se ve influenciado por el volumen de los datos, sino también por su expansión en otras dimensiones como la variedad y la velocidad [10]. Para hacer frente a este tipo de problemas, se han diseñado diferentes herramientas [11], entre la que destaca el sistema de procesamiento MapReduce, así como su implementación de código abierto Hadoop [12] o Spark [13] para algoritmos iterativos, los cuales son un sistema de computación distribuida basado en dos funciones principales: Map y Reduce que deben ser diseñadas por los usuarios. A lo largo de la literatura científica, se han desarrollado un amplio conjunto de técnicas para el tratamiento de Big Data desde una gran variedad de enfoques.

El desarrollo de dispositivos de generación y transmisión de datos de forma continua como redes de sensores, smartphones, dispositivos wearables, sistemas de vigilancia, aplicaciones web, banca online, proveedores de energía, etc., han incrementado enormemente la cantidad de flujos continuos de datos existentes en estos enormes volúmenes de información heterogénea, comúnmente conocido como Big Data. El Big Data no solo se ve influenciado por el volumen de los datos, sino también por su expansión en otras dimensiones como la variedad y la velocidad [10]. Para hacer frente a este tipo de problemas, se han diseñado diferentes herramientas [11], entre la que destaca el sistema de procesamiento MapReduce, así como su implementación de código abierto Hadoop [12] o Spark [13] para algoritmos iterativos, los cuales son un sistema de computación distribuida basado en dos funciones principales: Map y Reduce que deben ser diseñadas por los usuarios. A lo largo de la literatura científica, se han desarrollado un amplio conjunto de técnicas para el tratamiento de Big Data desde una gran variedad de enfoques.
fuentes de datos poseen una tasa de refresco muy elevada (del orden de Khz) que implican además un aprendizaje lo más rápido posible [17].

II. HIPÓTESIS DE PARTIDA

Desde el punto de vista de SDRD, la extracción de conocimiento relativa a la descripción de los datos y, en particular, de la extracción de conocimiento relativa al fenómeno subyacente que los produce es de vital importancia en diferentes ámbitos profesionales como por ejemplo en medicina o bioinformática. En concreto, en los últimos años, SD ha recibido una especial atención dentro de la comunidad científica [18], [19], [20] con propuestas basadas en enfoques clásicos [21], [22], [23] y en sistemas difusos evolutivos [24], [25], [26], [27]. Por su parte, en EPM se han desarrollado un amplio número de algoritmos [28], [29], [30], [31]. Sin embargo, a pesar de la relevancia de la tarea dentro de SDRD, la mayoría de ellos no han tenido en cuenta el balance interpretabilidad/calidad de los resultados obtenidos, ya que han sido utilizados únicamente para clasificación.

Tal y como se ha comentado anteriormente, este tipo de extracción de conocimiento es aún más interesante en entornos Big Data pues la gran cantidad de información existente y la heterogeneidad de las fuentes permite que estos problemas muy complejos sean más fáciles de comprender por parte de los expertos. Sin embargo, al inicio de este trabajo de investigación, solo se había presentado en la literatura especializada un algoritmo para SD enfocado en la extracción de conocimiento en entornos Big Data: el algoritmo MEFASD-BD [32] y no existía ningún método para EPM en este ámbito.

Por otro lado, este conocimiento es muy importante en minería de flujo de datos para una rápida determinación de las causas que producen el flujo y así poder actuar en consecuencia. Sin embargo, aún no se han planteado dentro de la comunidad investigadora propuestas que aprovechen el potencial que tiene SDRD, y en concreto EPM, para la extracción de tendencias emergentes.

Partiendo de estos antecedentes, surge la necesidad de desarrollar técnicas de EPM enfocadas en los objetivos de SDRD, apoyadas a su vez por las propuestas presentadas para SD, para la extracción no solo de patrones altamente discriminativos, sino que además sean fácilmente interpretables, precisos y generales, y con una distribución estadísticamente inusual con respecto a la clase analizada. Asimismo, se hace indispensable que a su vez sean fácilmente escalables para poder ser utilizadas en ámbitos Big Data y/o utilizables dentro de ámbitos de minería de flujos de datos con el fin de obtener conocimiento fácilmente comprensible por los expertos tanto en conjuntos de datos pequeños, como en conjuntos de datos de mayor tamaño y en flujos continuos de datos.

Tras todos estos antecedentes, se establecen las siguientes hipótesis de partida:

- Las técnicas encontradas en la literatura para EPM están claramente enfocadas a predicción, por lo que se pierden muchas de sus capacidades descriptivas. Asimismo, no son lo suficientemente escalables para abordar problemas de gran dimensionalidad y muchas de ellas por su diseño son incapaces de afrontar la tarea de minería de flujo de datos.
- Con un diseño adecuado, se pueden obtener métodos de extracción de patrones emergentes que permitan la extracción de conocimiento discriminativo, interpretable, preciso y general sobre una distribución de ejemplos estadísticamente inusual respecto a una clase objetivo.
- Con un diseño escalable, se puede mantener un tiempo de procesamiento estable frente al aumento del tamaño del conjunto de datos o a la llegada continua de datos al sistema.
- La extracción de este tipo de conocimiento en bases de datos con alta dimensionalidad o en minería de flujo de datos permitirá cubrir las necesidades de conocimiento que demandan los expertos en este tipo de entornos.
- Los problemas que no eran abordables o imposibles en el pasado, debido a un gran volumen de datos o a una llegada continua de los mismos podrán ser procesados gracias a las nuevas técnicas distribuidas y de minería de flujo de datos.

III. OBJETIVOS

En base a las hipótesis de partida iniciales, se plantea como objetivo principal de esta tesis el desarrollo de algoritmos de SDRD enfocados a la extracción de conocimiento fácilmente comprensible por el experto dentro de problemas de procesamiento de datos de gran magnitud (Big Data) o en problemas de minería de flujos de datos. Este objetivo principal se desglosa en los siguientes subobjetivos:

1) Estudio e identificación de los principales enfoques utilizados en SDRD para problemas complejos.

2) Desarrollo de nuevas propuestas algorítmicas para la extracción de conocimiento altamente descriptivo en entornos Big Data.

3) Adaptación de las propuestas anteriores para la extracción de patrones emergentes en entornos Big Data.

4) Adaptación de las propuestas para la extracción de conocimiento altamente descriptivo en entornos de Big Data.
minería de flujos de datos, que a su vez se divide en los siguientes subobjetivos:

a) Estudio de los principales enfoques utilizados en minería de flujo de datos.

b) Diseño de propuestas multiobjetivo para la extracción de patrones emergentes en flujos continuos de datos.

c) Estudio de métodos de visualización de los patrones emergentes extraídos a lo largo del tiempo.

5) Aplicación de las propuestas desarrolladas a datos reales con el objetivo de transferir los resultados de investigación al sector productivo y la sociedad en general. En concreto, se pretende aplicar los métodos desarrollados en los siguientes campos:

 a) Energías renovables.
 b) Gestión de flotas.

IV. METODOLOGÍA

El desarrollo de esta tesis implica una metodología de trabajo teórico-práctica pues es necesario por un lado el desarrollo de nuevas metodologías de manera teórica y por otro lado la implementación de las mismas para confirmar su validez. Para la consecución de los objetivos 1,2,3 y 4 así como sus subobjetivos se seguirá el método científico tradicional, el cual se describe a continuación:

1) Formulación de hipótesis. Se plantean las hipótesis iniciales de los objetivos a llevar a cabo. En este punto, se diseñarán nuevas propuestas algorítmicas para la extracción de modelos SDRD altamente representativos del conjunto de datos a analizar y fácilmente interpretables por el experto en entornos Big Data y en flujos continuos de datos.

2) Recogida de observaciones. Se obtendrán los resultados como consecuencia de la aplicación de los algoritmos desarrollados. En concreto, se utilizarán bases de datos ampliamente conocidas por la comunidad científica del repositorio UCI Knowledge Discovery in Databases [33] mediante la utilización de validación cruzada estratificada en conjuntos de datos de gran tamaño. Para flujos continuos de datos, estos se analizarán utilizando la herramienta de análisis de flujos de datos MOA [34], la cual posee generadores de flujos de datos ampliamente conocidos por la comunidad.

3) Contraste de hipótesis. Se compararán los resultados obtenidos por los algoritmos desarrollados con el objetivo de analizar su calidad con otras propuestas dentro de la temática. En concreto, para las comparaciones con los algoritmos del estado del arte se trabajará con un framework disponible públicamente en el GitHub del grupo de investigación SiMiDat\footnote{https://github.com/simidat} que contiene los algoritmos más relevantes de EPM hasta la fecha. Asimismo, todos los resultados obtenidos serán validados mediante test estadísticos no paramétricos [35].

4) Demostración o refutación de la hipótesis. La hipótesis se acepta, o se rechaza y se modifica, en función de los resultados obtenidos en las pruebas realizadas.

V. PLAN DE TRABAJO

Para poder desarrollar la tesis dentro del período máximo de tres años del programa de doctorado actual, se establece un plan de trabajo en donde se especifica una estimación temporal para la consecución de cada uno de los objetivos propuestos en la sección anterior, así como los diferentes hitos que marcarán el cumplimiento de los mismos. En particular, para cada uno de los subobjetivos propuestos anteriormente se define la siguiente planificación temporal:

- **Objetivo 1:** Estudio e identificación de los principales enfoques utilizados en SDRD para problemas complejos.
 - Programación: M1-M6.
 - Descripción: Realización de un estudio del estado del arte sobre los algoritmos SDRD, en especial aquellos que usen sistemas difusos evolutivos.
 - Resultados esperados: Informe donde se resuman los enfoques más relevantes de la literatura así como posibles vías de desarrollo de nuevas propuestas para la extracción de modelos SDRD.

- **Objetivo 2.a:** Desarrollo de propuestas multiobjetivo para la extracción de patrones emergentes.
 - Programación: M6-M15.
 - Descripción: Desarrollo de nuevas propuestas multiobjetivo basadas en sistemas difusos evolutivos para la extracción de patrones emergentes descriptivos.
 - Resultados esperados: Métodos para la extracción de patrones emergentes capaces de mejorar los resultados obtenidos respecto a descripción y carácter diferenciador por los algoritmos presentes en la literatura.

- **Objetivo 2.b:** Análisis y desarrollo de métodos de filtrado y post-procesamiento.
 - Programación: M10-M15.
 - Descripción: Análisis y estudio de diferentes mecanismos que puedan incorporarse tanto en el proceso evolutivo como en una etapa final para optimizar diversos factores de los métodos evolutivos.
 - Resultados esperados: Obtención de nuevos mecanismos que mejoren los resultados de los algoritmos ya desarrollados.

- **Objetivo 3.a:** Estudio de los principales enfoques y estrategias utilizadas en sistemas evolutivos para extracción de patrones emergentes en entornos Big Data.
- Programación: M12-M18.
- Descripción: Estudio de la bibliografía especializada en Big Data para el análisis de las estrategias para abordarlo eficientemente.
- Resultados esperados: Obtención de un informe donde se describen las estrategias más relevantes y vías a desarrollar en SDRD.

- Objetivo 3.b: Desarrollo de propuestas multiobjetivo para extracción de patrones emergentes en entornos Big Data.

 - Descripción: Adaptación de los modelos desarrollados para entornos Big Data.
 - Resultados esperados: Desarrollo de propuestas evolutivas de extracción de patrones emergentes en entornos Big Data capaces de extraer conocimiento en este ámbito.

- Objetivo 3.c: Análisis del equilibrio entre el tiempo y la calidad de los resultados obtenidos.

 - Descripción: Estudio de la escalabilidad de los métodos implementados para Big Data.
 - Resultados esperados: Obtención de conclusiones que permitan mejorar las implementaciones desarrolladas anteriormente.

- Objetivo 4.a: Estudio de los principales enfoques utilizados en minería de flujo de datos.

 - Programación: M24-M30.
 - Descripción: Estudio de la bibliografía especializada en minería de flujo de datos para el análisis de las estrategias llevadas a cabo para la extracción de conocimiento en este ámbito.
 - Resultados esperados: Obtención de un informe donde se describen las estrategias más relevantes y vías a desarrollar en SDRD.

- Objetivo 4.b: Diseño de propuestas multiobjetivo para la extracción de patrones emergentes en flujos continuos de datos.

 - Programación: M24-M33.
 - Descripción: Adaptación de las propuestas desarrolladas anteriormente a minería de flujo de datos.
 - Resultados esperados: Desarrollo de propuestas evolutivas de extracción de patrones emergentes en entornos de minería de datos.

- Objetivo 4.c: Estudio de métodos de visualización de los patrones emergentes a lo largo del tiempo.

 - Programación: M28-M33.
 - Descripción: Creación de propuestas para una visualización simple de los patrones emergentes extraídos en entornos de minería de flujo de datos.
 - Resultados esperados: Métodos de visualización que permitan mejorar el análisis a los expertos.

- Objetivo 5.a: Análisis a datos sobre energías renovables.

 - Programación: M30-M36.
 - Descripción: Análisis de datos reales de energía solar fotovoltaica en concentración de la Universidad de Jaén que registran datos en tiempo real.
 - Resultados esperados: Descubrimiento de posibles anomalías en los equipamientos mediante patrones emergentes en flujos continuos de datos.

- Objetivo 5.b: Análisis a datos de gestión que permitan optimizar el funcionamiento del sistema.

 - Programación: M30-M36.
 - Descripción: Análisis de datos reales de gestiones de taxis en la ciudad de Nueva York.
 - Resultados esperados: Devolver patrones emergentes a lo largo del tiempo sobre el comportamiento de los usuarios que utilizan el taxi.

Esta planificación temporal se puede observar también en la Figura 1 donde se presenta un cronograma a fin de facilitar la comprensión de la duración de los diferentes objetivos de la tesis a lo largo del tiempo.

VI. RELEVANCIA

A día de hoy existen tecnologías de aprendizaje automático como por ejemplo el aprendizaje profundo (Deep Learning), entre otros, que permiten la extracción de modelos muy precisos en una gran variedad de problemas. Sin embargo, la gran desventaja de estos modelos es que es prácticamente imposible extraer una conclusión clara de las razones por las que se ha realizado dicha predicción. En este sentido, en ámbitos como la medicina o algunos campos de la industria, economía, entre otros, es de vital importancia la extracción del tipo de conocimiento obtenido mediante técnicas SDRD. En este sentido, la aportación original de esta tesis es la obtención de este tipo de conocimiento simple, fiable y fácilmente interpretable por el experto en conjuntos de datos donde hasta la fecha era impracticable su extracción como en Big Data o en flujos de datos.

A nivel científico, fruto del trabajo desarrollado hasta el momento para esta tesis, se han publicado varias publicaciones en revistas internacionales, entre los que se destacan:

 - En este trabajo se presenta el paquete SDEFSR para el software estadístico R. Dicho paquete contiene los principales algoritmos de descubrimiento de subgrupos basados en sistemas difusos evolutivos.

 - En este trabajo se presenta un estudio sobre la influencia del ruido en los algoritmos de descubrimi-
iente de subgrupos basados en sistemas difusos evolutivos.

- Se presenta una revisión bibliográfica de EPM desde el punto de vista de SDRD, fruto del profundo estudio realizado sobre el problema.

- En este trabajo se presenta un algoritmo basado en un sistema difuso evolutivo para la extracción de patrones emergentes con un gran equilibrio entre la fiabilidad y la facilidad de comprensión del modelo.

5) ——, “A big data approach for extracting fuzzy emerging patterns,” Cognitive Computation, Submitted
- Se presenta un algoritmo escalable basado en un sistema difuso evolutivo para la extracción de patrones emergentes de gran calidad en Big Data.

Asimismo, se han presentado las siguientes comunicaciones en congresos internacionales:

- En este trabajo se presenta una aplicación del algoritmo de minería de patrones emergentes EvAEP en donde se describir las características más relevantes de placas fotovoltaicas de concentración en función del rendimiento de las mismas.

- En este trabajo se presenta un estudio donde se determina la representación del conocimiento en sistemas difusos evolutivos que mejor se adecua a los objetivos de EPM en entornos Big Data.

- En este trabajo se presenta una versión escalable del algoritmo EvAEP para la extracción de patrones emergentes mediante un sistema difuso evolutivo en entornos Big Data.

Actualmente se está trabajando en el desarrollo de un método de extracción de patrones emergentes en entornos de minería de flujo de datos. Además, el trabajo futuro se centrará en el desarrollo de métodos que mejoren tanto en calidad...
PhD Thesis proposal:

A study on the discriminatory capacity of the temporal information on supervised time series classification problems

Amaia Abanda1,2

1 Basque Center for Applied Mathematics (BCAM)
2 Intelligent Systems Group (ISG)
Department of Computer Science and Artificial Intelligence,
University of the Basque Country UPV/EHU
Bilbao, Spain
aabanda@bcamath.org

Advisors: Usue Mori2,3, Jose A. Lozano1,2

3 Department of Applied Mathematics
Statistics and Operational Research
University of the Basque Country UPV/EHU
Bilbao, Spain

Starting date: 1 April 2017

Abstract—Time series classification has been always categorized as a particular case of classification in which the input objects are ordered sequences. As such, the research community has assumed that specific methods are required for dealing with this type of data, without really analysing this hypothesis. Specific methods are usually computationally expensive or demand some semantic treatment of the series that may turn the method cumbersome. In this thesis time series classification is addressed from a new point of view: the discriminatory power of the temporal information. In other words, given a dataset, we want to analyse the relevance of the temporal information (the order of the elements of a series, for instance) for classification and explore in which cases the specific methods are necessary and why in depth. Departing from distance based time series classification, the goal of this thesis is to explore which are the temporal characteristic of the time series data in order to measure how relevant they are for classification.

Index Terms—time series, classification, temporal information, discriminatory, distance based

I. INTRODUCTION

Time series data that is constantly being generated in a wide variety of fields such as bioinformatics, financial fields, engineering, etc [1]. Time series represent a particular type of data due the intrinsic temporal nature they have. A time series is an ordered sequence of observations of finite length, observations that are usually taken through time but they may also be ordered with respect to another aspect, such as space [2]. The large increase in the amount of this kind of data has given rise to an growing interest on studying and mining of time series.

In particular, this thesis is focused on time series classification (TSC), a data mining task which aims at finding a mapping between inputs (time series, in this case) and outputs (class labels or categories) based on some input-output pairs from where the model is learnt. In this manner, the goal of TSC is to predict the class labels of new unlabeled time series. TSC differs from traditional classification problems in the ordered nature of the input objects. In traditional classification problems, the input objects are feature vector and the order of their attributes is not relevant; any re-ordering of them will produce the same results. In TSC, on the contrary, the input are time series, that is, ordered sequences. In this context, it is generally assumed that the order of the attributes is a discriminatory aspect and that, hence, time series can not be treated as feature vectors. As such, many specific methods for time series have been proposed over the years.

The methods proposed for TSC can be divided into three main categories [4]: feature based, model based, and distance based methods. In feature based TSC, some representative features of the series are extracted and the series are transformed into feature vectors. Then, any traditional classifier can be employed, since the feature vector is not an ordered input. Some
of the most typical feature based methods are discrete Fourier transform (DFT) [5] or discrete wavelet transform (DWT) [6]. In model-based TSC, the main assumption is that the series belonging to the same class are generated by the same underlying model, so the prediction of a new series is done finding the model that best fits it. Some examples include autoregressive models [7][8] or hidden Markov models [9]. Lastly, in distance-based time series classification, the classification is done based on the concept of similarity. In this manner, the similarity between two series is defined employing a distance measure; those series that are close to each other respect to a given distance are considered similar, and those which are far away are considered different. It is assume that series which are similar in some sense, belong to the same class and this similarity concept is measured by using some specific distance measures. Then, this relationship is employed for classifying the new series. This thesis departs from distance-based TSC.

Until recently, most of the work done in distance-based TSC has focused on defining new distance measures and exploiting them within k-Nearest Neighbour classifiers (in particular, the 1-NN classifier). Different types of similarities focus on different aspects of the time series, such as the the shape, the temporal alignment, the correlation or the structure, so the simple approach of 1-NN has achieved a reputation of being difficult to beat [3][11]. However, this competitiveness may come from the strengths of the distance measures more than from the classifier itself [12]. As such, in the past few years many methods have been proposed that include the existing time series distances within more complex classifiers [13][14][15].

Time series distance measures can be categorized using many criteria. For instance, a widely employed categorization divides them into lock-step measures and elastic measures. Lock-step measures refer to those distances that compare the ith point of one series to the ith point of another (Euclidean distance, for example). Elastic measures, on the contrary, create a non-linear mapping between the series with the purpose of aligning them (Dynamic Time Warping [10], for instance). As such, elastic measures allow a comparison of one point of a series with another point of another series which is not at the same time instant. In other words, lock-step measures do not consider the relationship between an ordered subsequence of a series and another series, while elastic measures do. In this way, if a lock-step distance is employed in a classification task, the series are treated as feature vectors in which the order of the elements is meaningless. By contrast, if an elastic distance is used for classification, the main assumption is that the order of the elements of the series is a relevant aspect for discriminating between classes.

This dichotomy -whether the order of elements of the series is discriminatory or not-, has arisen from distance-based TSC but it is, indeed, a more general matter. Most of the methods proposed until now assume that the temporal information of the series is relevant; the methods extract temporal features of the series in order to capture their temporal characteristics, but without really analysing the discriminatory power of these characteristics. As such, most of the existing approaches for TSC have assumed that, due to their temporal nature, specific methods are required for classifying time series. For instance, in distance-based time series classification, this specificity is represented by the methods employing elastic measures.

The main problem with specific methods is that they are usually computationally expensive. In the case of distance-based methods, for instance, most of the elastic measures take $O(n^2)$, where n is the length of the longest time series in the database. For large datasets, methods employing this kind of measures become cumbersome and unrealistic for a real application. Generic methods, on the contrary, can be computationally reasonable even for large datasets. In addition, specific methods have often a semantic part that the researchers need to handle; for instance, in feature-based method, the researches should know in advance which temporal features are more discriminatory for the given dataset. As such, the main motivation of this thesis is to understand beforehand in which cases the specific methods are necessary and in which cases a non-specific method would be enough. Hence, the researches could benefit from this knowledge to save time and effort on TSC. In addition, this novel point of view opens a new direction of research that has never been explored.

In the next sections the objectives of the thesis, the proposed methodology to carry them out, and the relevance of the present thesis are described.

II. Objectives

The main objective of this thesis to establish whether the temporal information of the time series -understood as the main characteristic of this type of data that differentiates it from other type of data- is, or is not, a discriminatory aspect for classification. Departing from distance-based TSC, the goal of this thesis is to understand when specific methods are required or not (preferably in advance), and especially why. This goal can be broken-down into the following sub-objectives:

1) A taxonomy of distance based TSC. As previously mentioned, many new distance-based methods have been proposed within the last years, in addition to the classical 1-NN. As such, this sub-objective aims at presenting a taxonomy that integrates all distance-based approaches, structuring them in such a manner that the understanding of the field is improved. This sub-objective is in process at the moment and a review on distance-based TSC has been recently submitted [2], which includes the proposed taxonomy.

2) Analysis of need of specific methods within distances based TSC to develop a method that decides in advance whether specific methods are needed or not. The categorization of the methods in specific/non-specific comes easily within distance-based TSC by the differentiation of the methods which employ lock-step measures and elastic measures. Lock-step measures treat the series as feature vectors and, thus, are not specific for time series, while elastic measures take
into account the order of the elements of the series and, hence, are specific for time series. In this sub-objective, the temporal information is understood, as a first approximation, as the relevance of the order of the elements. Departing from the lock-step/elastic measures categorization - which no-consider/consider the temporal information, respectively- the main goal is to check if in those cases in which the temporal information is not discriminatory, non-specific methods perform better than specific. In this way, the idea is to develop a methods that decides in advance, for a given dataset, where elastic distance based or lock-step distance based methods will perform better. This sub-objective is in an early stage but some work has been already done in this direction [16].

3) Analysis of need of specific methods in general TSC to develop a method that decides in advance whether specific methods are needed or not. Following the idea of the previous sub-objective, the goal is to extrapolate the analysis of the specificity of the methods to general TSC. In particular, instead of considering the order as the unique temporal factor, new temporal characteristics will be considered. For instance, in feature based approaches, rather than extracting temporal features (as the amplitude of the series or their Fourier coefficients), we could employ standard feature extraction techniques and compare both approaches in terms of accuracy. At the same time, we could check if there is a correlation between the performance of the specific/non-specific methods in distance based and feature based approaches, to somehow check if the weight of the order in the temporal information. The idea is to understand the intuition about which are the characteristic in a dataset that make the specific (or non-specific) methods more accurate.

4) Proposal of a method that extract the temporal information’s discriminatory power for TSC to know in advance which of the existing methods will be more appropriate for a given dataset. The fourth sub-objective is to give a specific definition of the concept of temporal information. This definition will probably be broken-down into different characteristic as the order of the elements of the series or shift between series. The idea is to quantitatively measure, in advance, the power of these characteristics for classification. As such, one could extract these values, the discriminatory power, of each of the defined temporal characteristic for classification from a given dataset and employ them as a kind of weight. Then, the researcher can choose which of the existing method use in coherence with these weights. For instance, if the shift between series turn out to be very discriminative (large weight), a method that takes this fact into account should be used. In particular, most of these temporal weights could be small and that would mean that the temporal information is not relevant for classification. In this case, the non-specific methods would be probably more appropriate than the specific ones. To summarize, the goal is to develop a method that extract the weight of each temporal characteristic of a given dataset (in the sense how discriminatory they are for classification), in order to choose in advance which kind of method would be more appropriate.

5) Application of the acquired knowledge to solve a real problem. The goal is to give solutions to real time series classification problems by means of the development of a new method. The specific problem is: given a set of streaming time series with different kind of peaks, classify these peaks into different categories. Hence, it is a sub-series classification in a streaming context. An example of this scenario comes from water distribution companies, in particular, a company called Gipuzkoako Urak S.L. has proposed the following problem: this company has several sensors over a geographic region (Gipuzkoa) which measure the water flows passing through these localizations. These observations are taken over the time (every 5 minutes, for instance) and can be seen as streaming time series. In some specific time instants, there are high water consumptions (time series peaks), which may be caused by several reasons: someone filling the swimming-pool, fire-fighters taking water from a distribution point or water leakages. Since the companies do not differentiate between these peaks, a technician is send to the place every time that the water flow exceeds a established threshold. As such, most of times it is not a water leakage and the technician is sent for nothing. The objective is to propose a method that is able to classify these high water consumptions in the moment that they are happening in order to decide whether it is a water leakage or not (and thus, a technician has to be sent or not). In a general context, this problem can be seen as peak-including-sub-series classification in a streaming scenario.

In the case of the problem proposed by the mentioned company, there is an additional challenge: they do not have the specific label of each peak, i.e., the reason of each high water consumption. Instead, they have some text comments written by the technician that went to check the specific high water consumption. In order to translate the problem to a TSC problem, we should have the specific labels. Hence, another goal within this objective is to apply some labelling technique to the comments in order to obtain a clear ground true of the existing categories.

III. Methodology and Work Plan

In this section, a general overview of the proposed methodology is presented. The work plan is defined in order to fulfill each one of the objectives of this thesis. For each objective, the goal is to develop a method (except for the first one: the taxonomy), which will be written and sent to a referred journal
of the JCR. The preliminary findings may also be presented in conferences, preferably international. More concretely, the methodology for each objective is defined as follows:

1) A taxonomy on distance based TSC:
 a) A comprehensive revision of the existing distance based TSC methods, with emphasis on those that propose new ways of employing the existing time series distance measures.
 b) Extraction of the characteristics of each method in order to identify the possible categories of methods and explore the different criteria respect to which group the methods.
 c) Proposal of a taxonomy that structures the existing methods in a way that the possible future reader will have a better and more organized understanding of the distance based TSC methods.
 d) Writing of a review on distances based TSC based on the proposed taxonomy and submission to a JRC journal.

2) Analysis of need of specific methods within distances based TSC to develop a method that decides in advance whether specific methods are needed or not:
 a) State-of-the-art revision of any method that questions the use of specific methods for TSC, in particular, methods based on distances.
 b) Formulation of the hypothesis regarding the use of specific methods. In particular, a hypothesis that relates the distance based method employing lock-step/elastic (non-specific/specific) measures and general TSC methods that considers/non-consider the temporal nature of the series.
 c) Design of the experimentation and definition of the expected results.
 d) Contrast of the obtained results with the hypothesis to draw conclusions.
 e) Writing of a paper with the obtained conclusions and submission to an international conference.

3) Analysis of need of specific methods in general TSC to develop a method that decides in advance whether specific methods are needed or not:
 a) Revision of TSC methods in order to check if there are any methods that do not employ specific methods. Analysis of their justifications.
 b) Exploration of the different characteristic of the series (and in general, of the given dataset) that may determine when the specific/non-specific methods would obtain better/worse results and why.
 c) Formulation of the hypothesis about better/worse results in specific/non-specific methods depending on the different characteristic of the datasets.
 d) Definition of the experimentation and specification of the expected results and their correspondence with the formulated hypothesis.
 e) Interpretation of the obtained results and conclusions.
 f) Writing of a paper to present the obtained conclusions and submission to a JRC journal.

4) Proposal of a method that extract the temporal information’s discriminatory power for TSC to know in advance which of the existing methods will be more appropriate for a given dataset:
 a) Revision of general classification methods which explore the discriminatory power of features obtained from the data. In particular, check if there is any similar work done for time series.
 b) Definition of temporal information and it’s possible break-down into different characteristics. Definition of a way to measure the discriminative capacity of these characteristics.
 c) Proposal of a specific framework which, given a dataset, extract the temporal characteristics and the discriminatory power of each of them. Then, depending on the discriminatory power of them, gives a weight to each characteristics and choose the most appropriate method for classifying this dataset. In particular, if the temporal characteristics are found not to be relevant for classification, the proposed framework should choose a non-specific method.
 d) Definition of the experimentation to evaluate the proposed framework.
 e) Writing of a paper to present the developed framework and the analysis that underlies the proposal. Submission to a JRC journal.

5) Application of the acquired knowledge to solve a real problem.
 a) Definition of the problem with the help of the representative and the technician of the company Gipuzkoako Urak S.L.. The objective is to understand the structure of the data they have in depth and to define, with their help, the exact problem.
 b) Proposal of a labelling procedure to obtain the class labels of the high water consumptions from the comments of the technicians, as well as an evaluation method for the labelling procedure.
 c) Offline problem: split the time series in the time spans in which there is peak and classify these sub-series with the classes obtained in labelling procedure.
 d) Once the offline scenario is solved, provide a proposal to extrapolate the method to a streaming case.
 e) Presentation of the proposed method to the company to get a feedback.
 f) Writing of a paper with the proposed method and submission to a JRC journal.

IV. RELEVANCE

Although the number of ways of employing a time series distance for TSC has increased over the years, a taxonomy
that organizes the field has never been presented, so we think that it would be an important contribution for the researches in the community.

As previously mentioned, in almost every approach of TSC the proposed methods are specific for time series, assuming that the temporal information is a discriminatory aspect for classification. In our opinion, this hypothesis has to be analysed in detail, even if it is the base of practically all the existing approaches. The specific approaches for time series, specially those based on distances, require often high computational cost both for learning and prediction. In addition, depending on the length of the series and the size of the dataset, this methods can become unrealistically expensive in terms of computational time. In those that are not distance based, an specific treatment of the series is usually needed beforehand in order to extract the appropriate features or, in general, to fit an adequate model.

As such, we want to open a new direction of research that has never been explored: first, we want to specify the peculiarities of TSC respect to traditional classification problems from the point of view of the data analysis and, secondly, we want to measure these particular characteristics in terms of their discriminative power. In this manner, these characteristics could me measures in advance to know in order to choose the appropriate method to classify the given dataset. More specifically, these discriminative measures would help to understand whether it is necessary or not the use of specific methods. This progress would help the research community in a great manner by clarifying the relevant features of the time series data for the task of classification.

In addition, the acquired knowledge within this thesis will be applied to a real problem of time series peak classification in a streaming context. It is an innovative and challenging problem that combines different sub-problems of TSC but that has never been addressed specifically. An example where this method could be applied is in water distribution companies. Even if this challenge is a TSC problem, there are rather few works done by the researches in the field, so we think that proposing a comprehensive solution based on a novel method will also be an innovation to the application domains of the field.

ACKNOWLEDGEMENT

This research is supported by the Basque Government through the BERC 2018-2021 program and by Spanish Ministry of Economy and Competitiveness MINECO through BCAM Severo Ochoa excellence accreditation SEV-2013-0323 and through project TIN2017-82626-R funded by (AEI/FEDER, UE) and acronym GECCEPAST. In addition, by the Research Groups 2013-2018 (IT-609-13) programs (Basque Government), TIN2016-78365-R (Spanish Ministry of Economy, Industry and Competitiveness). A. Abanda is also supported by the grant BES-2016-076890.

REFERENCES

Banca 3.0: Servicios Inteligentes de valor añadido y Salud Financiera

La Banca privada y personalizada para el cliente ya es posible: sinergia entre Inteligencia Artificial, Analítica de Datos, Big Data y Estadística.

Javier Porras Castaño
Doctorando, Universidad Rey Juan Carlos I, Madrid
Inicio en Noviembre de 2017
Director de Tesis: Carlos Enrique Cuesta Quintero
Departamento: Ciencias de la Computación
Ronda, Málaga, España
@_javipc
www.linkedin.com/in/javipc
javiporrascastano@gmail.com

Los clientes demandan poder interactuar con su banco al igual que lo hacen con las principales plataformas de Internet. Esta tesis doctoral supondrá una revolución de gran impacto en el sector financiero y cambiará la tradicional relación del cliente con su banco. Éste almacena todos los movimientos financieros que realiza el cliente, lo que supone una cantidad de datos ingente, que en la actualidad no los está utilizando la Banca para generar valor. Gracias a la sinergia entre Inteligencia Artificial, Analítica de Datos, Big Data y Estadística sobre esos datos se podrá ofrecer servicios inteligentes personalizados de valor añadido que modiquen la relación entre el cliente y su entidad financiera. Esta tesis pretende crear una cuenta inteligente que sea capaz de predecir gastos de consumo (luz, agua, compras, etc) con antelación, ofrecer al cliente un indicador de cómo son sus gastos frente a perfiles similares anonimizados y recomendar productos financieros a medida que mejoren su salud financiera. Además, como innovación disruptiva, el cliente podrá interactuar con estos servicios inteligentes mediante su propia voz porque es la forma más natural e inherente de comunicación del ser humano, con independencia de cómo es su forma de expresión.

Predicción, indicadores, recomendación, personalización, voz, innovación, inteligencia, satisfacción y fidelización.

I. INTRODUCCIÓN

El sector bancario está experimentando importantes transformaciones que tienen origen en la imparable innovación tecnológica, con productos y servicios financieros digitales que están siendo adoptados con naturalidad por los clientes, que implican cambios en sus hábitos y en el uso de los canales tradicionales que ofrece la Banca: Internet y el teléfono móvil se han convertido ya en el medio natural para interactuar con el banco, quedando en el olvido acudir físicamente a una sucursal. El cliente demanda interactuar con su entidad financiera con la misma facilidad que se comunica con un amigo/a a través de una red social, mediante un correo electrónico o incluso mediante lenguaje natural. Esta facilidad es posible gracias a la evolución de la tecnología y han aparecido unos nuevos actores, sector Fintech, que sin ser bancos, ofrecen a los clientes esta sencilla funcionalidad, mediante servicios más ágiles y cómodos para el cliente. Todo ello está provocando que la banca tradicional se vea obligada a transformarse digitalmente, mediante estrategias innovadoras centradas en el cliente, ofreciéndole una atención personalizada y permitiéndole interactuar con aquello que se siente más cómodo: manteniendo una conversación en lenguaje natural con su propio teléfono móvil o tableta. En este contexto, el sector bancario tradicional debe aprovechar, como ventaja competitiva, la cantidad ingente de datos que dispone de sus clientes para que a través de la sinergia entre Inteligencia Artificial (Machine Learning y Deep Learning), Analítica de Datos, Big Data y Estadística, extraiga el conocimiento oculto y ofrecer una banca privada y personalizada al cliente. Un cliente genera a diario mucha información financiera que almacena su banco: cuándo, qué y dónde realiza sus compras o qué gastos e ingresos mensuales tiene; esta cantidad de datos que diariamente aportan los clientes a su banco, que hasta el momento no genera valor, debe ser analizada para extraer su conocimiento oculto y ofrecer servicios inteligentes de valor añadido para el cliente que le aporten una atención personalizada y a medida. El teléfono móvil, su tableta o incluso su televisor serán los nuevos canales con los que el cliente interactuará, mediante una conversación en lenguaje natural, para acceder a servicios inteligentes de valor añadido que le proporcionen una mejor salud financiera y satisfacción con su banco.
II. TESIS: DESCRIPCIÓN DE LA INVESTIGACIÓN

La Banca conoce con absoluta precisión los movimientos de sus clientes: qué hace, dónde y cuándo (la información estructurada tradicional) y si además, es capaz de agregarle datos externos del cliente (información no estructurada): redes sociales, geolocalización, actividad en Internet o qué productos le interesan, compondrá una gran base de datos, que a partir de la sinergia entre Inteligencia Artificial, Analítica de Datos, Big Data y Estadística, le permitirá conocer con exactitud a cada uno de sus clientes, para ofrecerles una banca personalizada y privada, justo en el momento que lo demandan, para conseguir su satisfacción y fidelización. La banca es el sector más adecuado para aprovechar estas tecnologías y el momento es ahora, para dar origen a la Banca 3.0, con el horizonte de proporcionar al cliente servicios inteligentes de valor añadido y la información necesaria para una toma de decisiones adecuada y lo más importante, hacerlo de forma anticipada, es decir, prever las necesidades concretas del cliente. Para conseguirlo es necesario que la Banca tenga un conocimiento de 360° del cliente.

El objetivo de mi tesis doctoral es investigar qué servicios inteligentes de valor añadido se pueden ofrecer a los clientes a partir de la sinergia entre Inteligencia Artificial, Analítica de Datos, Big Data y Estadística, dando soporte a una Cuenta Inteligente 2.0 que ofrezca servicios innovadores y exclusivos al cliente y que éste pueda consumirlos utilizando lenguaje natural, a modo de conversación, simulando una conversación con su agente financiero tradicional.

Los tres principales objetivos que se pretenden conseguir durante el desarrollo de esta tesis doctoral son:

1: Predecir gastos de consumo del cliente en transacciones no fijas (no periódicas) como son: gastos habituales del hogar (luz, agua o gas), gastos en la cesta de la compra y gastos derivados de ocio y restaurantes. El cliente, mediante su voz, podrá solicitar una predicción de cualquiera de sus gastos con la antelación que requiera en ese momento: podrá consultar a qué cantidad ascenderá su recibo de luz el próximo trimestre, o de la misma forma, podría preguntar, en lenguaje natural, cuál es la predicción de gastos que tendrá en la próxima Navidad, e incluso podrá solicitar el detalle de los mismos: qué gastos serán relacionados con la cesta de la compra o cuáles serán los referidos a ocio y restaurantes. Disponer de una predicción de gastos le ofrece al cliente la posibilidad de tomar mejores decisiones y anticiparse a posibles situaciones desfavorables, lo que le permite tener una mejor salud financiera. Imaginemos que un cliente desea saber cuáles serán los gastos de luz y agua que tendrá al finalizar el mes de septiembre para poder tomar decisiones sobre cómo afrontar la compra de libros y material de sus hijos/as en septiembre, etapa de ‘vuelta al cole’. La disponibilidad de este servicio de predicción de gastos puede ayudar al cliente a modificar su comportamiento (y el de su unidad familiar), si se predice, de forma anticipada, un determinado pico en un gasto de consumo, el cliente podrá modificar su comportamiento para tartar de reducir esa previsión de gasto.

2: Realizar recomendaciones en base a la actividad financiera del cliente, es decir, en función de los movimientos, gastos e ingresos, que realiza a diario: analizando los movimientos que diariamente realiza el cliente, la cuenta inteligente le ofrecerá recomendaciones sobre productos que se ajustan a sus necesidades y que le aportan una solución financiera ‘ah doc’ que le permite salvar una situación concreta en un momento determinado; esta recomendación, en tiempo real, mejorará su experiencia y satisfacción con la entidad, percibiendo una atención totalmente personalizada y a través de una conversación en lenguaje natural con su teléfono móvil o tableta, como si se tratara de una reunión con su agente financiero tradicional habitual. Imaginemos que un cliente tiene pocos ingresos y siempre compra a débito, la cuenta inteligente le recomendará una tarjeta con crédito, con la cantidad justa adicional que suele necesitar mensualmente y que la pueda contratar, de forma fácil y rápida, simplemente indicándolo: ‘quiero solicitar mi tarjeta de crédito’. En este servicio, también se puede incluir el análisis de las publicaciones en las redes sociales del cliente, siempre que sean datos públicos y no datos privados, para analizar su actividad y hacerle recomendaciones; imaginemos que un cliente publica en redes sociales fotos y comentarios sobre el coche deseado, el servicio de cuenta inteligente le ofrecerá un crédito personalizado para su financiación y que lo pueda contratar cómodamente, a viva voz, indicando: ‘quiero solicitar mi préstamo para la compra de ese coche’. Recibir recomendación de productos financieros ergonómicos, a medida y personalizados, que se puedan contratar en pocos segundos con su propia voz y casi sin la habitual burocracia documental, provoca la satisfacción del cliente, su fidelización y mejora su salud financiera.

3: Comparar gastos con clientes anonimizados de perfil similar: frecuentemente, con familiares o amigos/as, tratamos de comparar los gastos de consumo de suministros habituales, para tratar de tener un indicador de nuestra actividad en el hogar. Con este servicio, el cliente tendrá una referencia o indicador que le permita evaluar si sus gastos en suministros están alineados con otros clientes de perfil similar. Esta comparativa se realiza utilizando datos agregados y anonimizados de clientes con el mismo perfil, en tiempo real. La cuenta inteligente le indicará al cliente, mediante lenguaje natural, si un gasto concreto en un consumo habitual está
Tesis: Hipótesis de partida

Esta cuenta inteligente de servicios innovadores de valor añadido para el cliente se podrá desarrollar en base a la ingente cantidad de información que registra una entidad financiera a partir de sus movimientos. Empleando técnicas de Machine Learning y Minería de datos, se pretende encontrar patrones de comportamientos de los clientes para predecir gastos, diseñar productos financieros a medida y comparar comportamientos del cliente con perfiles similares anonimizados.

Además, la entidad financiera dispone de los datos de un cliente desde el día que se da de alta en el banco hasta el momento actual; cuanto más tiempo de antigüedad tenga un cliente, más precisos serán sus modelos de comportamiento; o lo que es lo mismo, a medida que avance el tiempo, mientras pertenezca al banco, sus patrones cada día serán más precisos. Con cada nuevo movimiento u operación que realiza el cliente (nueva compra o cargos de gastos de consumo) sus patrones de comportamientos serán más reales y ajustados. El tipo de cliente que más destaca en un banco es aquel que dispone de una cuenta, donde tiene asociada la hipoteca y la nómina; este tipo de cliente suele permanecer muchos años en el mismo banco, tantos como años esté suscrita su hipoteca. Con un horizonte tan largo en el tiempo, los patrones y modelos de comportamiento para el cliente serán muy ajustados y conseguirán dar soporte a los servicios inteligentes de valor añadido descritos.

Por otro lado, para poder ajustar y ser más preciso en la predicción de gastos de consumo que un cliente podrá generar, al cabo de unos meses, será necesario utilizar información externa, a dos niveles:

1: Utilizar la información pública que un cliente publique en sus redes sociales. Si el cliente publica fotografías y comentarios de su viaje en próximas semanas, durante la etapa estival, el servicio inteligente deberá tenerlo en cuenta; la predicción de gastos de consumos habituales del hogar será menor, pero crecerá la predicción en los gastos de ocio y restaurantes.

2: Consultar las variaciones de tarifas de los proveedores de servicios relacionados con el consumo del hogar: luz, agua, gas, tarifa telefónica (caso que no sea tarifa plana), etc. Habitualmente, con la llegada de un nuevo año, el temido mes de Enero, suelen subir las tarifas del proveedor del servicio de agua o luz. Para realizar una predicción más certera, será necesario consultar, de forma automática y transparente al cliente, cuál será la subida de la tarifa. En la actualidad, en plena transformación digital de todas las organizaciones, se están apicando sus servicios, por lo que gracias a las APIs la cuenta inteligente podrá tener acceso a las nuevas tarifas y políticas de precios de los proveedores de servicios de consumo así como a otros terceros que utilice el cliente.

En la actualidad las entidades financieras no están generando valor sobre esta cantidad de información de un cliente por lo que no pueden encontrar modelos y patrones que les permita predecir comportamientos; los clientes demandan servicios de valor añadido porque quieren que su entidad financiera les ofrezca los mismos servicios inteligentes que ya ofrecen hoy día las plataformas web 3.0: redes sociales, mensajería, correo electrónico, etc.

III. ORIGINALIDAD DE LA TESIS

La cuenta inteligente y los servicios innovadores de valor añadido que se le ofrecen al cliente provocará una revolución en el sector financiero dando origen a lo que se conoce como Bank Berging 3.0: los clientes demandan una transformación digital en los servicios financieros que reciben de su banco y reclaman poder interactuar con sus productos y cuentas tal y como lo hacen con los servicios más novedosos de las plataformas más populares de Internet.

La originalidad de esta tesis doctoral se basa en los siguientes cuatro apartados:

A. Interacción mediante la voz del cliente

El cliente podrá interactuar mediante lenguaje natural con los servicios innovadores de valor añadido que le ofrece la cuenta inteligente; la forma más natural de comunicación entre las personas es el lenguaje y es el medio de interacción con el que un cliente se siente más cómodo (no hay otro mejor, por muy cuidada que resulte la interfaz de la aplicación).

Coger el dispositivo móvil, activar un solo clic para iniciar la conversación con el software - bot’, que conoce al cliente a la perfección y poder realizar preguntas o llevar a cabo acciones con la forma de expresarse al cliente, va a suponer una auténtica revolución en el sector financiero. Resulta importante hacer hincapié en que, sea cual sea el nivel cultural del cliente, su dominio del vocabulario y su forma de expresión, el servicio inteligente se adaptará y tendrá la capacidad de responderle adecuadamente y realizar las acciones que le solicite al cliente. En ningún caso será necesario indicar frases predefinidas para realizar una tarea concreta; una misma acción podrá ser invocada de múltiples formas de expresión según la propia idiosincrasia del cliente.
A continuación, se indican algunos ejemplos de preguntas y acciones que podrá realizar el cliente:

- ¿cuánto pagaré en mi recibo de agua el próximo trimestre?
- ¿cuánto gastaré en restaurantes de mi localidad durante las vacaciones en Semana Santa?
- ¿cuánto gasto en gasolina durante el verano?
- ¿cuánto me subirá el recibo de luz el próximo año?
- ¿cuántos gastaré en gas, ¿es mucho o poco?
- ¿cuántos pagarán mis vecinos en luz?
- ¿cuánto pagaré de gas el próximo invierno?
- ¿cuántos pagaré de gas el próximo invierno?
- quiero solicitar una tarjeta de crédito para mi hija que se va al extranjero a estudiar durante un año.

El sector bancario está muy exigido por la regulación y se deben cumplir estrictas medidas de seguridad en cuanto a la ley de protección de datos; el consentimiento del cliente autorizando cada una de las operaciones o consultas quedará grabado, a modo de prueba o verificación. Esto implica otra ventaja importante, se reduce la burocracia de tener que firmar muchos documentos o enviarlos a la oficina. Con una frase como “si doy mi consentimiento” será suficiente ser suficiente para que el servicio inteligente quede autorizado a realizar la operación o la consulta sobre la cuenta del cliente. Esta forma de funcionar, provocará otra revolución en el sector financiero.

Por su puesto, el cliente también podrá interactuar con los servicios inteligentes a través de la interfaz de la tradicional aplicación, pero lo realmente original y novedoso es poder hacerlo manteniendo una conversación en lenguaje natural: no hay botones, ni opciones que marcar, ni campos que rellenar, simplemente se debe mantener una conversación, con el nivel de expresión habitual del cliente.

B. Predecir gastos y descubiertos

La cuenta inteligente ofrecerá al cliente un servicio de predicción de gastos sin ninguna restricción de temporalidad con el objetivo de anticiparle, de forma precisa, los cargos que ocurrirán en su cuenta en un futuro. Esta predicción permitirá al cliente una mejor toma de decisiones en su día a día y le dará una potente herramienta revolucionaria para analizar su comportamiento y poder modificarlo en función de las predicciones que reciba. Conocer de forma anticipada los gastos, repercute en una mejor salud financiera del cliente; mejora la calidad de vida, permite ahorrar y vivir el invierno con mayor confort en el hogar.

Una vez conocida la fecha en la que ocurrirá el descubierto, el cliente ya puede tomar la decisión de cuándo es más adecuado aumentar el saldo de aquella cuenta y evitar una situación que le puede acarrear incomodidad por la pérdida del servicio e incluso algún recargo.

C. Comparar gastos con perfiles similares anonimizados

Dotar al cliente de una herramienta que le permita tener un indicador o referencia de cómo son los gastos que genera su unidad familiar provocará una auténtica revolución en el sector financiero. Que el cliente pueda preguntar con su propia forma de expresión, en lenguaje natural, si el gasto de luz trimestral es adecuado o no, le dará una potente herramienta que le permitirá analizar su comportamiento y en caso necesario, corregirlo.

En la actualidad, ningún banco ofrece este servicio y habitualmente es demandado, de forma indirecta, por cualquier ciudadano/a. Siempre que se recibe un gasto derivado del consumo del hogar (luz, agua o gas), nos genera cierta incertidumbre de si esa cantidad es similar a la de un cliente con similares condiciones y características. Disponer de este indicador, modificará los comportamientos de los clientes, homogeneizando los gastos con los de perfiles similares y por tanto, mejorando la salud financiera del cliente. Este indicador puede alertar al cliente de comportamientos inadecuados en el consumo de los servicios del hogar, detectar que se ha contratado una potencia del servicio que no es similar a la de sus vecinos o incluso posibles errores en la facturación que se le está aplicando al cliente. Todo ello, da un impulso para una optimización adecuada del uso de los servicios de consumo del hogar y por tanto una mejor salud financiera.

El cliente podrá utilizar este servicio inteligente, mediante lenguaje natural para preguntar cómo son sus gastos con respecto a los de sus semejantes. El servicio inteligente, responderá cuál es la mediana de gastos para perfiles similares y...
si el cliente está gastando una mayor o menor cantidad en un servicio de consumo del hogar concreto. Veamos dos ejemplos:

Ejemplos de situaciones innovadoras de ese servicio son los siguientes:

- ¿Es adecuado lo que estoy gastando en luz en lo que llevamos de invierno? El servicio responderá, analizando lo que llevan gastado perfiles similares, indicando si el gasto del cliente está por encima o es inferior a la media de sus perfiles similares.

- ¿En verano, ¿cuánto he gastado más de agua que mis vecinos?; el servicio analizará el gasto de agua de sus vecinos, que tengan un perfil similar, hallará la media aritmética de todos y la comparará con el gasto del cliente.

D. Recomendar productos financieros personalizados

Entre los servicios inteligentes de valor añadido que se ofrecen al cliente con esta cuenta inteligente aparece la recomendación de productos financieros personalizados y diseñados a la medida del cliente; el banco conoce perfectamente los movimientos del cliente y que productos se adecuán a sus necesidades. Este servicio de recomendación inteligente está disponible en las dos siguientes modalidades:

1: Recomendación a petición del cliente: Hasta el momento, el departamento de Marketing de la Entidad únicamente ofrecía dos o tres productos anuales para todos sus clientes, siguiendo una estrategia horizontal, sin tener en cuenta las características propias de cada cliente. Con este servicio de cuenta inteligente, el cliente podrá solicitar, mediante lenguaje natural, productos financieros a medida que mejoren su salud financiera. Veamos dos ejemplos:

- ‘Quiero invertir en un fondo de inversión, ¿qué nivel de riesgo me recomendarías?’

- ‘Según mi actividad económica, qué modalidad de crédito me recomiendas: ¿fin de mes o aplazado?’

2: Recomendación automática: de forma proactiva, el servicio de recomendación inteligente tendrá la capacidad de detectar situaciones que pueden perjudicar al cliente y diseñar un producto financiero personalizado para evitarlo. Este servicio revolucionará el sector financiero porque conseguirá la satisfacción del cliente. Cuanto más precisos y ergonómicos sean los productos recomendados al cliente, mejor será su salud financiera. En la actualidad, la Banca no dispone de este servicio, siendo totalmente reactivos y en la mayoría de los casos la recomendación llega cuando previamente el cliente ha solicitado información o ha transmitido la situación que le perjudica. Disponer de un sistema de recomendación automático que tiene la capacidad de predecir una situación desfavorable para el cliente y proporcionar una solución que la evite o le genere mayor beneficio, tendrá como consecuencia, un gran impacto en el sector financiero. Veamos dos ejemplos de este servicio:

- ‘Un cliente con ingresos y gastos equilibrados mensualmente, únicamente dispone de tarjeta de débito; el servicio inteligente le recomendará una tarjeta de crédito, con una cuantía de crédito ajustada a sus necesidades’

- ‘El cliente dispone de un fondo de inversión que ha comenzado a bajar su interés y se preve que continue el descenso; el sistema le recomendará cambiar de fondo de inversión y además, le indicará cuál es el más adecuado para él en ese momento’.

IV. METODOLOGIA

Esta tesis doctoral se está desarrollando siguiendo una metodología Agile para conseguir los dos siguientes objetivos:

1: Realizar entregas rápidas y continuas: el proyecto de cuenta inteligente se ha dividido en pequeñas partes que tienen que completarse y entregarse cada dos semanas; se define un trabajo concreto y asumible en ese espacio temporal concreto. El feedback con el tutor resulta mucho más eficiente acotando las tareas.

2: Dotarlo de flexibilidad ante los cambios: a medida que se avanza en el desarrollo y se va obteniendo inferencia del conocimiento oculto en los datos de los clientes, puede ocurrir que cualquiera de los servicios inteligentes sufra modificaciones. Tener que modificar no supone un paso atrás, sino que cualquier nuevo requisito será bienvenido para tratar de mejorar los servicios inteligentes a modelar.

Cada dos semanas se vuelven a diseñar las nuevas tareas a realizar en el siguiente periodo, volviendo a incorporar las que no se hayan podido realizar o estuviesen bloqueadas por algún factor externo. Esta forma de trabajar está resultando bastante productiva y eficiente, porque cada dos semanas se conoce de antemano qué tareas estarán desarrolladas y al estar perfectamente acotadas, se puede verificar rápidamente su desarrollo y ejecución.

V. PLAN DE TRABAJO

El desarrollo de esta tesis doctoral comenzó en Noviembre de 2017 y el plan de trabajo diseñado es el siguiente:

1. Disponer de la base de datos de los clientes

Se ha partido de una base de datos de una entidad financiera de la República Checa que en 2012 publicó datos financieros de clientes anonimizados. La base de datos contiene datos de 1.700 clientes entre los años 1992 y 1998. La base de datos cuenta con las siguientes cinco tablas:
Clientes: Id del cliente, sexo, fecha nacimiento y distrito al que pertenece.

Cuentas: Id de la cuenta, id del cliente al que pertenece, fecha de alta y frecuencia de acceso. Un cliente únicamente pertenece a una cuenta.

Tarjetas: Id tarjeta, fecha de alta, cuenta a la que está asociada y tipo de tarjeta (classic, gold o junior). Un cliente como máximo tiene una sola tarjeta; hay clientes sin tarjeta.

Préstamos: Id préstamo, cuenta a la que está asociado el préstamo, fecha alta, cantidad total, número meses y cantidad mensual de pago. Un cliente como máximo tiene un solo préstamo; hay clientes sin préstamo.

Transacciones: Id transacción, cuenta sobre la que se realiza la transacción, fecha, si es periódica o no, si es cargo o abono, cantidad de la transacción y motivo de la transacción. Un cliente tiene asociadas ‘n’ transacciones.

2. Componer una única tabla

Con el objetivo de utilizar los datos en herramientas de Machine Learning, se ha compuesto una única tabla que contenga toda la información de la base de datos financiera. Cada fila de esta única tabla está compuesta de las 5 siguientes partes: Cliente, Cuenta, Tarjeta, Préstamo y Transacción. La relación entre Cliente, Cuenta, Tarjeta y Préstamo es 1:1, y la relación entre Cliente y Transacción es 1:n, por tanto, por cada transacción asociada al cliente, se repetirán las cuatro primeras partes (cliente, cuenta, tarjeta y préstamo).

3. Revisar y limpiar ‘ruído’

Tras una revisión exhaustiva, se han encontrado datos que no aportan valor y se han eliminado. Concretamente, se han encontrado transacciones, de tipo cargo en cuenta, asociadas a distintos clientes con una cuantía de 0 €; dado que no aportan valor, se han eliminado dichas transacciones.

4. Definir objetivos

Los objetivos que se pretenden conseguir con el desarrollo de esta tesis son los siguientes:

- **4.1:** predecir los gastos de consumo del hogar (lug, agua, gas)
- **4.2:** comparar gastos de consumo con perfiles similares anonimizados.
- **4.3:** recomendar productos financieros a medida personalizados que mejoren su salud financiera.

5. Análisis descriptivo de la base de datos

Se ha realizado un análisis estadístico y descriptivo de la base de datos para descubrir correlaciones entre las variables y analizar la viabilidad de la base de datos para solucionar el problema propuesto. En primer lugar se realizó un análisis univariable para tener información de cada una de ellas y a continuación un análisis bivariable comparando las variables de gastos de consumo a predecir con el resto de variables. El resultado de este análisis descriptivo concluye que sí es viable conseguir los objetivos propuestos con los datos disponibles.

6. Generar y validar modelos

Mediante la herramienta de software libre Weka se están aplicando distintos algoritmos para comprobar cuál se comporta mejor y obtiene una mayor correlación entre variables. A partir del resultado de estos algoritmos, se generarán y validarán los modelos que nos permitirán predecir gastos de consumo del hogar para cada cliente. Los modelos generados también ayudarán a conocer la situación financiera del cliente para recomendar productos personalizados y comparar gastos con los perfiles similares anonimizados.

7. Elegir el modelo más adecuado

Comparar los resultado obtenidos en cada modelo y elegir aquel que presente mejores prestaciones para conseguir cumplir los objetivos propuestos.

8. Tratamiento lenguaje natural

Diseñar el software adecuado para permitir al cliente interactuar con la cuenta inteligente mediante lenguaje natural en los dos sentidos: cliente – aplicación y viceversa.

9. Conclusiones

Comprobar si se cumple la hipótesis de partida y las conclusiones sobre el grado de certidumbre en las predicciones realizadas, la afinidad en la comparación de gastos y la adecuación de los productos financieros a medida recomendados.

VI. Conclusiones

El desarrollo de esta tesis doctoral tendrá un gran impacto en el sector financiero y la Sociedad y más concretamente, en sus clientes, mejorando su salud financiera, satisfacción y por tanto su fidelización en la entidad. En la actualidad, ningún banco ofrece a sus clientes predicción de gastos, indicadores de comportamientos o recomendación de productos personalizados que les aporten un mayor beneficio, en tiempo real y que todo ello, lo puedan hacer mediante una conversación con su teléfono móvil, sea cual sea su forma de expresarse. Por otro lado, esta tesis también tendrá un gran impacto en la comunidad científica ya que hasta el momento, por la propia idiosincrasia de las entidades financieras, que no liberaban sus datos, no proliferan las investigaciones sobre predicción de gastos, analizadores de comportamientos ni recomendaciones de productos financieros personalizados. Esta tesis doctoral permitirá cambiar la relación tradicional del cliente con su banco, suponiendo un importante hito en la Sociedad.
Abstract—Global Climate Models (GCMs) are the main tool to predict the future evolution of the atmosphere at different time scales, from weather forecast (for the next few days) to climate change projections (where the forcing effect of greenhouse gases drives future climate trend projections for the next few decades). The main limitation of GCMs is their limited spatial resolution (hundreds of kilometers for climate change applications). A number of statistical downscaling techniques have been proposed in the last two decades to increase the resolution of these predictions taking into account the relationships between model outputs and local observations of the variables of interest. Besides the classical approaches based on (generalized) linear regression or analogs, a number of machine learning approaches have been applied to this problem. However, there is general consensus that only limited added value is obtained with these techniques when jointly considering model performance, interpretability and parsimony. In this Thesis we analyze the potential of deep learning in this field, which is yet unexplored. In particular, we analyze the promising properties of convolutional neural networks using as benchmark a recent intercomparison experiment of over 50 statistical downscaling methods over Europe (VALUE initiative, http://www.value-cost.eu). Some promising results are reported for a first illustrative example (precipitation occurrence), showing that these models automatically handle redundancy and perform geographical and variable selection/transformation of predictors in a robust and spatially consistent form. The relevance of this new approach is discussed in the context of a number of international initiatives where this Thesis will contribute.

Index Terms—climate change, statistical downscaling, deep learning, convolutional neural networks

I. INTRODUCTION

Global Climate Models (GCM) are key tools to simulate and predict the evolution of the climate system by numerically solving the physical equations governing its different components (atmosphere, hydrosphere, cryosphere, lithosphere) and the interactions among them [1], [2]. These models are solved over a 3D grid discretizing the globe (latitude, longitude, and height) and provide information for a large number of climatic variables, with typical spatial and temporal resolutions of hundreds of kilometers and days, respectively. GCMs are crucial for studying the future evolution of the climate and for assessing the impacts of climate change under different socio-economic emission scenarios (different plausible evolutions of concentrations of greenhouse gases in the atmosphere). For instance, politicians have recently adopted mitigation climate measures in the historical 2015 Paris agreement based on the assessment provided by the Intergubernamental Panel on Climate Change (IPCC) [3], which builds mainly on GCM projections for the present century [4].

One of the main practical limitations of GCMs is that they do not solve regional to local processes due to its coarse resolution, specially in areas where local phenomena are relevant (e.g., coastal areas and/or complex topography regions). Regional and local climate information is crucial to determine the effects of climate change in different impact areas, such as hydrology, agriculture and energy production. In order to bridge this gap, a number of statistical downscaling (SD) [1] techniques have been developed during the last two decades building on empirical relationships established between informative large-scale atmospheric variables provided by GCMs (predictors, e.g., humidity or temperature at different atmospheric height levels) and observational records of the variables of interest at regional/station scale (predictands). These relationships are learned using simultaneous daily records for predictors (normally obtained from a retrospective forecast dataset) and observational variables for a (~ 30 years) historical period (more details in [2], [5]). To generate future regional projections, the statistical models learned in a historical period are then applied to (the predictors from) future GCM projections. This poses a number of methodological issues that are analyzed in detail in Section II.

Besides the classical SD techniques based on linear approaches (e.g., generalized linear models) or non-parametric techniques (e.g., analogs) [6], a number of sophisticated machine learning techniques have been applied to this problem. For instance, the first applications of neural networks are dated back in the late 90s [7], [8]. The problems related to nonconvexity, time-consuming learning, and overfitting drove attention to alternative machine learning approaches, such as support vector machines (SVMs) [9] or random forests [10], [11]. However, there is general consensus that no method clearly outperforms the others and, in general, only limited added value is obtained with nonlinear techniques in the context of climate change when considering model performance, interpretability and parsimony [7], [12], [13], [14].
Machine learning is currently a very active research area, boosted by the major deep learning (DL) breakthroughs in the field of neural networks (see [15] and references therein). Deep learning extracts high-level feature representations in a hierarchical way due to its (deep) layered-structure whose unit elements (neurons) are connected by adjustable weights. Different combinations of convolutions, auto-encoders and/or classic fully-connected layers allow to model a variety of problems in several disciplines. Moreover, new efficient learning methods (e.g. batch, stochastic, and mini-batch gradient descent), regularization options (e.g. dropout), and frameworks (e.g. TensorFlow) allow to efficiently learn these models from (big) data, avoiding overfitting. However, finding the adequate topology for a particular problem is still a challenging step. Particularly in computer vision, deep learning has outstanded against other machine learning techniques with a specific topology called deep convolutional neural network (CNN). CNN was first introduced in [16], appeared as a neural network specially designed for regular grid-structure inputs such as images (2D). The characteristic of CNN is that the parameters convolutes over the 2D map, exploiting the spatial structure and resulting into fewer parameters than traditional neural networks. Thus, the layers consists in a set of neurons spatially arranged called maps or filters that represents the spatial distribution of a particular feature learned by the net. The deeper the network, the more complex the features are in the filter maps.

Deep learning is a very active topic in many communities, such as bioinformatics [17]. In the case of meteorology and climate, there are only a few applications of deep learning such as the estimation of cyclone’s intensity [18], the detection of extreme weather events [19] or a first approach for downscaling [20], among others. The latter establishes an analogy between images and atmospheric fields to generate super-resolution precipitation images and set the path for the application of deep CNN in statistical downscaling.

In this Thesis we will undertake a comprehensive analysis of deep learning for statistical downscaling of climate change projections, analyzing the adequacy of different components and topologies for this problem and assessing the underlying assumptions and methodological issues required for a robust applications of deep CNN in this field. We also analyze the replicability and explicability of results in order to gain confidence in these techniques, which are currently seen as black-box methods by the climate community. We will build and contribute to standard experimental frameworks and international initiatives focusing on statistical downscaling (e.g. IPCC, VALUE [21] and CORDEX [22]) and use as benchmarks the state-of-the-art methods developed therein. In particular, we will consider a recent intercomparison experiment of over 50 statistical downscaling methods over Europe developed in the framework of the VALUE initiative, which constitutes the largest to date intercomparison of statistical downscaling methods [6]. This approach will maximize the diffusion and impact of the results of this Thesis.

II. HYPOTHESIS AND METHODOLOGY

Statistical downscaling methods have to fulfill three assumptions in a climate change context in order to provide plausible results and to avoid statistical artifacts [1]:

1) Explanation of local variability: The methods should explain a large fraction of local variability in order to provide an informative link between the large scale (predictors) and the local scale (predictands). Besides the choice of the downscaling technique, the selection of informative predictors over suitable geographical domains plays a key role here in order to convey the appropriate large scale information to downscale the variable of interest (e.g. precipitation or temperature). This assumption is assessed using a variety of validation metrics, which measure (directly or indirectly) the percentage of local variability explained by the downscaling method. In this Thesis we will build on the previous work done in the VALUE initiative for the validation of statistical downscaling methods [21].

2) Selection of robust predictors: Since the downscaling methods are trained in a historical period using predictors from a retrospective GCM forecast (and simultaneous observations) and then applied to predictors from different GCM future projections, it is required that the predictors are realistically simulated by the different GCMs in present/historical climate. Therefore, suitable predictors for climate change studies typically restrict to large scale variables (such as pressure, wind components, temperature and humidity) at different heights (e.g. 850 and 500 mb, corresponding approximately to 1500 and 5000 meter above sea level, respectively). Surface variables (apart from sea level pressure or surface temperature) are commonly not used as predictors, since they strongly depend on the particular topography/resolution used by the GCM.

3) Extrapolation capability: This is a key requirement for SD methods, since the future climate change signal may be artificially biases otherwise. Therefore, the structure of the statistical downscaling method should provide extrapolation capabilities to future climates. This implies that the predictors used are credibly projected into the future by the GCM and that the statistical downscaling method can extrapolate out-of-sample records. Therefore, good cross-validation performance is a necessary but not sufficient requirement, since the values of predictors in future climates can be far away from the historical climate. Additional cross-validation experiments with pseudo-observations (using future model predictions as observations, since observations of the future climate are not available) have been suggested for this task and will be used in this Thesis [21].

As a consequence of these requirements, predictors must be carefully selected (both the particular variables and the geographical region of influence) in order to obtain credible results. Atmospheric predictors are very redundant and the
same event can be driven by completely different physical processes depending on the region. As a consequence, identifying the adequate informative predictors—both the variables and the geographical regions of influence—for a certain task (e.g., downscaling precipitation) is a major challenge in statistical downscaling. For instance, this problem was reported in the largest to date intercomparison of standard SD methods performed in the VALUE initiative (http://www.value-cost.eu) as one of the most time-consuming tasks in most of the cases. Predictor selection was typically undertaken applying tedious feature selection (e.g., stepwise algorithm) and/or feature reduction (e.g., principal component analysis) techniques [6]. Moreover, when considering large continental domains (Europe in VALUE) most of the methods tackle the predictor selection task by subdividing Europe in 8 regions (see Figure 1), which hinders transferability to other domains.

In principle, machine learning techniques could help with these problems, allowing to develop automatic SD methods based on the available data, building on automatic feature selection approaches. In particular deep learning and in particular CNNs seem to be ideal candidates for this problem since convolutional layers could deal with the problem of selecting informative geographical regions for each predictand (e.g. location), whereas fully-connected layers could model potential nonlinearities connecting large and local scales. In Section IV we show some first results indicating the suitability of CNNs for this purpose.

Another disadvantage of statistical downscaling is that is very dependent on both the quality and quantity of data, in order to infer reliable models. This poses serious problems for downscaling in regions that lack of data, such as the Antarctica or Africa. Traditionally in these cases dynamical downscaling is preferred (see [22] for a review), due to the incapacity to infer the parameters of a statistical model. In this Thesis we will try to address this issue by using the concept of transfer learning, present in multi-task neural networks [23].

For downscaling problems, transfer learning can be interpreted as a way to answer the following question: can information of a certain region be useful to downscale climate in another place on the planet? Transfer learning has been successfully applied in other fields, such as natural language processing [24] and computer vision [25]. Furthermore, we believe that the ability to simultaneously downscale to various locations will result in more spatially coherent downscaling, very important in impact studies.

Fortunately, new sophisticated software and computation sources have been developed in order to easy the implementation of deep neural networks, permitting the construction of versatile and complex architectures. In particular, we will use the package TensorFlow [ref], which facilitates the solid implementation of CNNs using the most relevant deep learning advances. Among them, we can construct deep neural networks with novel optimisation algorithms (e.g. Adam algorithm or Adagrad algorithm), different kinds of weight initializations (e.g. He’s initialization or Xavier initialization), various activation functions (e.g. sigmoidal classification and ReLu activations), new regularization techniques (e.g. dropout), and pre-build complex hidden layers (e.g. convolutional layers). In this Thesis we will focus in deep CNNs, which builds on different parameters: kernel size, pooling, padding and number of filter maps. We will explore the effects of these parameters of convolutional layers as well as other deep learning advances in order to analyse the applicability of deep learning in statistical downscaling.

III. Objectives and Workplan

This Thesis is devoted to the study and application of deep neural networks for statistical downscaling in the context of climate change, building on the intercomparison framework developed in the VALUE initiative [21]. The main objective is developing a CNN-based downscaling method which solves some of the outstanding open problems of statistical downscaling: 1) faces curse of dimensionality and automatically feature select/transform the predictors, 2) exploits the spatial structure, 3) operates over continental-sized domains, 4) is able to extrapolate the results to “unseen” regions by transfer learning and 5) quantifies the uncertainty of the predictions. In order to accomplish this objective we designed the following workplan.

A. Complementary academic formation (Months 1 - 6)

The first task to accomplish has been achieving and adequate complementary formation in machine learning and the new advances in deep learning. This has been done using standard texts (e.g. [26], [27]), and attending to special courses and workshops. Moreover, an extensive bibliographic search was conducted in order to get an up-to-date overview of the field, and the published references on machine learning applications to statistical downscaling. From this search we conclude that the topic is yet unexplored (there is a single general publication on this topic, [20]) and, therefore, the
Thesis can be a significant and timely contribution to this field (see Section V).

B. Deep learning for statistical downscaling (Months 6 - 30)

This task is the core of the Thesis and consists in exploring the deep learning developments in a statistical downscaling context building on TensorFlow. We focus in CNN due to their suitability to deal with spatial inputs (atmospheric fields in this case). However, many different kinds of CNN architectures can be found in the literature, ranging from only convolutional layers to a combination of convolutional, autoencoders and dense layers. Exploring these configurations and understanding its influence on different validation metrics (e.g., temporal and spatial metrics, metrics related to extreme weather events) will be the main topic along the first part of the Thesis. To date we have explored the effects of CNN parameters such as the kernel size, whether to add padding or not (i.e., the filter map has the same resolution than the original map) and whether to incorporate pooling (i.e., a parameter highlighting the presence or not a certain parameter). Furthermore, as we are particularly interested in spatial metrics and the spatial consistency of the climate fields, we pay special attention to multi-task architectures rather than single-task. Thus, during this task we will also evaluate the benefits of multi-task architectures over single-task according to spatial metrics. In the end, the objective will be to come with a particular deep learning net that justifies its architecture based on its ability to handle predictor information and on the benefits obtained from transfer learning. Some first results have been already obtained in this task, corresponding to a simple illustrative classification example (precipitation occurrence, wether it has rained or not) used to analyze and understand the role of the different layers and elements in the downscaling process. This work is described in Section IV, which shows promising results to handle predictor redundancy and irrelevancy automatically.

C. Quantifying uncertainty (Months 18 - 30)

Bayesian neural networks have existed since the late 80’s [28]. However their intractability in many neural network topologies along with a damage in the performance with respect to non-Bayesian neural networks [29], prevented from a widespread use of these models. Recently, Bayesian deep learning has simplified these problems by simply leaning on dropout [30]. Dropout consists in giving every neuron of the neural net a certain probability to exist in a particular step of the training process. Thus, at every new epoch a new subset of the original net is trained. This randomness generates distributions of predicted values that carry the uncertainty information. Dropout is easily implemented by TensorFlow and will basically consist in adding dropout to the deep learning architecture found to solve SD tasks.

D. Model Explanation (24 - 30 months)

The climate community is reluctant to black-box machine learning methods due to the inability to explain the results. Therefore, in this Thesis we analyze model explicability of deep learning in statistical downscaling, trying to understand what elements are key for the different components and layers of the model, and which factors influence the performance of the model when compared to benchmark methods. We will examine the physical interpretation (relative to the problem under study) of the different hidden layers, For instance, in Section IV we analyze a simple example that allows for a interpretability of the convolutional layers. Thus, we will try to understand the physics underlying the coupling of large and local scales, as learned by the deep neural network model. For instance, precipitation is driven by different processes in the Mediterranean and in North Europe, but are these physical processes captured as patterns responsible of the improvement of the downscaling with respect to benchmark models?

E. Divulgation and contribution to international initiatives (Months 24 - 36)

The results of this Thesis will be published in artificial intelligence and climate journals and conferences, such as Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), Neural Information Processing Systems (NIPS) and Climate Informatics (CI). In fact, the results described in Section IV have been already submitted to the Climate Informatics congress that will take place in September in Colorado. Moreover, in order to maximize the diffusion and
visibility of this work, (see Section V). Finally, the submission of the Thesis is planned for mid 2020.

IV. FIRST RESULTS

In this section we describe the first results obtained during the first year of the realization of the Thesis. We have explored different deep learning topologies and have obtained a particular CNN configuration able to shed light and respond to the objectives described in the previous section for a simple statistical downscaling case-study corresponding to a classification problem: downsampling the occurrence of precipitation. In particular we consider the experimental framework of the first VALUE intercomparison experiment, consisting on downsampling over 86 stations located over Europe (Figure 1). As benchmark we use one of the best performing models participating in this experiment, based on Generalized Linear Models (GLM), in particular logistic regression for this case [6].

The topology of deep learning architectures vary depending on the task to be solved. According to the objectives described in Section III, the configuration for this problem should automatically handle the selection of predictors, dealing with the typical redundancy and irrelevancy properties of atmospheric predictors. In particular to this study we have used the following redundant set: the specific humidity at 850 and 700 hPa, the temperature at 850 and 700 hPa, and the geopotential height at 1000, 850 and 500 hPa. In order to address the latter and find an adequate configuration, we have tested a combination of convolutional layers with dense layers (see Figure 2). The output layer has 86 neurons, one for each station of Figure 1. For this case-study, an only-convolutional configuration (i.e., excluding the last fully connected layers) achieves higher validation scores and provides more interpretability with respect to unraveling the implicit geographical feature selection for this simple example. However, the search has not been limited to define whether the net should be partially or totally convolutional, and the number of filter maps in the last layer has been found to be crucial for the performance. Performance suffers from the curse of dimensionality and thus the addition of unnecessary filter maps to the neural architecture harms the statistical significance of the model. This is specially relevant if they are added in the last layer directly having an impact in the space’s size where there is the boundary layer separating rainy from non-rainy days. As a consequence, reducing the number of filter maps to 1 in the last layer has shown better performance than with a bigger number of filter maps (e.g., 10), demonstrating that only 1 filter map is necessary to this simple case. In this only 1 filter map architecture, the CNN filters the information coming from the original predictors retaining a pattern that best downscales the precipitation and representing it spatially in its third layer, generating a new novel super-predictor. By this way, the CNN feature selects/transforms the original predictors into only 1. But does CNN also perform a domain feature-selection? In Figure 3 we observe the coefficient’s values linking the third layer with the output layer for a) Madrid and b) Helsinki. It is interesting that the CNN automatically finds the area influencing the local climate for a particular station, from its surrounding geographical region, ignoring the rest of the continental domain.

The resulting CNN shows better performance than the considered state-of-the-art benchmark method (GLM), in terms of a standard validation measure: Relative Operating Characteristics Skill Score (ROCSS), which is a standard accuracy measure for probabilistic predictions of binary variables. In Figure 4 we observe the ROCSS as a function of the a) training epochs and b) stations for three different configurations of deep learning models and for the benchmark (GLM). We observe how the deep CNN with only 1 feature map in its last layer and with no fully connected layers after the convolutions achieves the best results. In particular, it is remarkable how deep learning models have achieved considerably higher results than the benchmark model, which additionally required a tedious pre-analysis of the predictors.

V. RELEVANCE

Statistical downscaling is an important problem in the context of climate change, since it allows to transfer the global information of GCMs to the regional and local scales needed in impact studies. There are a number of important international initiatives which focus on this problem, including the IPCC (Intergubernamental Panel on Climate Change, [4]) and CORDEX (COordinated Regional climate Downscaling EXPERiment, [22]). Also, at a national level, the Spanish National Adaptation Plan (PNACC) provides regional climate change information for Spain building, among others, on statistical downscaling methods (see http://escenarios.adaptecca.es). At an international level, one of the main limitations of statistical downscaling methods is that they need to be applied at a global level, considering continental domains. As we have seen in the previous sections, state-of-the-art statistical downscaling methods cannot operate automatically and require human intervention to define suitable geographical regions, predictors, etc. CNNs may provide an alternative to circumvent these problems and may contribute to these initiatives providing downscaled results with global coverage. The Thesis will be performed in the framework of these initiatives, which will sever as ideal platforms for the dissemination of results. At
a national level, one of the main limitations of statistical downscaling methods is that they do not provide spatially consistent results. CNNs could also circumvent this problem, thus contributing to a better provision of regional climate change information for impact studies in Spain.

ACKNOWLEDGMENTS

Funding was provided by the project MULTI-SDM (CGL2015-66583-R, MINECO/FEDER).

REFERENCES

Fig. 4. Results (ROCSS) of the different downscaling models as a function of (a) the epochs (train/test results are indicated by solid/dashed lines; the dots indicate early stopping) and (b) the stations for the trained models, with stations sorted according to the GLM results. The deep learning models have 1 filter map in the third hidden layer (CNN1) or 10 filter maps (CNN10).
Cost-effective Techniques for Patient Positioning in Percutaneous Radiotherapy Using Optical Imaging Systems

Hamid Sarmadi
Artificial Vision Applications Group
IMIBIC
Córdoba, Spain
hamid.sarmadi@imibic.org

Abstract—Patient positioning is an important task in radiation therapy the prevents healthy tissue to be radiate with dangerous electromagnetic waves. There are already different systems that assist precise patient positioning however they expose the patient to extra radiations, are not accurate enough, or are to expensive for the average hospital in Spain. In this thesis we want to verify the possibility of creating a system based on recently developed computer vision algorithms and RGBD sensors that is affordable and at the same time accurate for the purpose of patient positioning.

Keywords—radiotherapy; radiation therapy; computer vision; depth sensor; rgbd sensor; patient positioning; pose estimation

I. THESIS INFORMATION

Contact Information:
hamid.sarmadi@imibic.org

Thesis Directors:
Rafael Muñoz-Salinas, Rafael Medina-Carnicer

University Department:
Departamento de Informática y Analisis Numérico
Universidad de Córdoba
Córdoba, Spain

Starting Date:
April 2017

II. SUMMARY AND RELEVANCE

Percutaneous radiotherapy is done by focusing an electromagnetic wave at the tumor or the target tissue in the body. It has two main phases. First, the planning phase in which normally a CT scan, PET scan or MRI are done to determine the exact position of the target tissue in the patient’s body and acquiring a 3D model. Second, the treatment phase, where there are normally multiple session and in each one the patients needs to be positioned in the exact same pose in which the initial scans are done. Then with the help of the initial scans the exact position of the target area in the body is determined and is treated with an electromagnetic beam.

There could always be errors in positioning patient in the exact pose as in the initial scan and that there also could be movements in the internal organs. These can cause the radiation of healthy tissue in radiation therapy which begs for accurate validation systems for patient positioning. Furthermore, recently, new methods such as intensity modulated radiation therapy (IMRT) that can achieve high precision and volumetric modulated arc therapy (VMAT) which can reduce the time of radiation have been created that put extra reliance on precises positioning of the patient.

There are already high precision patient positioning methods. One example works using X-ray imaging to determine the bone structure at the time of treatment in two dimensional. Then the digitally reconstructed radiograph (DRR) from CT scans obtained in the planning phase are manually aligned with the 2D X-ray image to estimate the position of the tumor [6]. This method however puts the patient under extra radiation for each session of the therapy and is not very accurate. Another X-ray based approach is computed tomography cone beam (CBCT). This method is more accurate since it creates a 3D reconstruction of the bone structure by rotating a cone beam around the patient and combining its images. The 3D bone reconstruction then is compared to the CT scan. Though more accurate, the method still uses X-ray which puts healthy tissue under dangerous radiation. Further more it has a high cost.

Other radiation-less methods have been introduced. In [7] a method based on orthogonal video sequences is proposed. The videos are aligned with reference images to estimate the pose. This technique has been used for the treatment of head and neck area [8]. In another type of approach reflective markers in conjunction with infrared cameras have been utilized [9]. Reflective markers are placed in pre-know positions on patient’s body and multiple infrared cameras are used to determine the 3D position of each marker and hence estimate the pose of the patient. However, this technique can only estimate the pose of the markers and not the whole surface of the body. In more recent years, 3D reconstruction has gained more popularity. One method is to project a beam of laser on the patient’s body and using the images taken with calibrated cameras reconstruct the 3D surface of the body. This has been applied for rectal cancer [10] prostate cancer [11] patients. By project 2D random patterns instead of a one dimensional beam [12] it is possible to have a real time 3D reconstruction of patient’s position. This system can also be use to give the patient feedback regarding the accuracy of their position during

This thesis is funded under the project IFI16/00033 (ISCIII) from Spain.
the radiation therapy [1]. This type of method could obtain a high precision [2].

More specifically CATALYST [1,2] and ALIGNRT [3] are two industrial level approaches where the visual 3D scan of the patient is matched with the CT scan done in the planning phase for verification of the patient’s position. These methods, however, have a high cost for the average hospital in Spain.

On the other hand, in the field of computer vision, improvements have been done in human pose estimation using a single view (monocular) or multiple cameras. M. J. Marín-Jiménez from our group has published multiple methods for monocular human pose estimation in collaboration with Oxford University and ETH Zurich [13-15]. These methods are based on appearance based detectors and pictorial structures [16] probabilistic model of human poses. There are also multi-view approaches. One variance of them is to extend single view methods to multiple cameras and use the extra 3D information to improve the pose estimation. There have been publications from our group also in this area [17,18]. In [5] the pictorial structures is extended to three dimensions and random forest based detectors have been used as fast appearance models. They can obtain good results in pose estimation of football players. Marker-less motion capture algorithms are another class of methods that work based on a pre-known model of the subject to be tracked [19,20]. Our group has also experience in the field of marker-less motion capture [21,22]. Most recently over the counter depth cameras have been used for the purpose of 3D human pose estimation [23]. These are similar to the already mentioned CATALYST and ALIGNRT systems with the difference that they utilize projected patterns with visible light whereas normally depth cameras such as Microsoft Kinect use the infrared light hence they would not pose limitations on environment lighting for example in the radiation therapy treatment room.

In this thesis, we intend to verify the possibility of obtaining an affordable visual based patient positioning system that combines advanced computer vision approaches with consumer level depth sensors and cameras with acceptable precision. Our hypothesis is that we can use recent advances in computer vision algorithms in the fields of 3D reconstruction and human pose estimation combined with recently commercialized affordable sensors to create a patient positioning system for radiation therapy. The current technologies do not use the latest algorithms and are also expensive. We suspect that it is possible to create an affordable patient positioning system with our approach to the problem. More precisely our goals in this thesis are:

1- Designing a portable computer vision based portable patient positioning system for radiation therapy.

2- Incorporating 3D reconstruction algorithms in conjunction with the new affordable consumer level 3D sensors in the system.

3- Employing human pose estimation and/or marker-less motion capture algorithms to help determine the precise position of the target.

A. Designing a portable computer vision based portable patient positioning system

Radiation therapy room normally have ceilings where it is possible to install specialized equipment and wiring. In systems such as CATALYST and ALIGNRT the 3D scanners need to be installed in special positions on the ceiling so that they do not interfere with other equipment. Even after installation they need to be calibrated in a slow process by a specialized person.

We intend to design a system that could be easily installed and detached from the room and could be calibrated quickly and easily. This will facilitate moving the system from one hospital to another hospital, and reduce the installation and maintenance costs.

We would use affordable consumer level 3D cameras similar to Microsoft Kinect that in addition to being a 3D scanner provide us with high resolution color images which could help significantly in the task of 3D reconstruction and pose estimation compared to using only depth sensors. Furthermore such cameras make it possible to to calibrate the system in a short amount of time. In our group, a fast calibration algorithm using fiducial planar markers has been already developed [4] and is included in the well-known OpenCV computer vision library. We would use the same type of fiducial markers and attach them to the stretcher where the patient is positioned, visible to the cameras for the purpose of fast calibration.

B. Incorporating 3D reconstruction algorithms in conjunction with the new affordable consumer level 3D sensors

In the past few years after the release of the initial Kinect sensor, which is the combination of a color digital camera and a depth sensor i.e. RGB-D, new computer vision algorithms have been developed for 3D reconstruction that take advantage of the depth data or both depth and image data at the same time, notably starting with the KinectFusion algorithm. While there have been a lot of improvements in these algorithms for different types of scenes the accuracy of reconstruction is still not as good for raw usage in our patient positioning system. We would like to get help from the visual information that comes from the color camera and other techniques to improve upon the existing algorithms and make a 3D reconstruction system that is fast but also accurate and suitable for the application we have in mind.

C. Employing human pose estimation and/or marker-less motion capture algorithms to help determine the precise position of the target

Pictorial Structures is one of the most successful human pose estimation algorithms that is normally used in single view scenarios. However, this method is normally useful for pose estimation of humans that are standing. Recently, there have been developments in expanding this algorithm to combine information from multi-views [5]. Our group has experience with this type of algorithm.

Additionally we intend to build upon the current human motion capture algorithms that is developed in our group. We would extend them by incorporating the extra 3D information that we get from the sensors. This technique requires a model of the human to start its tracking. Using the 3D model that could be obtained from the initial scan in the planning phase of the treatment (e.g. CT scan, MRI, etc.) can help the motion capture algorithm significantly.

Normally, marker-less motion capture systems rely on inferring 3D information from the multiple view normal cameras. We think that we can improve the algorithm by additionally taking advantage of the depth information from the RGB-D sensors, in both initialization of the pose and tracking.
of the pose. More specifically in the tracking phase, it would be possible to track non-rigid deformations of the body accurately with the help of the depth sensor. For example, consider the up and down movement of the chest that happens with respiration. It would be of high advantage for accuracy if we were able to track the deformable surface of the chest.

III. METHODOLOGY AND WORK PLAN

A. Designing a Portable Imaging system

The first step in doing the thesis is to design a self-calibrating imaging system that could be easily ported and is sufficiently accurate at the same time. In the past few years depth sensors that take advantage of structured active lighting to estimate a distance image for the devices have been commercialized for the purpose of entertainment (e.g. Microsoft Kinect) and research. These are affordable devices that normally project an infrared random pattern on the environment and calculate the depth for the pixels of their infrared camera by triangulation. Not using visible light - unlike what is done in CATALYST and ALIGNRT – removes the need for special considerations with regard to lighting of the indoor environment. Furthermore, easy calibration procedure removes the need of specialized personal for installation and facilitates transferring the system between rooms or other hospitals.

For this purpose we have done a research for automatic pose estimation and calibration of a multi-camera system with respect to a set of ArUco markers. ArUco markers are visual fiducial markers that can be easily attached to flat surfaces and work as a reference in the 3D environment. This system is able to estimate the pose of the ArUco markers with respect to each other, estimate the relative pose of the cameras with respect to each other and also track the relative pose for estimating the 3D surface of the patient. We are intending to design an algorithm that could effectively combine the dense information that comes from the depth cameras with sparse information that comes from planar markers or feature points in the color camera for accurate tracking of the cameras and reconstruction of patient’s body surface.

B. Incorporating Human Pose Estimation

The second phase of this thesis would be to use the accurate imaging system that is designed in the first phase and give its output to a human pose estimation system. Human pose estimation can determine the skeletal pose of the patient from the color image or the depth image. In order to be able to estimate the human pose accurately we need to adapt existing algorithms so that they can take our surface reconstruction as input. We are not aware of any system in patient positioning that incorporates human pose estimation.

After that we need to use the information from our pose estimator and combine it with the 3D model from patient’s CT scan. This is needed to model patient’s inside organs and predict their position in the 3D space. Therefore, second milestone in this phase would be high accuracy boundary estimation of the area in the body that needs to be treated with radiation therapy.

REFERENCES

Modelo de evaluación de la usabilidad de entornos web basado en las metodologías de computing with words y design thinking. Caso de uso en entornos virtuales de aprendizaje

Noe Zermeño*, Rosana Montes* and Francisco Herrera*
*Andalusian Research Institute on Data Science and Computational Intelligence, DaSCI
Universidad de Granada, Granada, Spain
Emails: nzermo@correo.ugr.es, rosana@ugr.es, herrera@decsai.ugr.es

Abstract—Con el incremento en el uso de internet, diversos servicios están haciendo uso de la nube, tal es el caso de la difusión de información, contratación o venta de productos y servicios, además de plataformas de gestión para el aprendizaje en línea. Es necesario crear sistemas informáticos que garanticen el acceso total del contenido digital para cubrir las necesidades del colectivo de personas, independientemente de las capacidades o discapacidades con las que ellas cuenten. La evaluación de los sistemas informáticos mediante estándares dictados por el World Wide Web Consortium (W3C) implica la selección de una herramienta de validación del nivel de accesibilidad. Al existir una vasta cantidad de herramientas se debe considerar aquella que satisfaga un conjunto de criterios determinados por los administradores de los Learning Management System (LMS), esto para garantizar el acceso a la información. Así mismo, la usabilidad se puede evaluar a través de técnicas que midan la interacción persona-ordenador (HCI, por sus siglas en inglés). Por lo tanto, se incorpora Design Thinking que es una disciplina que centra las necesidades del usuario en el diseño del sistema informático. Debido a que para los humanos es mas sencillo ofrecer su opinión en lenguaje natural, se incorporan procesos de computación con palabras. La utilización de modelos de representación lingüística como Intuitionistic Fuzzy Sets y 2-Tuple Linguistic permite la obtención y agregación de las opiniones, resultando una etiqueta lingüística con el grado de usabilidad y accesibilidad de sistema evaluado.

I. INTRODUCCIÓN

Para poder evaluar los sistemas de información, es preciso utilizar alguna metodología como lo es la Interacción Persona-Ordenador (HCI, por sus siglas en inglés). HCI engloba cuatro disciplinas: el Graphic Interface User (GUI), el Interaction Design (IxD), la Usabilidad y Experiencia del Usuario (UX, por sus siglas en inglés).

Derivado de GUI, se encuentra Design Thinking (DT). DT es una disciplina usada actualmente para procesos de innovación y emprendimiento debido a que centra su eficacia en entender y solucionar a las necesidades de los usuarios. Además DT incorpora UX, que evalúa la percepción positiva o negativa entre la interacción de los usuarios con determinados servicios, productos o dispositivos [1].

Se evalúa la usabilidad del sistema software, que es la medida en la que el sistema se puede usar por determinados usuarios para conseguir objetivos específicos con efectividad, eficiencia y satisfacción en un contexto de uso especificado [2]. Determinar en qué medida un sistema informático como las páginas web o los Learning Management System (LMS) son usables se ha convertido en prioritario para empresas, por lo que la evaluación de los sistemas debe centrarse principalmente en las necesidades de los usuarios en términos de usabilidad y accesibilidad.

Puesto que la usabilidad abarca la accesibilidad, nos interesa evaluar la primera. Existen diversas técnicas para la evaluación de la usabilidad, entre este conjunto se hace uso de: (1) Indagación (Checklist), (2) Inspección (FocusGroup, Cuestionarios) y (3) Test (Medidas de Rendimiento). Cabe destacar que la técnica más utilizada actualmente como instrumento de recogida de datos, por coste y facilidad, son los cuestionarios. Además existen instrumentos estándares en la evaluación de la satisfacción del usuario tales como: Questionnaire for User Interface Satisfaction (QUIS) [3], Software Usability Measurement Inventory (SUMI) [4], Website Analysis and Measurement Inventory (WAMMI) Questionnaire [5], Scale Usability System (SUS) [6] y Net Promoter Score (NPS) [7].

Los atributos de la usabilidad tales como: aprendizaje, eficiencia, memorabilidad, manejo de errores y satisfacción, se enfocan en las apreciaciones de tienen los usuarios ante los sistemas, por lo tanto se requiere de instrumentos específicos que recolecten opiniones objetivas y/o lingüísticas.

II. HIPÓTESIS DE PARTIDA

Existen trabajos que evaluan la usabilidad de los sistemas de información desde diferentes dimensiones [8], [9]. Las evaluaciones se realizarán a través de escalas binarias y Likert. Nuestra propuesta parte del supuesto de la mejora en la interpretabilidad de las opiniones sobre la evaluación de la accesibilidad de los sistemas mediante la toma de decisiones utilizando procesos de Computing with Words y modelos lingüísticos.

Existen otros instrumentos basados en enfoques lingüísticos tales como Computing with Words (CW) [10]–[12] que permiten la evaluación de las opiniones de los usuarios por medio
de procesos CW. Al hacer uso de parábulas o expresiones lingüísticas compuestas, permiten expresar información vaga e imprecisa con mayor flexibilidad que los números [13]. El uso de enfoques lingüísticos es ampliamente usado en modelos de decisión que se asemejan al de la naturaleza humana y que facilitan el proceso de toma de decisiones. Multi Expert Multi Criteria Linguistic Decision Making (MEMCLDM), puede ser empleado para evaluar un conjunto de alternativas con diversos criterios utilizando variables lingüísticas [14]–[17].

Para evaluar la usabilidad hay que conocer las necesidades de todos los usuarios (Diseño Universal del Aprendizaje/DT). Además se debe considerar qué tareas producen emociones negativas y por tanto valoraciones pobres de la usabilidad. Dilucidar la usabilidad de un LMS se hace con el fin de mejorar el sistema, o simplemente de obtener un ranking de LMS. Por ejemplo un A/B testing que emplee el modelo propuesto puede conocer si la activación de un plugin mejora o empeora la usabilidad del sitio atendiendo a la opinión de sus propios usuarios.

III. OBJETIVO GENERAL

El objetivo de este trabajo de investigación es desarrollar un modelo lingüístico de toma de decisiones para la evaluación de la usabilidad con soporte en software con licencia libre. Su aplicación facilitará procesos de evaluación de la usabilidad y accesibilidad de Moodle 2.x y 3.x, por medio de información cualitativa y cuantitativa en contextos heterogéneos.

1) Objetivos específicos:

1) Determinar los factores de accesibilidad de sistema web.
2) Resolver el problema MEMCLDM mediante procesos de CW al combinar técnicas de inspección, indagación, test para la evaluación de usabilidad y evaluación del nivel de accesibilidad.
3) Desarrollar un software que aplique el modelo lingüístico de evaluación de usabilidad en Moodle 2.x y 3.x.

IV. METODOLOGÍA Y PLAN DE TRABAJO

La presente investigación aborda problema MEMCLDM a través de un enfoque de CW. El análisis y desarrollo se hace mediante DT y la representación lingüística de 2-tuplas para la resolución del MEMCLDM con información vaga e imprecisa mediante etiquetas lingüísticas.

Esta investigación cuenta con un enfoque mixto:

- **Cualitativo**: datos resultantes de test usabilidad, NPS y evaluación de accesibilidad web.
- **Cuantitativo**: obtenidos a través de Checklist que se aplican a Focus Group y cuestionario SUS.

La metodología se inicia con un análisis teórico–metodológico de los proyectos de investigación sobre evaluaciones de usabilidad en las bases de datos principales (Scopus y Web of Science). Se analizan y discriminan las investigaciones sobre usabilidad y accesibilidad en sistemas web y se acotan los resultados a aquellos que trabajan con problemas multicriterio.

- **Fase Comprender, Observar**: Esta fase se realiza con la utilización de la técnica Focus Group en la Universidad de Guadalajara (UdG) en Guadalajara, Jalisco, México, donde la actividad es mediante la realización de actividades en Moodle1 definidas en un primer Checklist. Estas actividades serán realizadas por diferentes tipos de usuarios lo cuales se diversifican desde la técnica role playing. Para medir la tasa de éxito, pensamientos y satisfacción de los usuarios ante la realización de estas actividades se usan técnicas tales como:

1) **Feedback Capture Grid (FCG)**: Se utiliza para facilitar la captura en tiempo real de la retroalimentación de cada momento en los que se anticipa la interacción entre el presentador y el crítico. Ayuda a ser sistemático sobre la retroalimentación, y más intencional sobre la captura de pensamientos en los cuatro diferentes sectores.

2) **Customer Journey Map (CJM)**: Es una herramienta de DT que nos permite mostrar en un mapa cada una de las fases, interacciones, vías y elementos por los que pasa el usuario de un punto a otro de la actividad.

Se considera la técnica de rol playing involucrando 3 datos: (1) características con las que cuentan los usuarios que hacen uso de los LMS; (2) necesidades para acceder correcta y totalmente a la información y (3) emociones en el que el usuario se encuentra al momento de utilizar un sistema, con la finalidad de abarcar una diversidad de usuarios formando una 4-tupla (tipo, necesidad, emoción, valoración).

- **Fase Definir**: En esta fase se determina la herramienta de evaluación de accesibilidad a través de valoraciones de expertos utilizando procesos de CW y Conjuntos Intuvoicistas Difusos (IFS, por sus siglas en inglés) propuestos por Atanassov en 1986 [18]. Estas herramienta de evaluación de accesibilidad web se valoran a través de nueve criterios: (1) Facilidad de aprendizaje, (2) Ámbito de aplicación, (3) Evaluación de elementos de visualización, (4) Nivel de accesibilidad, (5) Precisión, (6) Evaluación CSS, (7) Informes, (8) Intuitividad y, (9) Salida estandarizada. Para la consideración de un formato de salida estandar, se tienen cuenta tres finalidades:

1) Obtener de manera automática el nivel de accesibilidad web (A, AA, AAA) del LMS en un campo de texto.
2) Enlistar los criterios que faltan para lograr con satis-facción el nivel superior consecutivo de accesibilidad
3) Calcular el promedio entre 0 y 100 del nivel de accesibilidad web del LMS.

- **Fase Idear**: En esta fase se realiza el análisis de lo que se observó en el Focus Group. Se cuenta con información de diferente índole. Para concretizar las ideas obtenidas se usa una herramienta llamada Point of View la cual sintetiza en una frase lo que realmente necesita el usuario y porque lo necesita. Posteriormente con la información

1www.moodle.cunorte.udg.mx
se define el MEMCLDM problema y se selecciona las métricas que serán utilizadas para su solución.

El uso de técnicas tales como Test usabilidad, cuestionarios (SUS, NPS, Instrumento 1) y un Checklist resultante de la observación del Focus Group. Al finalizar se procede diseño del modelo lingüístico. La finalidad es resolver un problema MEMCLDM el cual recibe como entradas las valoraciones de los criterios definidos en la etapa anterior.

- **Fase Prototipar:** En esta fase ya se encuentra definido el modelo lingüístico y se desarrolla un prototipo para la evaluación de la usabilidad y accesibilidad web. Este prototipo es un sistema web que debe ser usable y accesible en sí mismo.

- **Fase Testear:** En esta fase se realiza la evaluación de la usabilidad y accesibilidad mediante el sistema desarrollado. El Checklist se diseñó con los resultados de la aplicación en el primer Focus Group. Es esta etapa se utilizan dos Focus Group, el primero en el Centro Universitario del Norte de la UdeG (México) y el segundo en usuarios de la Universidad de Granada (UGR, España) mediante la plataforma LMS Prado. La evaluación de las opiniones emitidas por los expertos en usabilidad se hace a través de la representación lingüística de 2-tuplas introducida por Herrera [19].

La utilización de A/B testing en esta fase se considera importante. La evaluación de los usuarios en la interfaz gráfica mediante esta herramienta da como resultado que el sistema sea de un nivel adecuado. La aplicación de la encuesta SUS, NPS e I1 en esta etapa describe la satisfacción de los usuarios en el sistema de evaluación. En caso de que los resultados no sean favorables, se realiza un proceso iterativo en esta fase hasta lograr un resultado positivo.

- **Fase Implementación:** En esta fase el sistema de evaluación tiene resultados positivos y es usable y accesible en sí mismo. Se implementa en plataformas LMS de Moodle versión 2.x y 3.x siguiendo el lineamiento que Moodle.org detalla para el desarrollo de módulos.

V. RELEVANCIA

Los puntos a destacar del presente trabajo de investigación son los siguientes:

1) Permitirá mejorar la evaluación de la usabilidad de los sistemas informáticos mediante la incorporación de Modelos Lingüísticos para la gestión eficaz de la información cualitativa. Los Modelos Lingüísticos utilizan un lenguaje aproximado al razonamiento de las personas para ayudar en la toma de decisiones del evaluador, debido a que es posible que el evaluador no esté seguro de su valoración, o es difícil hacer valoraciones precisas o cualitativas.

2) Este proyecto de investigación basado en DT pone al usuario en el centro del diseño, lo que “permite captar en mayor medida las necesidades de todo usuario del LMS.

3) Se contemplan las diferentes emociones que tienen los usuarios para identificar puntualmente las actividades que desatan emociones negativas. Debido a este tipo de emociones, se evalúa negativamente la usabilidad de los sistemas informáticos.

4) Se desarrollará un complemento (plugin) con licencia libre para el LMS Moodle. Este complemento incorporará: valoración de usabilidad y un método automático para evaluación de la accesibilidad web con la finalidad de validar el acceso a la información a personas con diferentes discapacidades.

5) Por último, no es necesario un experto en usabilidad. El LMS es evaluado por el grupo de personas que utilizan los sistemas, por lo tanto se promueve una reducción significativa de costes.

REFERENCES

Modelo Lingüístico Difuso de Evaluación de la Calidad de la Formación Superior en Entornos Metodológicos de Flipped Classroom y M-learning

Doctorando: Jeovani M. Morales Nieto, Directores: Francisco Herrera and Rosana Montes
Andalusian Research Institute on Data Science and Computational Intelligence, DaSCI.
Universidad de Granada
Granada, España
Email: jeovani@correo.ugr.es, herrera@decsai.ugr.es, rosana@ugr.es

Abstract—En la educación actual la colaboración e interacción para el desarrollo de actividades mediante el uso de la tecnología y dispositivos móviles, así como la satisfacción del estudiante y la comunicación virtual estudiante-estudiante y estudiante-profesor que se genera al utilizar los dispositivos móviles como herramientas para la educación, son criterios que surgen al integrar metodologías educativas como Flipped Classroom (FC) y M-learning (ML). Estos criterios suelen utilizar métricas que por su naturaleza se representan mejor como información lingüística, por lo que este trabajo propone realizar un modelo lingüístico difuso para la toma de decisiones que permita evaluar la calidad de la formación superior en un entorno con metodologías combinadas, es decir un entorno FC-ML. Integra los criterios de cooperación, colaboración, comunicación virtual y satisfacción del estudiante, denominados criterios FC-ML, a un Sistema de Garantía de Calidad Educativa (SGCE), desarrollado desde la perspectiva de un problema de toma de decisiones lingüísticas multi-experto multi-criterio con un enfoque en computación con palabras. Por otro lado, se propone el desarrollo de un chatbot de Telegram, denominado EDUtrack, que se conectará a un Sistema de Gestión del Aprendizaje (LMS, por sus siglas en inglés) y servirá como medio de comunicación simple bidireccional para la recogida de datos y como apoyo a la evaluación de la calidad educativa.

Index Terms—Modelo Lingüístico Difuso, Garantía de Calidad Educativa, Flipped Classroom, M-Learning, Computing with Words, Evaluación de la Calidad educativa

I. ANTECEDENTES

El concepto de calidad educativa no es fácil de definir, pero en general es el resultado de la interacción entre docentes, estudiantes y los soportes institucionales\(^1\). El objetivo de implementar un Sistema de Garantía de la Calidad Educativa (SGCE) es responder a los cambios educativos para mantener el aseguramiento de la calidad, al mismo tiempo que garantice las cualificaciones de los estudiantes y su experiencia en la educación haciendo hincapié en la creación de vías de aprendizaje flexible y la contemplación de nuevas modalidades de aprendizaje, tales como b-learning.

Así mismo, nuevas metodologías educativas permiten experiencias de aprendizaje, interactivas y colaborativas, entre ellas: Flipped Classroom (FC) y M-learning (ML). FC y ML por separado han resuelto diversas necesidades de la educación actual y se han vuelto tendencia en la investigación educativa. Diversos estudios ofrecen evidencias de la efectividad de FC [1], [8] y ML [2], [12] haciendo principalmente una comparativa con el modelo educativo tradicional mediante datos cuantitativos y analizando solo la aceptación de las metodologías sin presentar un marco teórico estable para la evaluación calidad educativa.

Así como FC y ML por separado se han popularizado, la combinación de estas metodologías, es decir un entorno FC-ML, aún no ha sido muy explorado por la comunidad científica, conforme se acota la búsqueda a la combinación de estas metodologías y al aseguramiento de la calidad los resultados disminuyen considerablemente. Por lo tanto, el docente que busca integrar estas metodologías se enfrenta a un nuevo reto y a las carencias en cuanto a la metodología que debe aplicar, por la poca literatura existente hasta el momento.

En la literatura se han encontrado nuevas formas de evaluar la calidad educativa. Por un lado, favoreciendo la colaboración y la interacción entre estudiante-estudiante, estudiante-profesor y estudiante-contenido, conocidas como las interacciones de Moore [11]. Hadjileontiadou et al. [6], señala que algunos de los factores importantes para evaluar la colaboración y la interacción son: la calidad de la colaboración (QoC), el equilibrio de la actividad colaborativa (BCA) y la calidad de las interacciones (QoI).

Por otro lado, generando nuevas formas de comunicación virtual en comunidades de aprendizaje. El modelo teórico subyacente a la comunidad de aprendizaje es Community of Inquiry (Col) [5]. Según este modelo, en la comunicación que tiene lugar en una comunidad virtual, siempre hay tres estilos de presencia: presencia cognitiva, presencia social y presencia docente.

Es importante señalar que, en este contexto, diversas métricas para evaluar estos criterios no son numéricas sino de naturaleza cualitativa o lingüística, por lo que tienden a ser vagos o de carácter difuso. Computing with Words (CW) es una metodología en la que las palabras se utilizan en lugar de los

\(^1\)http://www.enqa.eu/
números para la computación y el razonamiento [13]. Se ha utilizado como base computacional para resolver problemas de toma de decisión lingüística (LDM, por sus siglas en inglés) [10], este caso en particular se puede abordar como un problema MEMCLDM (Multi-Expert Multi-Criteria Linguistic Decision Making). Multi-experto, donde cada estudiante es un experto, y multi-criterio, donde los criterios FC-ML se evaluarán mediante la opinión o percepción de los estudiantes.

II. HIPÓTESIS DE PARTIDA

La tecnología por sí sola no genera ni provoca creación de conocimientos significativos, es la interacción que tienen los docentes y los estudiantes con la tecnología, así como las metodologías utilizadas para llevar a cabo las actividades correspondientes a los criterios FC-ML. En la literatura se puede encontrar investigaciones que consideran estos criterios como elementos importantes de la educación:

- Jackson [7] analiza diversas muestras de la presencia cognitiva, social y docente en una comunidad mediante diversas herramientas de comunicación.
- Ebrahimpour et al. [4] analiza las percepciones de los estudiantes para la implementación de redes sociales en los programas educativos, con resultados favorables, en particular con la herramienta Telegram.
- Hadjileontiadou et al. [6] describen algunos estudios donde señalan la importancia de la implementación de las tecnologías de la información y comunicación (TIC) y la evaluación de la interacción y la colaboración mediante el uso de LMS en un entorno b-learning con implicaciones de lógica difusa.
- Cudney y Ezzell [3] resaltan las ventajas que aportan FC, ML, redes sociales, aprendizajes colaborativos y el aprendizaje autodirigido a la evaluación de la educación.

Sin embargo, cada uno de estos estudios abordan los criterios por separado, y en su mayoría con una perspectiva no lingüística. La pregunta que se pretende resolver con esta investigación y con que se definen los objetivos a desarrollar es:

¿Se puede usar un modelo lingüístico difuso para evaluar una experiencia educativa cuando se está aplicando un entorno FC-ML?

III. OBJETIVOS

El objetivo general de esta investigación es desarrollar un modelo lingüístico difuso de evaluación de la calidad educativa en un entorno FC-ML que integre los criterios FC-ML en un modelo SGCE para una mejor experiencia educativa. De este objetivo se desprenden 4 objetivos específicos:

1) Adaptar o Extender un modelo SGCE para incorporar nuevas métricas, (véase Fig. 1).
2) Definir la evaluación de la calidad superior como un problema MEMCLDM.
3) Desarrollar una herramienta denominada EDUtrack, que facilite la implementación del modelo, automatizando la extracción de datos de las fuentes del modelo lingüístico.
4) Dotar a EDUtrack de un sistema de detección de estudiantes de fracaso escolar como método de prevención temprana.

<table>
<thead>
<tr>
<th>Métricas de Entrada para el Modelo Lingüístico</th>
<th>Entrada</th>
<th>Métrica</th>
<th>Abreviación</th>
<th>Naturaleza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qol</td>
<td>Núm. de interacciones Estudiante-Estudante.</td>
<td>(Chat-Est-Est)</td>
<td>Numérica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calidad de la interacción Estudiante-Estudante.</td>
<td>(Cl-Est-Est)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Núm. de interacciones Estudiante-Profesor.</td>
<td>(Chat-Est-Prof)</td>
<td>Numérica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calidad de la interacción Estudiante-Profesor.</td>
<td>(Cl-Est-Prof)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Núm. de interacciones Estudiante-Contenido.</td>
<td>(Int-Moodle)</td>
<td>Numérica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calidad de la interacción Estudiante-Contenido.</td>
<td>(Cl-Est-Cont)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td>Col</td>
<td>Cuestionario para comunicación virtual.</td>
<td>(Q-CV)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cuestionario para satisfacción del estudiante.</td>
<td>(Q-SE)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td>QoC</td>
<td>Autopercepción de la evaluación.</td>
<td>(Auto-Eva)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluación de pares por capsula.</td>
<td>(Eva-Par)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td>BCA</td>
<td>Media colaborativa en cada planeta en cada métrica de QoC.</td>
<td>(BCA-Planeta)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td>SRF</td>
<td>Inverso de Calificaciones</td>
<td>(Inv-Cal)</td>
<td>Numérica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asistencia de actividades mediante Prado</td>
<td>(Ast-Act-Prado)</td>
<td>Numérica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valuación temporal de QoC</td>
<td>(QoC-Tmp)</td>
<td>Linguística</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valuación Temporal BCA por planeta.</td>
<td>(BCA-Tmp)</td>
<td>Numérica</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valuación temporal Qol</td>
<td>(Qol-Tmp)</td>
<td>Linguística</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Métricas de los criterios FC-ML, para un entorno FC-ML. Qol: Calidad de la Interacción, Col: Community of Inquiry, QoC: Calidad de la Colaboración, BCA: Equilibrio de la Actividad colaborativa, SRF: Score Risk Factor.

IV. METODOLOGÍA

La propuesta se desarrolla en un entorno FC-ML, el cuál combina las características de las metodologías Flipped Classroom y M-Learning. FC proporciona las bases para que los estudiantes puedan conceptualizar el conocimiento previo a la clase, entregando contenidos y recursos educativos a los estudiantes mediante el uso de las TIC, permitiendo la interacción estudiante-contenido y mejorando así el aprovechamiento del tiempo en el aula. Por su parte ML, aprovecha las bondades de los dispositivos móviles y sus aplicaciones, como Telegram, que es una aplicación de mensajería instantánea, permitiendo tener un mayor acercamiento a los estudiantes gracias a la interacción, colaboración y comunicación virtual que genera entre estudiante-estudiante, y estudiante-profesor. Combinadas permiten del desarrollo de actividades tanto síncronas como...
asíncronas junto con el docente, tanto dentro como fuera del aula, véase Fig. 3.

Se abordará como un problema MEMCLDM (varios expertos, estudiantes y varios criterios, los criterios FC-ML), el cual puede ser explorado mediante CW, asistido por el modelo Personalized Individual Semantics (PIS) [9] y con una representación lingüística 2-tuplas permitiendo resolver problemas LDM de la misma manera que lo hacen los humanos, tratando con información imprecisa, como mediciones inexactas o conocimiento experto disponible en forma de descripciones verbales. Se desarrolla en 5 fases de las cuales las dos primeras ya se realizaron y actualmente se está iniciando la fase 3:

1) **Análisis teórico-metodológico**: Se realizó una revisión de la literatura sobre los modelos y metodologías planteadas, usando bases de datos relevantes (Scopus y Web of Science). Los resultados indican que tanto FC como ML por separado son una tendencia en la investigación educativa, pero combinadas, disminuyen drásticamente los resultados, véase Fig. 2, detectando así una necesidad de investigación en esta área.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flipped Classroom & Education</td>
<td>87</td>
<td>700</td>
<td>1273</td>
<td>103</td>
<td>2,163</td>
</tr>
<tr>
<td>M-Learning & Education</td>
<td>1122</td>
<td>1606</td>
<td>1595</td>
<td>119</td>
<td>4,442</td>
</tr>
<tr>
<td>Flipped Classroom & Education & Evaluation</td>
<td>9</td>
<td>101</td>
<td>156</td>
<td>18</td>
<td>284</td>
</tr>
<tr>
<td>M-Learning & Education & Evaluation</td>
<td>124</td>
<td>203</td>
<td>179</td>
<td>15</td>
<td>521</td>
</tr>
<tr>
<td>Flipped Classroom & M-Learning & Education Quality Assurance</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>M-Learning & Education Quality Assurance</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Flipped Classroom & M-Learning & Education</td>
<td>0</td>
<td>9</td>
<td>19</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Flipped Classroom & M-Learning & Education & Evaluation</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>(B-learning OR Flipped Classroom OR M-Learning) AND Quality Assurance</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Computing with Words AND (Flipped Classroom OR M-Learning)</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Flipped Classroom & M-Learning & Education & Quality Assurance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2. Revisión de la literatura actual para Flipped Classroom, m-learning y garantía de la calidad.

2) **Evaluación preliminar**: Se realizó un primer caso de estudio sin el modelo lingüístico para recogida de datos, en la asignatura de Fundamentos del Software (FS1718) de 1er semestre de Ingeniería en la Universidad de Granada (UGR) en un entorno FC-ML asistido mediante las TIC a través de Prado2. Se dividió la asignatura en pequeños grupos denominados planetas de no más de 10 integrantes y se trabaja con diversas actividades y recursos, véase Fig. 4:

- **Cápsulas**: Consisten en una serie de videos, recursos y una o varias actividades relacionadas a la temática.
- **Meetings**: Reuniones de 30 min aproximadamente en tiempo real con el profesor a través de Telegram.
- **Chats Colaborativos**: Fuera de los meetings el chat será libre para la colaboración entre los estudiantes y la resolución de dudas entre compañeros.
- **Clases magistrales**: Clases presenciales en donde se profundizarán las temáticas con actividades interactivas y colaborativas.

A la par se realizó la validación por juicio de expertos bajo consenso del instrumento de evaluación de comunicación virtual y satisfacción del estudiante en base al modelo CoI mediante números difusos.

3) **Adaptación del modelo lingüístico**: Se adecua un modelo SGCE, con la finalidad de integrar las métricas de los criterios FC-ML, a la evaluación de la calidad de una experiencia educativa FC-ML en un contexto de Educación Superior. Estas métricas por su naturaleza en su mayoría son lingüísticas por lo que se procesaran mediante CW utilizando un modelo de representación lingüística de 2-tuplas y el modelo de Semántica Individual Personalizada (PIS, por sus siglas en inglés).

4) **Diseño del modelo y de EDUtrack**: Se procede al diseño del modelo lingüístico, véase Fig. 4, implementado mediante EDUtrack para resolver un problema MEMCLDM el cual recibirá como entradas las valoraciones de los criterios FC-ML proporcionadas por Prado2 y Telegram, junto con los resultados del cuestionario de evaluación de comunicación virtual y la satisfacción del estudiante.

Score-Risk-Factor (SRF) y Score-Risk-Students (SRS), son métricas que se solicitan mediante EDUtrack, la primera es solicitada por cada alumno e informa del riesgo de fracaso académico, mientras que la segunda es solicitada por el docente para conocer a aquellos estudiantes en riesgo dentro del grupo. Tras el procesamiento se obtendrán 5 valoraciones de salida que permitirán tomar decisiones de forma in-
Con base en lo anterior, esta investigación aportará a la literatura una base para investigaciones futuras en:
- Evaluación de la calidad educativa en entornos FC-ML.
- Integración de los criterios FC-ML para evaluar la calidad educativa superior.
- El uso de modelos lingüísticos difusos para la evaluación de la calidad de la educación superior, mediante CW, como un problema MEMCLDM.

EDUtrack por su parte, utiliza un modelo de comunicación simple pero muy potente, que gracias al uso cotidiano de aplicaciones móviles como Telegram por parte de los estudiantes, se puede implementar de una forma fácil y cómoda.

Cabe destacar que esta propuesta no solo se adecua excluyentemente a entornos FC-ML, puesto que al ser modulares los elementos de entrada se puede evaluar únicamente aquellos que sean útiles en la modalidad y metodología requerida.

Referencias

Modelo de toma de decisiones lingüística a gran escala aplicado a la evaluación de proyectos de ciencia ciudadana

Jeronimo Duran*,†,
Directores: Francisco Herrera*†, Rosana Montes*†
*Universidad de Granada, España.
† Andalusian Research Institute on Data Science and Computational Intelligence, DaSCI
ejeronimoduran@correo.ugr.es
herrera@decsai.ugr.es rosana@ugr.es
Fecha de inicio: Febrero 2018

Abstract—La Ciencia Ciudadana incluye la participación de la ciudadanía en los procesos de un proyecto de investigación. Esta nueva forma de hacer ciencia no puede evaluarse de la forma tradicional, ya que cuenta con diferentes aspectos que no son considerados en los modelos de evaluación tradicionales. Para poder evaluar proyectos de ciencia ciudadana se propone diseñar un modelo basado en la toma de decisiones lingüísticas a gran escala, por lo que se utilizarán expresiones lingüísticas y se incorporará el modelo de representación 2-tuplas para minimizar la pérdida de información en el proceso de toma de decisión, al contemplar a la ciudadanía se considera un gran número de participantes, siendo éste un problema que se puede resolver como Large Scale Group Decision Making.

I. INTRODUCCIÓN

La ciencia cívica [1] fue el primer concepto que incluía a ciudadanos, quienes de manera independiente o con ayuda de científicos diseñaban o implementaban proyectos científicos. La Ciencia Ciudadana (Citizen Science – CS) es definida como toda aquella actividad de investigación científica en la que los ciudadanos participan de forma activa, contribuyendo con recursos propios y conocimiento en diversas etapas del proceso de investigación científica.

Es de gran importancia que un proyecto sea evaluado para medir su desempeño, cuantificar el alcance que ha tenido o identificar si ha cumplido o no con los objetivos propuestos. Al ser la ciudadanía un actor importante en la CS, debe estar involucrado en el proceso de evaluación. Se tiene documentación2 con propuestas de planes de evaluación3 en donde se mencionan aquellos criterios, métricas e instrumentos de evaluación que se sugieren deben tomarse en cuenta al diseñar un plan de evaluación de un proyecto de CS.

La evaluación del un proyecto de CS puede ser abordada como un proceso de toma de decisiones, en donde un grupo de expertos junto con la ciudadanía, elegirán en que medida un proyecto cumple con los indicadores de ciencia ciudadana. Existe una gran variedad de modelos para resolver problemas de toma de decisión [2] en donde su aplicación dependerá de la complejidad del problema, el número de individuos involucrados, los recursos que se tengan disponibles y el resultado que se espera. Al tener en cuenta a la ciudadanía, el número de involucrados en la evaluación es elevado, por lo que el modelo lingüístico de evaluación debe ser resuelto como un Large Scale Group Decision Making (LSGDM).

En la actualidad, las redes sociales son los medios de comunicación mas utilizados, por lo cual debe aprovecharse su alcance como medio de difusión a gran escala [3]. Las redes sociales permiten recolección de datos [4] que después pueden ser analizados y representados mediante varios modelos, dichos modelos cuentan con formatos de salida que pueden ser incorporados al estudio o proceso de investigación.

II. HIPÓTESIS

La hipótesis que planteamos es comprobar que un modelo de evaluación basado en tomas de decisión lingüística a gran escala, centrado en la opinión de los ciudadanos y que incorpore datos de las redes sociales, permitirá determinar de una manera más óptima y desde el punto de vista de los ciudadanos, los objetivos de CS alcanzados.

Basándonos en un conjunto de criterios de evaluación [5], mostrados en la Tabla I, que pueden aplicarse durante la definición inicial del proyecto o en etapas finales, se generarán los indicadores que evaluarán los expertos, que en éste caso serán los ciudadanos; éstos criterios están agrupados en tres dimensiones principales que abarcan aspectos científicos, sociales y de la sociedad4.

Las actividades científicas son comúnmente evaluadas en las etapas de resultados y difusión, y dichas valoraciones

1http://ciencia-ciudadana.es/wp-content/uploads/2017/05/Observatorio
CC2017Webv2.pdf
guia-basica-proyectos-cultura-cientificarevisada.pdf
TABLA 1

<table>
<thead>
<tr>
<th>DIMENSIONES</th>
<th>PROCESO Y VIABILIDAD</th>
<th>RESULTADOS E IMPACTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIENTÍFICA</td>
<td>Objetivos científicos Datos y Sistemas Evaluación y adaptación Cooperación y sinergias</td>
<td>Publicaciones y conocimiento científico Nuevos campos y estructuras de investigación Nuevas fuentes de conocimiento</td>
</tr>
<tr>
<td>PUNTO DE VISTA DE LOS CIUDADANOS</td>
<td>Adecuación al grupo objetivo Grado de implicación Facilitación y comunicación Colaboración y sinergia</td>
<td>Conocimiento y actitudes Comportamiento y propiedad Motivación y compromiso</td>
</tr>
<tr>
<td>SOCIAL-AMBIENTAL-ECONÓMICA</td>
<td>Adecuación al grupo objetivo Implicación activa Colaboración y sinergia</td>
<td>impacto social impacto ambiental Mayor potencial de innovación</td>
</tr>
</tbody>
</table>

Criterios de evaluación de proyectos de ciencia ciudadana.

Son realizadas por expertos o por organismos financiadores. En éstos modelos tradicionales no se tiene contemplada la participación ciudadana. La propuesta se centra en la opinión de los ciudadanos, y sus valoraciones serán obtenidas mediante herramientas de evaluación o redes sociales.

Para la recolección de datos, se proponen las siguientes herramientas: Cuestionarios, Entrevistas, Grupos focales y Observaciones. La elección y el uso de dichas herramientas, dependerá del grado de exploración que se necesita sobre el proyecto y/o el conocimiento previo que se tiene del mismo. En nuestro caso nos centraremos en los cuestionarios, ya que será en ese instrumento en donde las respuestas serán representadas como etiquetas lingüísticas.

Los proyectos de CS difieren en algunos aspectos en sus procesos, con respecto a la forma tradicional de hacer ciencia. Al evaluar la ciencia tradicional, solo se toma en cuenta algunas de sus fases, y éstos indicadores suelen ser cuantitativos. En el modelo propuesto, el proceso de evaluación tratará de abarcar todas las fases del proyecto de CS, y los datos de entrada podrán ser cuantitativos, cualitativos o lingüísticos.

La Computación con palabras (CW) junto con la lógica difusa [6] han demostrado en diversos campos que proporcionan una gran mejora en el proceso de toma de decisiones [7], pues son utilizados para procesar computacionalmente el lenguaje natural. El modelo de evaluación propuesto utilizará las bondades de los modelos lingüísticos para recopilar la opinión de los ciudadanos y poder generar una valoración final expresada en lenguaje natural.

III. OBJETIVOS

El objetivo general es diseñar un modelo de evaluación, utilizando un esquema teórico de toma de decisiones multi-criterio a gran escala, aplicado a proyectos de ciencia ciudadana y asistido por una herramienta que recolecte valoraciones sobre las actividades divulgativas del proyecto.

Los objetivos específicos del proyecto son:

1) Definir una herramienta de evaluación que proporcione el estado actual del proyecto de CS en términos de valoraciones lingüísticas en cada una de sus fases, éstas valoraciones pueden ser antes, durante o al finalizar dichas fases.

2) Definir una aplicación para dispositivos móviles de la cual se obtengan las valoraciones proporcionadas por los ciudadanos sobre las actividades divulgativas del proyecto de CS.

3) Incorporar al modelo de evaluación datos de Twitter como canal de divulgación del proyecto de CS.

IV. METODOLOGÍA

La propuesta del modelo de evaluación basado en toma de decisiones lingüísticas, contempla su aplicación en un proyecto de ciencia ciudadana denominado MonuMAI, el cual consiste en un sistema automático que puede identificar los estilos arquitectónicos de monumentos históricos, apoyada de una aplicación móvil disponible, inicialmente, para los habitantes de la ciudad de Granada. Ésta evaluación incorpora la opinión de los habitantes de Granada como expertos.

El modelo de evaluación lingüístico propuesto consta de tres partes principales, éstas son: recolección de datos, procesamiento de la información y presentación de la información.

Durante el primer año del doctorado se hará un análisis de la bibliografía a utilizar y se diseña un instrumento de evaluación acorde a las dimensiones y criterios propuestos en la Tabla I, éste instrumento puede ser aplicado en cualquiera de las fases del proyecto, éste proceso formará parte de la recolección de datos.

Una vez elaborado el conjunto de ítems, se diseñarán las escalas basadas en etiquetas lingüísticas, con ellas cada uno de los ítems serán evaluados por parte de los expertos. El instrumento puede ser validado por un conjunto de jueces [8] los cuales someterán a consenso la aceptación instrumental diseñado.

En el segundo y parte del tercer año del doctorado, se diseñará una aplicación (denominada APPlauso), y que pueda...
ser usada por los habitantes de la ciudad de Granada involucrados en el proyecto, para recolectar la valoración que tienen los ciudadanos sobre eventos de divulgación. Para la valoración de los eventos de divulgación en la aplicación, se puede utilizar un modelo basado en evaluación parcial de criterios [9], es decir, que los criterios a evaluar pueden cambiar durante el evento de divulgación, ya que se toma en cuenta la preferencia de los asistentes sobre los criterios.

Se diseñará un modelo para recolección de datos de la red social Twitter, que servirá como canal bidireccional de comunicación entre los ciudadanos y los científicos. Cada una de las dimensiones generará datos cuantitativos y cualitativos, en algunos casos se incorporarán datos que se obtengan de Twitter y de la aplicación que se encargará de recopilar las valoraciones de los eventos de divulgación. La aplicación y el canal de comunicación en Twitter, pueden ser usados en conjunto o de forma separada en cualquiera de las fases del proyecto.

Se tiene un gran número de ciudadanos que emitirán su valoración sobre cada uno de los criterios a evaluar, éste panorama será afrontado como un LSGDM, en donde el proceso de consenso se realiza con grupos formados por un gran número de expertos, se tienen una variedad de modelos, los cuales cada uno tiene ciertas características, que dependiendo del escenario son las ventajas o desventajas que presentan [10], se aplicará un modelo de consenso cuyas características se acoplan a las circunstancias que se generen con nuestros grupos de expertos, ya que se pueden tomar en cuenta las preocupaciones y satisfacciones de cada experto [11], o se pueden adecuar acorde a las necesidades que se nos vayan presentando como por ejemplo si se nos llegase a presentar una situación con clusters o grupos variables [12].

Se utilizarán los Hesitant Fuzzy Linguistic Term Sets (HFLTS) [13] para representar información lingüística con incertidumbre, y es compatible con la representación 2-tuplas, que nos ayudará a disminuir la pérdida de información en el proceso de toma de decisión.

Partiendo de la recolección de datos por medio de una herramienta de evaluación previamente definida y validada. Se unificarán para que tengan una representación común y puedan ser computados. Una vez realizado éste proceso se tendrá una base de datos homogénea de expresiones complejas con incertidumbre.

Para resolver el problema lingüístico con las expresiones complejas con incertidumbre surgidas de las evaluaciones de los expertos se realizarán las siguientes fases:
1) Fase de Unificación: Las expresiones lingüísticas generadas de la evaluación de los expertos serán expresados en términos de HFLTS.
2) Fase de Agrupación: Se agregan dos operadores de agrupación simbólica a las evaluaciones generando un intervalo lingüístico.
3) Fase de Explotación: Se crea una relación de preferencia entre las alternativas basado en el intervalo lingüístico del paso anterior. Se aplica un grado de elección para obtener la solución al problema de decisión.

La salida que se obtiene del modelo de representación HFLTS serán un conjunto de expresiones lingüísticas sin incertidumbre y con poca pérdida de información gracias a la incorporación de la representación 2-tuplas en el modelo, éste conjunto de expresiones dará lugar a un score lingüístico que formará parte de la valoración de un indicador.

Éstas valoraciones son proporcionadas por cada uno de los ciudadanos involucrados en el proceso de evaluación. Después se realizarán clusters, que agrupen a los ciudadanos con valoraciones similares.

Durante tercer año, se diseñará un formato de salida que contenga la evaluación final del proyecto de CS, los datos que se mostrarán incluirán los resultados obtenidos por la herramienta de evaluación validada, el análisis de los datos recopilados del canal de comunicación en la red social Twitter y las valoraciones obtenidas por medio de la aplicación APPlauso de los eventos de divulgación.

El desglose de los datos se podrán realizar por etapas, teniendo una valoración parcial de cada una de ellas, con esto los investigadores sabrán cual fue la evolución de la percepción de los ciudadanos a lo largo del proyecto.

Las valoraciones parciales y finales se expresarán en forma lingüística, para que los ciudadanos al acceder a esa información puedan interpretarla fácilmente.

V. RELEVANCIA

La ciencia debe estar al alcance de todos y aquellos proyectos que incluyan a la ciudadanía tiene una gran relevancia. Las bondades que ofrecen los modelos de representación lingüísticos pueden aplicarse en la evaluación de proyectos de CS, pues permiten que los ciudadanos emitan su percepción expresado en lenguaje natural. El modelo que se propone puede extenderse a otras instancias, más allá de la evaluación que el equipo de investigadores realiza en los proyectos a su cargo, es decir que instituciones financiadoras y órganos de gobierno puedan utilizar el modelo y adaptarlo a su necesidades.

REFERENCES

