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Abstract

In this contribution, we propose a genetic process to select an appropiate set of features
in a Fuzzy Rule-Based Classification System (FRBCS) and to automatically learn the
whole Data Base definition. An ad-hoc data covering learning method is considered to
obtain the Rule Base. The method uses a multiobjective genetic algorithm in order to
obtain a good balance between accuracy and interpretability.

Keywords: Fuzzy Rule-Based Classification Systems, Data Base, Learning, Multiobjec-
tive Genetic Algorithms

1 Introduction

An FRBCS presents two main components: the Inference System and the Knowledge
Base (KB). The KB is composed of the Rule Base (RB) constituted by the collection of
fuzzy rules, and of the Data Base (DB), containing the membership functions of the fuzzy
partitions associated to the linguistic variables. The composition of the KB of an FRBCS
directly depends on the problem being solved. If there is no expert information about the
problem under solving, an automatic learning process must be used to derive the KB from
examples.

Although, there is a large quantity of RB learning methods proposed in the specialized
literature [3, 4, 10, 15], among others, there is not much information about the way to
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derive the DB and most of these RB learning methods need of the existence of a previous
definition for it. The usual way to proceed involves choosing a number of linguistic terms
(granularity) for each linguistic variable, which is normally the same for all of them, and
building the fuzzy partition by a uniform partitioning of the variable domain into this
number of terms. This operation mode makes the granularity and fuzzy set definitions
have a significant influence on the FRBCS performance.

Moreover, high dimensionality problems present a new trouble to obtain FRBCSs with
good behaviour: the large number of features, that can originate a RB with a high number
of rules, thus presenting a low degree of interpretability and a possible over-fitting. This
problem can be tackled from a double perspective:

¢ Via the compactness and reduction of the rule set, minimising the number of fuzzy
rules included in it.

¢ Via a feature selection process that reduces the number of features used by the
FRBCS.

Rule reduction methods have been formulated using different approaches (Neural
Networks, clustering techniques, orthogonal transformation methods, similarity measures
and Genetic Algorithms). Notice that, for high dimensional problems and problems where
a high number of instances is available, it is difficult for the latter approaches to get small
rule sets, and therefore the system comprehensibility and interpretability may not be as
good as desired. For high dimensionality classification problems, a feature selection pro-
cess, that determines the most relevant variables before or during the FRBCS inductive
learning process, must be considered [2, 19]. It increases the efficiency and accuracy of
the learning and classification stages.

Our objective is to develop a genetic process for feature selection and whole DB learn-
ing (granularity and membership functions for each variable) to obtain FRBCSs composed
of a compact set of comprehensible fuzzy rules with high classification ability. This
method uses a multiobjective GA and considers a simple generation method to derive
the RB.

To carry out this task, this paper is organised as follows. In Section 2, the FRBCS
components will be introduced joint with a brief description of the two main problems
tackled by the learning method proposed, feature selection and DB learning. In Section
3 we will expose the characteristics of our proposal for the FRBCS design. The results
obtained with Sonar data set will be shown in Section 4. In the last section, some conclu-
sions will be pointed out.

2 Preliminaries

2.1 Fuzzy Rule-Based Classification Systems

An FRBCS is an automatic classification system that uses fuzzy rules as knowledge rep-
resentation tool. Two different components are distinguished within it:

1. TheKB, composed of:



e DB, which contains the fuzzy set definitions related to the labels used in
the fuzzy rules. So, the DB components for every variable are the number
of linguistic terms (granularity) and the membership function shape of each
term.

e RB, comprised by a set of fuzzy rules that in this work are considered to have
the following structure:

Ry : If Xyis Ak and... andXy is A% then Y is C; with r*

where X, ..., Xy are features considered in the problem atfd. .., A%

are linguistic labels employed to represent the values of the variables. These
kinds of fuzzy rules represent, in the antecedent part, a subspace of the com-
plete search space by means of a linguistic label for each considered variable
and, in the consequent part, a class laligl) (and a certainty degreeX).

This numerical value indicates the degree of certainty of the classification in
that class for the examples belonging to the fuzzy subspace delimited by the
antecedent part.

2. TheFuzzy Reasoning Method (FRM) an inference procedure which, combining
the information provided by the fuzzy rules related with the example to classify,
determines the class to which it belongs to.

The majority of FRBCSs (see [3, 10] among others) use the classical FRM that clas-
sifies a new example with the consequent of the fuzzy rule having the highest degree of
association. Another family of FRMs that use the information provided by all the rules
compatible with the example (or a subset of them) have been developed [3, 5]. In this
work, we use two different FRMs, each one belonging to one of the said groups: maxi-
mum and normalised sum.

2.2 Feature Selection and DB Learning in FRBCS design

As we mentioned before, our FRBCS learning method generates the KB by selecting
an adequate feature set and by learning the appropiate DB components for each selected
variable. In this section, we briefly describe these problems jointly solved in our proposal.

2.2.1 Feature Selection Process

The main objective of any feature selection process is to reduce the dimensionality of the
problem for the supervised inductive learning process. This fact implies that the feature
selection algorithm must determine the best features for its design.

There are two kinds of feature selection algorithms:

o Filter feature selection algorithmd 7], which remove the irrelevant characteristics
without using a learning algorithm (e.g. by means of class separability measures).
They are efficient processes but, on the other hand, the feature subsets obtained by



them may not be the best ones for a specific learning process because of the exclu-
sion of the heuristic and the bias of the learning process in the selection procedure
[16].

e Wrapper feature selection algorithrfiss, 17]. This kind of feature selection algo-
rithms selects feature subsets by means of the evaluation of each candidate subset
with the precision estimation obtained by the learning algorithm. In this form, they
obtain feature subsets with the best behaviour in the classifier design. Their prob-
lem is their inefficiency since the classifier has to be built for the evaluation of each
candidate feature subset.

In our proposal we will use a wrapper feature selection algorithm which utilises the
precision estimation provided by an efficient fuzzy rule generation process (Wang and
Mendel's fuzzy rule generation process) and a GA as search algorithm. Inside the DB
derivation, the granularity learning will provide us an additional way to select features
when the number of linguistic labels assigned to a specific variable is only one (we will
explain this in a further section).

2.2.2 DB Learning

As previously said, the derivation of the DB highly influences the FRBCS performance. In
fact, some studies in Fuzzy Rule-Based Systems have shown that the system performance
is much more sensitive to the choice of the semantics in the DB than to the composition
of the RB [7]. Some approaches have been proposed to improve the FRBCS behaviour
by means of a tuning process once the RB has been derived [4]. However, these tuning
processes only adjust the shapes of the membership functions and not the number of
linguistic terms in each fuzzy partition, which remains fixed from the begining of the
design process.

The methods that try to learn appropiate DB components per variable usually work
in collaboration with an RB derivation method. A DB generation process wraps an RB
learning one working as follows: each time a DB has been obtained by the DB definition
process, the RB generation method is used to derive the rules, and some type of error
measure is used to validate the whole KB obtained. The works proposed in [6, 7, 8] use
Simulated Annealing and GAs to learn an appropiate DB in a Fuzzy Rule-Based System.
The method proposed in [14] considers a GA to design an FRBCS, working in the said
way.

3 Genetic Algorithm for Feature Selection and DB Learning

In this section, we propose a hew learning approach to automatically generate the KB of
an FRBCS composed of two methods with different goals:

e A genetic learning process for the DB that allows us to define:

— The relevant variables for the classification process (feature selection).

— The number of labels for each variable (granularity learning).



— The form of each fuzzy membership function in non-uniform fuzzy parti-
tions, using a non-linear scaling function that defines different areas in the
variable working range where the FRBCS has a higher or a lower relative
sensibility.

e A quick ad hoc data-driven methathat derives the fuzzy classification rules con-
sidering the DB previously obtained. In this work we use the extension of Wang
and Mendel’s fuzzy rule generation method [21] for classification problems [3], but
other efficient generation methods can be considered.

We should note that the granularity learning allows us another way of feature selec-
tion: if a variable is assigned only to one label, it has no influence in the RB, so it will
not be considered as a relevant variable. A similar double-level feature selection process
has been previously considered in genetic learning processes of FRBCSs such as SLAVE
[11].

All the components of the DB will be adapted throughout a genetic process. Since
it is interesting to reduce the dimensionality of the search space for that process, the
use of non-linear scaling functions is conditioned by the necessity of using parameterized
functions with a reduced number of parameters. We consider the scaling funtion proposed
in [6], that has a single sensibility parameter calle(h € IR). The function used is

(f : [_L 1] - [_la 1])

f(z) = sign(z) - |x|*, with a>0

The final result is a value if-1, 1] where the parameterproduces uniform sensibil-
ity (e = 1), higher sensibility for center values ¢ 1), or higher sensibility for extreme
values ¢ < 1). In this paper, triangular membership functions are considered due to their
simplicity. So, the non-linear scaling function will only be applied on the three defini-
tion points of the membership function (which is equal to transform the scaling function
in a continuous piece-wise linear function), in order to make easier the structure of the
generated DB and to simplify the defuzzification process. Figure 1 shows a graphical
representation of the three possibilities of fuzzy partition depending on the value of pa-
rametera.

We should note that the previous scaling function is recommended to be used with
symmetrical variables since it causes symetrical effects around the center point of the
interval. For example, it can not produce higher sensibility in only one of the working
range extents. In the method presented in this paper, we add a new parameteiSjcalled
to the non-linear scaling function as described also in [6]. S is a paramefér i to
distinguish between non-linearities with symmetric shape (lower sensibility for middle or
for extreme values, Figure 1) and asymmetric shape (lower sensibility for the lowest or
for the highest values, Figure 2).

Furthermore, the main purpose of our KB design process is to obtain FRBCSs with
good accuracy and high interpretability. Unfortunately, it is not easy to achieve these
two objectives at the same time. Normally, FRBCSs with good performance have a high
number of selected variables and also a high number of rules, thus presenting a low degree
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Figure 1: Fuzzyrpartitivons with = 1 (top),d >1 r(down left), andz < 1 (down right)

of readability. On the other hand, the KB design methods sometimes lead to a certain
overfitting to the training data set used for the learning process.
To avoid these problems, our genetic process uses a multiobjective GA with two goals:

e Minimise the classification error percentage over the training data set.

e Design a compact and interpretable KB. This objective is performed by penalising
FRBCSs with a large number of selected features and high granularity.

The next subsections describe the main components of the genetic learning process.

Figure 2: Fuzzy partitions withh = 1 (left with ¢ > 1 and right witha < 1)

3.1 Encoding the DB

The two main DB components of the selected variables are the number of linguistic terms
and the membership functions that define their semantics. Therefore, each chromosome
will be composed of three parts:

e Relevant variable<{,): For a classification problem witK variables, the selected
features are stored into a binary coded array of ledgtin this array, an 1 indicates
that the corresponding variable is selected for the FRBCS.



e Number of labels(>): The number of labels per variable is stored into an integer
array of lengthN. In this contribution, the possible values considered are taken from
the set{1,...,5}.

e Sensibility parameters’f;): An array of lenghtNV x 2, where the sensibility pa-
rametersd,9 are stored for each variable. In our case, the range considered for the
parametes is the interval(0, 8].

If v; is the bit that represents whether the variabteselected and is the granularity
of variablei, a graphical representation of the chromosome is shown next:

01:(1]1,...,1]]\]) 02:(11,...711\/)

03:(a17"'7aN781a"'7SN)

C = C1CyC5

3.2 Evaluating the chromosome

There are three steps that must be done to evaluate each chromosome:

1. Generate the fuzzy partitions using the information contained in the chromosome.
Obviously, this process is only applied to the selected variables (1 andi; > 1).
First, each variable is linearly mapped from its working rangp-tb, 1]. In a sec-
ond step, uniform fuzzy partitions for all the variables are created considering the
number of labels per variablé;). Finally, the non-linear scaling function with its
sensibility parametersif, S;) is applied to the definition points of the membership
functions obtained in the previous step, obtaining the whole DB definition.

2. Generate the RB by running a fuzzy rule learning method considering the DB ob-
tained in the previous step.

3. Calculate the two values of the evaluation function:

e C'PE: classification percentage error over the training set.

e SV - AL: with SV being the number of selected variables andbeing the
averaged granularity of the selected variables.

3.3 Genetic operators

The initial population is selected considering several groups of chromosomes, each one of
them with different percentage for the selected variables (randomly chosen).The remain-
ing values of the chromosome are chosen at random. For the rest of GA components, the
following operators are considered.



3.3.1 Selection

We have used the selection mechanism of MOGA [9], which is based on the definition of
Pareto-optimality. It is said that a solution dominates another when the former achieves
better or equal values than the latter in all but one objective, where the former outperforms
the latter. Hence, the pareto is composed of all the non-dominated solutions.

Taking this idea as a base, MOGA assigns the same selection probability to all non-
dominated solutions in the current population. The method involves dividing the popula-
tion into several classes depending on the number of individuals dominating the members
of each class. Therefore, the selection scheme of our multiobjective GA involves the
following five steps:

1.

Each individual is assigned a rank equal to the number of individuals dominating it
plus one (chromosomes encoding non-dominated solutions receive rank 1).

. The population is increasingly sorted according to that rank.

. Each individual is assigned a selection probability which depends on its ranking in

the population, with lower ranking receiving lesser probabilities.

. The selection probability of each equivalence class (group of chromosomes with

the same rank, i.e., which are non-dominated among them) is averaged.

. The new population is created by following the Baker’s stochastic universal sam-

pling [1].

3.3.2 Crossover

Two different crossover operators are considered depending on the two parents’ scope:

e Crossover when both parents have the same selected variables and equal granu-

larity level per variable: If the two parents have the same value<inand Cs,

the genetic search has located a promising space zone that has to be adequatelly
exploitated. This task is developed by applying the max-min-arithmetical (MMA)
crossover operator [13] in the chromosome part based on real-coding scheme (pa-
rametersz;) and obviously by maintaining the paretit andC- values in the off-

spring. Both combinations of parametgy are tested and the best two chromo-
somes are selected.

Crossover when the parents encode different selected variables or granularity lev-
els: This second case highly recommends the use of the information encoded by
the parents to explore the search space in order to discover new promising zones.
So, a standard crossover operator is applied over the three parts of the chromosome.
This operator performs as follows: a crossover ppiigtrandomly generated ifi;

and the two parents are crossed atkth variable in all the chromosome parts,
thereby producing two meaningful descendents.



3.3.3 Mutation

Three different operators are used, each one of them acting on different chromosome
parts:

e Mutation onC; and on the second part @f3 (parametersS;): As these parts of
the chromosome are binary coded, a simple binary mutation is developed, flipping
the value of the gene.

¢ Mutation onC5: The mutation operator selected for the granularity levels is similar
to the one proposed by Thriftin [20]. A local modification is developed by changing
the number of labels of the variable to the immediately upper or lower value (the
decision is made at random). When the value to be changed is the lowest (1) or the
highest one, the only possible change is developed.

e Mutation on first part ofC; (parameterss;): As this part is based on a real-coding
scheme, Michalewicz’s non-uniform mutation operator is employed [18].

4 Experimentation

We have applied the learning method to an example base with a high number of features,
Sonar data set [12], which has 208 instances of a sonar objective classification problem.
Each one of these instances is described by 60 features to discriminate between a sonar
output corresponding to a cylindrical metal or an approximately cylindrical rock. The
training set contain$04 elements and the test set contains the remaibdgelements.

Table 1 shows the parameter values considered for the experiments developed.

Table 1: Parameter values

Parameter Value
Granularity values ~ {1,...,5}
Population size 100
Crossover probability 0.6
Mutation probability 0.2

Number of generations {100, 500}

The best results obtained by our genetic learning process for the two FRMs considered
are shown in Table 2. The best results found with the Wang and Mendel’s RB generation
method considering all the features selected and the same number of labels for each one
of them are also shown in the top line of each FRM. The table contains the following
columns:

e FRM: Fuzzy Reasoning Method used.
e SV: Number of selected variables.

e AL: Average of the number of labels considered for the selected variables.



e NR: The number of rules of the FRBCS.
e % tra: Classification percentage error obtained in the training data set.

e % tst: Classification percentage error obtained in the test data set.

Table 2: Best results obtained (% error)
| FRM [ SV[AL [ NR | %tra| %tst|

60 | 3 | 104 09| 231

9 | 36| 101 0.0| 16.3

8 | 36| 91 28| 134

Maximum | 6 | 3.6 | 91 48| 15.3
4 | 42| 72 7.7 19.2

4 | 32| 55 | 153 153

3 | 36| 42 | 19.2| 19.2

2 125 9 27.8| 25.0

60 | 3 | 104 28| 259

9 | 41 100 0.0| 18.2

7 141 92 19| 19.2

Normalised| 6 | 3.8 | 93 6.7| 13.4
Sum 5140 76 | 125| 16.3

4 | 37| 65| 153]| 19.2

3 |40] 25| 19.2| 20.1

2 140 16 | 241 221

As it can be observed, the proposed method achieves a significant reduction in the
number of variables selected (about f#1§% of the original number of features, or even
more in some cases) even with an important increase of the generalization capability (clas-
sification rate over the test data set). Besides, many solutions present also a significant
decrease in the number of rules, reducing the complexity of the KB. Therefore, our mul-
tiobjective GA provides a wide set of solutions that permit an adequate choice depending
on the main goal required: good performance or high degree of interpretability.

5 Conclusions

This contribution has proposed a multiobjective genetic process for jointly performing
feature selection and DB components learning, which is combined with an efficient fuzzy
classification rule generation method to obtain the complete KB for a descriptive FRBCS.
Our method achieves an important reduction of the relevant variables selected for the
final system and also adapts the fuzzy partition of each variable to the problem being
solved. So, we can conclude that the proposed method allows us to significantly enhance
the interpretability and accuracy of the FRBCSs generated. We have used a simple RB
generation algorithm but another more accurate one can be used, having in mind its run
time. Our future work will focus on improving the performance of the multiobjective



GA by using a niching technique or employing a co-evolutive GA and on comparing the
results with other feature selection approaches.
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