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Abstract

We propose a method for optimizing the complexity of Radial basis function (RBF) networks. The method involves two procedures:
adaptation (training) and selection. The first procedure adaptively changes the locations and the width of the basis functions and trains the
linear weights. The selection procedure performs the elimination of the redundant basis functions using an objective function based on the
Minimum Description Length (MDL) principle. By iteratively combining these two procedures we achieve a controlled way of training and
modifying RBF networks, which balances accuracy, training time, and complexity of the resulting network. We test the proposed method on
function approximation and classification tasks, and compare it with some other recently proposed methods.q 1998 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Radial basis functions (RBFs) have been subject to exten-
sive research over recent years and have successfully been
employed to various problem domains (e.g. Moody and
Darken, 1989; Lowe, 1989; Girosi et al., 1995; Roy et al.,
1995).

In the original proposal of regularization RBF (Poggio
and Girosi, 1990) the number of basis functions equals the
number of training samples. The basis functions are cen-
tered on the training samples and the only unknown para-
meters are the linear weights which can be determined
efficiently by solving the system of linear equations. How-
ever, the resulting networks are complex and often ill-
conditioned. Generalized RBF networks are designed with
fewer nodes than there are samples in the training set, which
results in less complex networks. However, using such an
approach we somehow have to determine the number of
basis functions, their centers, and their widths. Several dif-
ferent strategies have been proposed in the literature, see
Haykin (1994) for an overview:

1. a set of samples is randomly selected from the training
set and the positions of the centers of the basis functions

are set according to these samples (Lowe, 1989). This
approach can only produce reasonable results when the
training data are distributed in a representative manner;

2. some pre-clustering (grouping) is performed on the train-
ing set (e.g.K-means clustering), and the centers of the
clusters are used as the centers for the basis functions
(Moody and Darken, 1989). Since this clustering is per-
formed without the knowledge of the weights of the out-
put nodes, it is very likely that the selection of the centers
is suboptimal with respect to the accuracy of the final
result;

3. a gradient descent type learning procedure is used to
determine the weights of the output nodes, centers and
the width of the basis functions (Lowe, 1989). Conver-
gence to a global minimum cannot be guaranteed since
the problem is non-linear with respect to the centers and
widths of the basis functions.

All these approaches have various shortcomings. The
common and the most crucial one is that the number of
basis functions has to be given a priori. This is an instance
of the model (order) selection problem. Simply stated, we
would like to find a model as simple as possible that fits a
given data set with sufficient accuracy, and more impor-
tantly, generalizes to unseen data. Many different
approaches have been used, which can be categorized
based on the prevailing aspect of the method as follows.
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Cross validation: many different networks (varying in
complexity) are trained and then tested on an indepen-
dent validation set, or if such a set is not available (i.e.
all data is used for training), one uses methods such as
leave-one-out cross validation (Stone, 1974). These
procedures are computationally very demanding and/
or require additional data withheld from the training
samples.
Complexity criteria: in order to avoid the use of a vali-
dation set and to assess the generalization performance,
various criteria of the form

prediction error¼ training errorþ h complexity term

have been proposed. These include Akaike Information
Criterion (Akaike, 1973), Generalized Prediction Error
(Moody, 1992), Vapnik’s Guaranteed Risk Minimiza-
tion (Vapnik, 1982), Minimum Description Length
(MDL) Principle (Rissanen, 1989), Maximum Pena-
lized Likelihood (Sardo and Kittler, 1996). Also, Baye-
sian methods (MacKay, 1992a,b) for model selection
belong to this category, where the complexity term is
based on the ratio between posterior and prior of the
weight distribution. All these methods require training
of many networks and, therefore, are computationally
demanding.
Regularization: these methods modify the error func-
tion used for training the network, i.e.

error¼ training errorþ l penalty

in order to force smooth mappings (Orr, 1995). These
methods include weight decay (Hinton, 1989; Weigend
et al., 1990), soft weight sharing (Nowlan and Hinton,
1992), curvature driven smoothing (Bishop, 1993), flat
minima search (Hochreiter and Schmidhuber, 1997)
(which is based on the MDL Principle). Closely related
are methods of early stopping and training with noise
(Bishop, 1995). To reduce the size of the network, prun-
ing methods are usually used. In order to find the reg-
ularization parameters either cross-validation or
Bayesian techniques are used. Very often the form of
the penalty term can be derived from prior weight dis-
tributions by Bayesian methods.
Pruning/growing methods: these methods adapt the
structure of the network during training. We can distin-
guish between the constructive methods (e.g. Fritzke,
1994; Fahlman and Lebiere, 1990; Platt, 1991), which
incrementally build the network, and pruning methods
(e.g. Le Cun et al., 1988; Mozer and Smolensky, 1989;
Hassibi and Stork, 1993) which start with a complex
network and remove units and/or weights. Sometimes
pruning and growing methods are also iteratively com-
bined together (Yingwei et al., 1997). These methods
are usually used in conjunction with other methods
mentioned earlier (e.g. Orr, 1995). Pruning and grow-
ing methods are more efficient than cross-validation
techniques; however, they very often make restrictive

assumptions so that the resulting networks are subopti-
mal. Also, evolutionary approaches to the design of
neural networks are in this category (e.g. Whitehead
and Choate, 1995). The basic idea is to use a genetic
algorithm to perform a search on the space of architec-
tures. The main drawback of the evolutionary algo-
rithms is their computational complexity.

Our method can be characterized as a pruning method,
starting with an ‘‘overly complex’’ network and then gra-
dually reducing it, arriving at a simpler one. The way that
we achieve the reduction in the complexity of a network can
be related to the principle of simplicity, which has a long
history in psychology (Gestalt principles), and whose for-
malization led in information theory to the method of Mini-
mum Description Length (MDL) (Rissanen, 1984; Zemel
and Hinton, 1995). According to the MDL principle, those
RBFs are selected from a set of initial RBFs that describe
the training data with the shortest possible encoding. How-
ever, instead of training many networks and then selecting
the best one (according to the MDL principle), we perform
the selection during the training, achieving a computation-
ally efficient procedure.

The structure of this paper is as follows. In Section 2 we
introduce the notations for RBFs and define some quantities
which are required in our algorithm. In Section 3 we derive
the selection mechanism from the MDL. Section 4 explains
how to combine iteratively the training procedure and the
selection procedure to achieve an overall efficient method.
Section 5 presents the results of our algorithm applied to the
problem of approximating functions. We also tested the
method on a well-known example from the medical domain
and compared our results with those recently published.
Section 6 presents a conclusion and outlines avenues for
further research.

2. Network

In order to simplify the notation we use axes-aligned
Gaussian RBF networks with a single linear output unit.1

Let us consider an RBF-network as a function approxi-
mator:

y(x) ¼ w0 þ
∑M
i ¼ 1

wiri(x) ¼ w0 þ
∑M
i ¼ 1

wi e¹ (kx ¹ ci k
2
=s2

i )

¼ w0 þ
∑M
i ¼ 1

wi e¹
∑d

j ¼ 1 [(xj ¹ cji )2=s2
ji ]

(1)
whereci and si are the center and widths of theith basis
function respectively. We train the network to approximate
an unknown functionf given a (possibly noisy) training set
TS¼ { (x(p), f (x(p)))l1 # p # q, x(p), f (x(p)) [ Rd}.

1 The generalization to other basis functions and multiple output units is
straightforward.
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2.1. Adapting the network

Given the number of basis functions, we can train the
whole network by minimizing an error function, e.g. the
usual quadratic error function (Eq. (2))

E¼
∑q

p¼ 1
[f (x(p)) ¹ y(x(p))]2 (2)

Training can be performed with a suitable learning
algorithm, e.g. gradient descent, Levenberg–Marquardt,
Extended Kalman filter, etc. In general, since we also
train the centers and widths of the basis functions, we cannot
expect that a training algorithm will find a global optimal
solution. In our experiments we used gradient descent and
Levenberg–Marquardt optimization methods.

Let us define a few quantities which can be derived from
the network and which we need to evaluate the complexity
of the network in the selection procedure. Given a sample
x (p), the influence of the basis functioni on the network’s
output is just the difference between the output in the pre-
sence of the basis function and the absence of the basis
function:

I (ri(x(p))) ¼ lwiri(x(p))l (3)

Using this measure we can define several other quantities
that we need for the selection procedure. The domain of the
basis function is given by

Ri ¼ { plI (ri(x(p))) . Q} (4)

whereQ is the threshold which defines when we count a
sample to be encoded by the basis function.2 The number of
samples encoded jointly by the basis functionsi and j is
given by

nij ¼ lRi ∩ Rj l (5)

The error associated with a basis function is defined as

yi ¼
∑

p[Ri

[y(x(p)) ¹ f (x(p))]2 ¼
∑

p[Ri

y
(p)
i (6)

and the error in the overlapping area of two basis functions
is given by

yij ¼
∑

p[Ri∩Rj

[y(x(p)) ¹ f (x(p))]2 (7)

One should note that these quantities can easily be calcu-
lated while performing an adaptation step, resulting in
almost no additional computational costs.

3. Selection

In this section, we elaborate on the RBF-selection pro-
cedure which has the task of removing redundant basis

functions by the MDL principle. This involves the design
of an objective function which encompasses the information
about the competing RBF units and the design of an opti-
mization procedure which selects a set of units accordingly.

The task of selection can simply be formulated as:

Given a set of RBF nodes together with their corre-
sponding parameters (centers, widths, weights to output
units) combined inai, and domains {(ai}, Ri) i¼1,M},
select an optimal subset of RBFs {(ap

i , Rp
i )i ¼ 1,nR

}
which comprise the final result such thatnR # M.

The core of the problem is how to define optimality cri-
teria for choosing the ‘‘best’’ network configuration. Intui-
tively, this reduction in the complexity of a representation
coincides with a general notion of simplicity which has a
long history (Leclerc, 1989). The simplicity principle has
been formalized in the framework of information theory.
Shannon (1948) revealed the relation between the prob-
ability theory and the shortest encoding. Further formaliza-
tion of this principle in information theory led to the
principle of MDL (Rissanen, 1983). For a practical applica-
tion, however, it is sufficient to know that the minimum-
length interpretation is valid when we have a coding
language, which does not necessarily have to be binary. In
our case the coding language is given by the RBF-network.

Prior to modeling a function with a network, the function
can only be given by specifying the samples. After building
a network some of the samples, or possibly all of them, can
be described in terms of the network. However, the com-
plexity of a network may vary, i.e. the network may contain
more or less nodes. Let vectormT ¼ [m1, m2, …, mM]
denote a set of RBF nodes, wheremi is a presence-variable
having the value 1 for the presence of a node and 0 for its
absence in the final network, andM is the number of all
initial RBF nodes. The length of encoding of a function
L function can be given as the sum of two terms:

Lfunction(m) ¼ Lsamples(m) þ Lnetwork(m) (8)

Lsamples(m) is the length of encoding of individual samples
that are not described by the network, andLnetwork(m) is the
length of encoding of samples (data) described by the RBF
network. The idea is to select a subset of RBF nodes that
would yield the shortest description length. In other words,
we should tend to maximize the efficiency of the descrip-
tion, defined as

E¼ 1¹
Lfunction(m)
Lsamples(0)

(9)

whereLsamples(0) denotes the length of encoding of the input
data in the absence of the network.

Alternatively, we can define a quantitySwhich represents
the savings in the length of encoding of samples in the
presence of a network3

2 This threshold can be defined either using knowledge about the expected
error, or via the desired quantization of the final result. 3 A similar definition was also proposed by Fua and Hanson (1989).
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S¼ length of encoding of the data in the absence of a
network¹ length of encoding of the data with
a network

¼ Lsamples(0) ¹ Lfunction(m) ð10Þ

The question is how to translate the above equations into our
particular case of an RBF neural network. Remember that
we can identify the following three terms for theith RBF
node in the network:

1. a set of input samplesRi, which activate the RBF node.
They represent the domain of the node and encompass
ni ¼ lRil samples;

2. the set of parameters of the nodeai (location, width,
weights to output units).Ni denotes the cardinality
of this set;

3. the goodness-of-fit measurey i, which gives the differ-
ence between the true values of the function and the
approximations produced by the network over the
domainRi and projected onto theith node.

Analogous to Eq. (8) we can write

Lfunction(m) ¼ K1[nall ¹ n(m)] þ K2y(m) þ K3N(m) (11)

wherenall denotes the number of all sample data points in
the training set andn(m) the number of data points that are
covered by the network i.e.n(m) ¼ l ∪M

i ¼ 1 Ri l (see also
discussion in Section 3.2 which describes how outliers can
be handled).N(m) specifies the number of parameters which
are needed to describe the network andy(m) gives the devia-
tion between the data and the approximation produced by the
network.K1, K2, K3 are weights which can be determined on a
purely information-theoretical basis (in terms of bits), or they
can be adjusted in order to express the preference for a parti-
cular type of description (see Section 3.1).

Now we can state the task as follows: findm̂ such that

Lfunction(m̂) ¼ min
m

Lfunction(m) (12)

Sincenall is constant, minimization of Eq. (11) is equivalent
to maximizing the expression

F(m̂) ¼ max
m

F(m) ¼ K1n(m) ¹ K2y(m) ¹ K3N(m) (13)

This equation supports our intuitive thinking that an encod-
ing is efficient if

• the number of data samples that an RBF encompasses is
large,

• the deviations between the data and the approximation
are low,

• while at the same time the number of network para-
meters is small.

Expanding Eq. (13) in terms of individual basis functions

gives us

F(m̂) ¼ max
m

F(m)

¼ K1(n1m1 þ … þ nMmM)

¹ K2(y1m1 þ … þ yMmM) ¹ K3(N1m1 þ … þ NMmM)

¹ K1(n12m1m2 þ … þ n1Mm1mM þ … þ n(M ¹ 1)Mm(M ¹ 1)mM)

þ K2(y12m1m2 þ y13m1m3 þ … þ y1Mm1mM þ …

þ y(M ¹ 1)Mm(M ¹ 1)mM)

þ K1(n123m1m2m3 þ … þ n(M ¹ 2)(M ¹ 1)Mm(M ¹ 2)m(M ¹ 1)mM)

¹ K2(y123m1m2m3 þ y(M ¹ 2)(M ¹ 1)Mm(M ¹ 2)m(M ¹ 1)mM)…

ð14Þ

If we consider only pairwise overlaps (see also Pentland
(1990)), we can write Eq. (14) more compactly in the fol-
lowing form:4

F(m) ¼

[ m1 … mi … mM ]

c11 … c1i … c1M

: : :

ci1 … cii … ciM

: : :

cM1 … cMi … cMM

266666666664

377777777775

m1

:

mi

:

mM

266666666664

377777777775
ð15Þ

or in short

F(m) ¼ mTCm (16)

The diagonal terms of the matrixC express the cost–benefit
value for a particular basis functioni

cii ¼ K1ni ¹ K2yi ¹ K3Ni (17)

while the off-diagonal terms handle the interaction between
the overlapping basis functions

cij ¼
¹ K1nij þ K2yij

2
(18)

From the computational point of view, it is important to
notice that the matrixC is symmetric, and depending on
the overlap of the basis functions, it can be sparse or banded.
All these properties of the matrixC can be used to reduce
the computations needed to calculate the value ofF(m).

3.1. Parameters in the objective function

There are three parameters (K1, K2, K3) involved in the
computation of the objective function (Eqs. (14) and (15)).

4 Note that we have made use of the fact thatmi [ {0, 1} and therefore
mi ¼ m2

i .
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These parameters are weights which can be determined on a
purely information-theoretical basis (in terms of bits), or
they can be adjusted in order to express the preference for
a particular type of description. In general,K1 is the average
number of bits which are needed to encode a sample when it
is not encoded by the network,K2 is related (as shown
below) to the average number of bits needed to encode a
residual value in the presence of a network, andK3 is the
average cost of encoding a parameter of the network.

Since we are only interested in the relative comparison of
possible descriptions, we can setK1 which weights the
number of data points to 1 and normalizeK2 andK3 relative
to it. If we assume for a moment that the error equals 0,K3

determines the minimum number of samples that a basis
function has to encompass in order to be preferred over a
point-wise description. In our case of axis-aligned basis
functions we can setK3 ¼ 1 if we assume that the data
and the weights are given with the same accuracy (i.e.
they require the same number of bits).

In order to determine the value ofK2, let us suppose that
deviations of the samples from the approximations pro-
duced by the network are modeled as zero-mean Gaussian
noise with variancej2. The length of encoding of a discrete
random (IID) process, i.e. a sequence of random variables
x1, x2, …, xn with the probability distributionp(x) ¼ N(0, j),
finely quantized using intervals of fixed widtht, is deter-
mined as

Ldeviations¼ ¹ log2

∏n

i ¼ 1
p(xi)t

" #

¼ ¹
∑n

i ¼ 1
log2[p(xi)t]

¼ ¹
∑n

i ¼ 1
log2

t������
2p

p
j

exp¹ (1=2)(x2
i =j

2)

 !
ð19Þ

More specifically:

Ldeviations¼ ¹ log2 exp¹ (1=2)
∑n

i ¼ 1(x2
i =j

2)

þ n(log2 j þ 1
2 log2 2p ¹ log2 t) ð20Þ

We estimatej2 ¼ (1=n)
Pn

i ¼ 1 x2
i . The first term on the right

side of Eq. (20) can be expressed as

¹ log2 exp¹ (
∑n

i ¼ 1 x2
i )=2j2

¼

∑n

i ¼ 1
x2

i

2j2 log2 e¼
n
2

log2 e (21)

Eq. (19) can now be written as

Ldeviations¼
n
2

log2 eþ n(log2j þ 1
2 log2 2p ¹ log2 t)

¼ n
log2(j22p e=t2)

2

� �
ð22Þ

The second term in Eq. (17),K2y i ¼ K2nj2, handles the
deviation between the samples and the approximations
produced by the network. By comparing the termK2y i to

Ldeviations(Eq. (22)), we obtain the value forK2:

K2 ¼
log2 (j22p e=t2)

2j2 (23)

Note that the value ofK2 depends on the standard deviation
of the noise distribution and decreases with an increase of
the noise levelj. However, whenj is known to be within a
range of values, we can calculate an approximate value for
K2 and keep it constant for that particular case. Since we
normalize the parameters with respect toK1, we need to
divide the above-obtained valueK2 by the number of bits
needed to specify a training sample. It is also important to
note that the algorithm is stable with respect toK2. The
value of K2 calculated by Eq. (23) should be considered
as an upper bound, and the experiments have shown that
the results stay stable if we use values forK2 which are
smaller than this bound.

3.2. Remarks

Assuming the same cost for each basis function (i.e. the
same prior probability), the cost termNi is a constant.
However, we can incorporate a measure on the required
precision of the parameters as proposed by Hochreiter and
Schmidhuber (1997) in their flat minima search algorithm,
which gives the basis functions that can be specified with
less precision a higher probability of selection. In the case
when we have a network with different types of basis
function (i.e. spherical Gaussian, axes-aligned Gaussians,
etc.), the termNi can be used to reflect the different com-
plexities. The selection procedure, in this case, selects more
complex basis functions only when they result in a shorter
description.

The approximation that we make by considering only
pairwise overlaps of basis functions in Eq. (15) can be
justified by the way that we combine the selection with
the adaptation procedure (see Section 4).

As can be seen from the derivation of the selection pro-
cedure, we also have the possibility to encode a sample
individually and not through the network (e.g. in the case
of an extreme outlier point). To realize this option we need
to restrict the domain of the basis function to data points
which result in bounded errors and to use a training proce-
dure based on robust statistics (e.g. Chen and Jain, 1994;
Liano, 1996).

3.3. Solving the optimization problem

We have formulated the problem in such a way that its
solution corresponds to the global extremum of the objec-
tive function. Maximization of the objective functionF(m)
belongs to the class of combinatorial optimization problems
(quadratic Boolean problem). Since the number of possible
solutions increases exponentially with the size of the
problem, it is usually not tractable to explore them
exhaustively. Thus the exact solution has to be sacrificed
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to obtain a practical one. Various methods have been pro-
posed for finding a ‘‘global extreme’’ of a class of non-linear
objective functions. Among these methods are winner-takes-
all strategy, simulated annealing, microcanonical annealing,
mean field annealing, Hopfield networks, continuation
methods, and genetic algorithms (Cichocki and Unbehauen,
1993). In the experiments reported below we have used both
a winner-takes-all method and a Tabu search algorithm
(Glover and Laguna, 1993) without any significant difference
in the number and parameters of selected basis functions.

4. Adaptation and selection combined in an iterative
scheme

In the previous sections we have explained how we adapt
an RBF network, and how we perform the selection proce-
dure. In this section we combine these two procedures in order
to form a computationally efficient algorithm for RBF-
network design. We now describe the complete algorithm.

(1) Initialization: for each samplex (p) [ TSin the training
set generate a basis functionr p with the centercp ¼ x (p) and
width sip ¼ lcip ¹ cij l/1.25 wherej ¼ arg mink Þ p|cip ¹ cik|.

5

The output weights are set by a regularization algorithm in
order to avoid the ill-conditioning of the matrix inversion.

(2) Adaptation: train ck, sk, andwk for a fixed number of
steps with a training algorithm, e.g. gradient descent, Leven-
berg–Marquardt.6

(3) Selection:

(a) calculateC using Eqs. (17) and (18);
(b) optimizeF(m) with respect tom (Eq. (16));
(c) if mi ¼ 0 remove the basis functioni from the net-
work.

(4) If the selection procedure has not removed any of the
basis functions during the last selection, and the changes of
weights are small, terminate the algorithm, otherwise go to
step (2).

This iterative approach is a very controlled way of remov-
ing redundant basis functions. Since the selection is per-
formed based on the relative competition among RBFs,
only those basis functions are removed that cause a high
error and overlap with other basis functions which better
approximate the data. The basis functions which remain in
the network are then further adapted by the training proce-
dure. To achieve a proper selection it is not necessary to
train the network to convergence at each step. When the
selection procedure is invoked, only those basis functions
are removed where others can compensate for their omis-
sion. If the selection procedure is called too ‘‘early’’, no

basis functions will be removed, causing only additional
computational overhead. On the other hand, if we call the
selection procedure too ‘‘late’’ we are unnecessarily train-
ing some basis functions which will then be removed, again
causing only additional computational overhead. In this
sense, the invocation of the selection procedure is indepen-
dent of the stage of the training and, therefore, it is not
critical when it is called.

Let us illustrate the behavior of the algorithm with a
simple (hand drawn) example. Fig. 1 shows a modified
XORproblem. In the initialization step a basis function is
generated for each sample, Fig. 1(a). Then the basis func-
tions are adapted (in position and widths) by the training
algorithm, and the selection procedure selects one basis
function for each cluster. After further training we obtain
Fig. 1(b). In one further iteration of the algorithm two more
basis functions are eliminated (corresponding to the samples
with output 0, because their influence on the network output
is negligible), Fig. 1(c). After that, no more basis functions
are eliminated. Thus, we end up with a network of two basis
functions which solves this problem.

5. Experimental results

In order to test the proposed method we applied it to the
problem of approximating functions (Orr, 1995), and to a
classification problem from the medical domain which was
recently investigated by RBF-like networks (Roy et al.,
1995).

5.1. Function approximation

The function approximation results were obtained with
the following parameters: the Levenberg–Marquardt algo-
rithm was used for training the network and a winner-takes-
all algorithm for the selection procedure;Q ¼ 0.1,K1 ¼ 1,
andK3 ¼ 1. K2 was calculated using Eq. (23) assumingj ¼

0.1, t ¼ 0.01, and 32-bit accuracy on the training samples,
which resulted inK2 ¼ 16. The same values were used in all
function approximation experiments (though sometimes the
noise level is different, demonstrating the robustness of the
method with respect to variations of this parameter).

The first experiment involved constructing a network for
function approximation; we have used the Hermite poly-
nomial from Orr (1995). The training set consists of 84

5 This initialization ensures that the basis functions are partially overlap-
ping. The constant 1.25 was set such that the activation of neighboring basis
functions is at least 0.2.

6 It is important to note that we do not train the network to convergence,
usually only a few epochs are sufficient, e.g. approx 10 for a steepest
descent method (see following discussion).

Fig. 1. Demonstration of the algorithm on a modifiedXORproblem.
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Fig. 2. Results on Hermite polynomial with superimposed basis functions: "þ " denotes training samples, dashed curve denotes original function, and solid
curve denotes the approximated function. (a) Initialized network; (b) 1st selection; (c) 2nd selection; (d) 3rd selection; (e) 4th selection; (f) final result.
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samples taken from the function with added noise with a
uniform distribution in the range of [¹0.5,þ0.5]. The
selection converged at two basis functions after four selec-
tion steps. Fig. 2 shows the intermediate results during the
run of the algorithm. This figure shows the training samples,
the true function, the approximated function, and the basis
functions currently in the network.

In the second set of experiments we compared our algo-
rithm with the one by Orr (1995). We have used the same
experimental setting: the number of training samples is 40,
and the test set is 200 uniformly spaced noiseless samples in
the range¹ 4 # x # 4. The results are averaged over 100

runs for each of the several different noise levels in the
training data. The randomly chosen 40 training samples in
each run were used to initialize the algorithm. Fig. 3 shows
how the average of the number of selected centers over 100
runs and the root-mean-squared error (of the fit over the test
set) vary with the noise variance.7

As can be seen from the figures, our algorithm is very
robust with respect to the noise level. We consistently end
up on the average with approximately 3.3 basis functions,

Fig. 3. (a) The number of selected centers and (b) the fit error as a function of the noise level (averaged over 100 runs) of our algorithm (solid curve) and
Forward selection of Orr (dotted curve).

7 The results obtained by the algorithm proposed by Orr was read off from
Fig. 4 in Orr (1995).
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whereas the best results reported by Orr are six basis
functions. The higher error for the low noise case can be
attributed to the training algorithm and the fact that we use
less basis functions.

Yingwei et al. (1997) also report on the Hermite poly-
nomial approximation problem. Using a noiseless training
set, their algorithm resulted in seven basis functions, with a
similar approximation error as was reported by Orr (1995).

Fig. 4 shows a result on approximating a function with
two outputsf(z) ¼ [sin(z), cos(z)] T with zero mean Gaussian
noise withj ¼ 0.07. In this case we ended up with four basis
functions after three selection steps. One can hardly see any
difference between the original and the approximated func-
tion (only at the beginning of the function is there a small
deviation).

These results demonstrate that our algorithm is able to
find a good compromise between the number of basis func-
tions and the approximation error.

5.2. Classification

The next example deals with a heart disease diagnosis
task. Roy et al. (1995) have performed an extensive com-
parison of various algorithms on this database. The best
results are achieved with a ‘‘Gaussian Masking (GM)’’
algorithm with a recognition rate of 81.82% with 24 basis
functions. Other RBF networks that were also tested per-
formed considerably worse on this data set. The data set
contains 292 13-dimensional samples, classified in two
classes. We have normalized the features so that they lie
in the range between [0…1]. From this set we randomly
selected 100 times 50% of the samples for training, the
rest was used to test the generalization of the network. This
time we have used gradient descent as the training algorithm
and Tabu search for the selection procedure. The parameters

of our algorithm were set as follows:Q ¼ 0.1,K1 ¼ 1, and
K3 ¼ 1; K2 was set to 1, because the cost of an error in a two-
class classification problem is 1.

Fig. 5 shows the number of selected basis functions as
well as the recognition rate of the algorithm over 100 runs.
On the average we ended up with 15.49 centers with a
standard deviation of 2.14, and a mean recognition rate of
85.98% with a standard deviation of 2.69%.

This result is considerably better in terms of the number
of basis functions, as well as in terms of the recognition rate,
than all previously published results.

6. Conclusion

We presented a method which, starting from an initially
high number of basis functions in an RBF network, through
an iterative procedure of training, and selection, achieves a
compact network. Our approach effectively and systemati-
cally overcomes the problems of how many RBFs to use and
where to place them. We have demonstrated that our
method performs better than some recently published
methods for RBF construction.

The algorithm, which we have presented can also be used
for types of model other than neural networks. Originally, a
very similar algorithm was proposed for parametric models
(i.e. surfaces, lines, circles, etc.) (Leonardis et al., 1995; see
also Stricker and Leonardis (1995)). We have also used a
modified version of the algorithm to compute coefficients of
principal components from noisy images (Leonardis and
Bischof, 1996). This demonstrates that the approach is
quite general and can easily be adapted to other types of
network. For example, we have used almost the same algo-
rithm for multi-layer perceptrons (Bischof and Leonardis,
1998). In addition, we are currently working on adapting the
algorithm for several other networks. This includes Gaussian

Fig. 4. Result of approximating noisyf(z) ¼ [sin(z), cos(z)] T (dotted curve): "þ " denotes training samples and solid curve denotes the approximated function;
the dotted curve is the original function.
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mixture models trained with the EM algorithm and some
unsupervised networks. We are also exploiting the possibility
to use our algorithm for modular neural network design and
networks which use different types of hidden units.

In addition, we have started to develop an incremental
variant of the algorithm where we start with a small number
of training samples and basis functions, and then incremen-
tally add examples and basis functions when needed, while
using the selection procedure to remove the redundant ones.
Since the method proposed in this paper is very general, it is
easy to incorporate all these extensions without changing
the general paradigm.
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