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Induction of Fuzzy-Rule-Based Classifiers With
Evolutionary Boosting Algorithms

Maria José del Jesus, Frank Hoffmann, Luis Junco Navascués, and Luciano Sanchez

Abstract—This paper proposes a novel Adaboost algorithm to
learn fuzzy-rule-based classifiers. Connections between iterative
learning and boosting are analyzed in terms of their respective
structures and the manner these algorithms address the coop-
eration-competition problem. The results are used to explain
some properties of the former method. The evolutionary boosting
scheme is applied to approximate and descriptive fuzzy-rule
bases. The advantages of boosting fuzzy rules are assessed by per-
formance comparisons between the proposed method and other
classification schemes applied on a set of benchmark classification
tasks.

Index Terms—Boosting algorithms, evolutionary algorithms,
fuzzy-rule-based classifiers, iterative learning.

1. INTRODUCTION

OOSTING algorithms are statistical additive modeling
techniques that combine different low-quality classifiers
to obtain a compound classifier that performs better than
any of its components. Adaboost [8] is a boosting algorithm,
which repeatedly invokes a learning algorithm to successively
generate a committee of simple, low-quality classifiers. Each
time a new simple classifier is added to the compound one,
the examples in the training set are re-weighted (so that future
classifiers will focus on the most difficult examples,) and
a voting strength is assigned to the classifier. The number
of votes a classifier is given depends on the confidence in
its classification accuracy, as measured on the training set.
Adaboost generates a compound classifier which decision is a
linear threshold of the outputs of the simple classifiers.
Adaboost is commonly used to combine linear classifiers,
but other learning algorithms can be boosted well. This paper
proposes the application of the Adaboost algorithm to learn a
fuzzy-rule-based classifier, and experimentally shows the ad-
vantages of the approach over other fuzzy and nonfuzzy clas-
sification methods. The methodology proposed in the following
unifies and extends previous approaches to boost fuzzy rules
[13], [17].
In particular, the Adaboost algorithm is compared with the
incremental learning of fuzzy-rule-based classifiers [1]-[3], [5],
[9], [11]. Similar to Adaboost, iterative learning consists in the

Manuscript received November 20, 2001; revised November 22, 2002
and September 8, 2003. This work was supported by the Spanish Ministry
of Science and Technology and by European Fund FEDER under Projects
TIC-04036-C05-05 and TIC-04036-C05-04.

M. J. del Jesus is with the Computer Science Department, Jaén University,
23071 Jaén, Spain.

F. Hoffmann is with the University of Dortmund, 44227 Dortmund, Germany.

L. Junco Navascués and L. Sanchez are with the Computer Science Depart-
ment, Oviedo University, 33204 Oviedo, Spain (e-mail: luciano @lsi.uniovi.es).

Digital Object Identifier 10.1109/TFUZZ.2004.825972

recurring invocation of an algorithm that identifies the fuzzy
rule that best matches the current set training examples. The
main difference between iterative learning and Adaboost is, that
those training examples that are correctly classified by a new
rule are removed from the training set instead of being down-
weighted. Therefore, future rules are not aware of previously
removed instances, such that conflicting rules might emerge in
the rule base. These conflicts are resolved by means of a ge-
netic post processing stage that weeds out contradicting rules
from the initial base. As a second difference, iterative learning
does not assign individual votes to the rules (all rules are equally
important) but instead tunes the membership functions to im-
prove classification accuracy. Adaboost does not require these
two post processing steps of the compound classifier with re-
spect to conflict resolution and tuning.

This paper is organized as follows. Section II briefly intro-
duces the Adaboost algorithm and describes the type of fuzzy
classifiers that are boosted. Section III proposes methods for
boosting descriptive and approximate fuzzy rule bases, and ex-
plains the technical details of the approach, and how it is ap-
plied to two-class as well as multiclass problems. Finally, in
Section IV the classification accuracy of the proposed Adaboost
algorithms on a number of data sets is compared with the genetic
iterative learning and other fuzzy and statistical classifiers.

II. ADABOOST AND FuzzY-RULE-BASED CLASSIFIERS

A. Fuzzy Classifiers

At this point we introduce the basic notation employed
throughout this paper. Let X be the feature space, and let x be
a feature vector x = (z1,...,z,) € X. Let p be the number of
classes. The training set is a sample of m classified examples
(xi,v:), where x; € X, 1 <y; <p,1<i<m.

The antecedents of all fuzzy rules in the classifier form a
fuzzy partition A of the feature space A = {A7},;21. n, with
A7 C P(X), where P(X) stands for “fuzzy parts of X”. In the
remainder of this paper, we assume that the training examples
are indexed by the letter ¢, the rules by j, the features by f and
the classes by k; the ranges of these variables are 1 < 7 < m,
1<j<N,1<f<mnandl <k < p. For example, “for all
X;” means X;, 1 < ¢ < m; from now on, unless necessary, the
ranges of indexes are not explicitly stated.

A fuzzy-rule-based classifier is defined by means of a fuzzy
relationship defined on A x {1,...,p}. Values of this relation-
ship describe the degrees of compatibility among the fuzzy sub-
sets of the feature space collected in .A, and each of the classes.
In other words, for every antecedent AJ there are p numbers be-
tween 0 and 1 that represent the confidence in the assertion “All
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Input data:
Training set (X1,¥1),---, (Xm,¥Ym), Xi € R™, y; € {—1,+1}
Number of hypotheses H < {1,..., N}
Local Variables:
w € R™ (weights of the examples in the training set)
a € RN (votes of the weak hypotheses)
begin
Initialize w; +— 1/m, o/ =0
Select the number of weak hypotheses H
Repeat H times
Identify the weak hypothesis g™ € {g!,... g™} that best classifies the weighted data
Calculate the number of votes o of g"

Update the weights w; of the examples

297

end-repeat

Output the classifier: sign (ZJN:1 (xfgj(x))

end

Fig. 1. Outline of the generalized Adaboost algorithm. Two-class version.

elements in the fuzzy set A7 belong to class number &”. Values
close to 1 indicate “high confidence,” and values close to 0 de-
note “absence of knowledge about the assertion.”

1) Linguistic Interpretation of Fuzzy Classifiers: Fuzzy-
rule-based classifiers are comprehensible to humans as they can
be expressed in form of linguistic sentences. There are different
standards when translating the former fuzzy relationship into
linguistic statements. In this paper, we combine p instances of
the fuzzy relationship

compatibility( A7, c;) = s, k=1,...,p
into a single sentence, as follows:
if x is A’ then truth(c;) = sJ and --- and truth(c,) = si.
The antecedents A’ are decomposed in a Cartesian product of

fuzzy sets defined over each feature, A7 = Aj x A x ... x AJ,
thus the rules are

ifz1is A and ... and x,, is A7,

then truth(c;) = s/ and - - - and truth(c,) = sf,

The linguistic expression of the fuzzy classifier does not include
those terms for which confidence values are null. In the case of
fuzzy subsets for which all confidence values are null, the rule
base comprises fewer sentences (fuzzy rules,) than elements in
the fuzzy partition A.

We can further restrict the definition by defining n linguistic
variables (one linguistic variable for every feature) and requiring
that all terms sets Ajf in the antecedents are associated with
one linguistic term in its corresponding linguistic variable. In
this case, we obtain a fuzzy-rule-based descriptive classifier. If
we do not apply the latter restriction, we obtain an approximate
classifier.

Notice, that in a descriptive fuzzy classifier the set of possible
rules is finite due to the discrete number of possible linguistic
labels associated to each rule. Conversely, there is an infinite

number of possible approximate classifiers as fuzzy rules use
continuous parameters to define the characteristic points of their
underlying fuzzy sets.

2) Fuzzy Inference: Fuzzy reasoning methods define how
rules are combined and how to infer from a given input to the
corresponding output. The actual inference method is solely
defined in terms of the fuzzy relationship, and is therefore
independent of the approximate or descriptive nature of the
classifier. An instance x is assigned to the class

N
arg maXp—i,...p \/ AJ(X) A si: M
j=1

where “A” and “V” can be implemented by different operators;
for example, “V” can be the maximum operator [18] or the arith-
metic sum, so called “maximum voting scheme” [16]. “A” is
always a t-norm, usually the minimum or the product. In this
paper, fuzzy inference employs the product operator and the
maximum vote scheme.

B. Adaboost Algorithm

Let us define a set {g', g%, ..., g™V} of simple, but possibly
unreliable binary classifiers. Boosting consists in combining
these low quality classifiers (so called “weak hypotheses” in
the boosting literature) with a voting scheme to generate an
overall classifier that performs better than any of its individual
constituents alone. We will show later that a fuzzy rule can be
regarded as a particular case of a weak hypothesis, and a fuzzy
rule base can be interpreted as a weighted combination of weak
hypotheses.

Weak hypotheses take feature values as input and produce
both a class number as well as a degree of confidence in the
given classification. In two-class problems, these two outputs
are encoded by a single real number, g7 (x) € R, whose sign is
interpreted as the label of x and whose absolute value is inter-
preted as the confidence in the classification. The higher this
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value the more confidence is given to the classification. Ad-
aboost is intended to produce a linear threshold of all hypotheses

N
sign Za]’g]’(x) . (2)
j=1

An outline of the Adaboost algorithm is shown in Fig. 1. Ob-
serve that Adaboost can operate with any learning algorithm that
generates a confidence rated classifier on a given weighted data
set. There are different algorithms for assigning the number of
votes to a weak hypothesis, and for adjusting the weights of the
examples. For example, in confidence-rated Adaboost [26] the
number of votes of the weak hypothesis ¢” is given by the value
o that minimizes the following function:

Z(a) = Zwi exp (—ayig"(x;)) 3)
i=1
and the weights of the examples are updated according to

4 o hig
o exp (—a'y;g" (%)) @

v

where v is the normalization factor such that » | w; = 1. There
are analytical approximations and heuristics that may replace
this formula in specific problems.

C. Adaboost Compared to Genetic Iterative Learning

Fuzzy classifier induction with genetic iterative learning [5]
operates in three stages. The first stage consists of a “fuzzy rule
generation” algorithm, which evolves a population of candidate
fuzzy rules that correctly classify the examples in the training
set. The rule with the largest covering degree, highest frequency
value and highest consistency is added to the intermediate rule
base [3]. The examples that are correctly classified by the se-
lected rule are removed from the training set. The basic rule
generation mechanism is repeated until the training set becomes
empty as all examples in the original training set are covered by
at least one rule.

Rules generated in later stages are unaware of the previously
removed examples and therefore might be in conflict with rules
generated earlier on. This undesirable effect is an instance of the
well-known cooperation-competition problem in genetic fuzzy
systems. In order to improve the cooperation among the fuzzy
rules the intermediate rule set is post-processed, with the ob-
jective to resolve conflicts among fuzzy rules with the same
antecedent but contradicting classifications. In the second, so
called “genetic multiselection”, stage a binary coded genetic al-
gorithm removes conflicting rules. The third and final stage,
“genetic tuning,” adjusts the membership functions of the lin-
guistic terms in order to improve the classification rate of the
rule base, but does not add or delete rules.

Adaboost is applicable to boost fuzzy rules as an individual
rule can be interpreted as a confidence-rated weak, albeit incom-
plete hypothesis. To show that fuzzy rules are in fact equivalent
to weak hypotheses, recall the definition of a fuzzy classifier
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given in (1). If the maximum vote scheme is combined with the
product ¢-norm, the output of a fuzzy classifier becomes

N
arg Maxg=1,... p Z Al(x) - si. 5)
j=1

Let us particularize this expression for two-class problems

N

N
arg max Z Al(x) - s, Z Al(x) - s) (6)
j=1

=1

therefore, if class numbers are 1 and — 1, the output of the clas-
sifier becomes

N
sign Z Al (x) - (sjl - s%) . @)
j=1

If this equation is compared to the Adaboost decision in (2), the
analogy between A7 and g’ on the one hand, and s} — s and
o’ on the other hand becomes obvious.

The first stage of iterative learning shares a common structure
with Adaboost. Iterative learning identifies the fuzzy rule that
best describes a subset of the training examples, and determines
its number of votes (later, we will relate the votes to the degree
of truth for the rule consequent.) Then, it alters the weight of
training examples, depending on how well they are classified
by the new rule. This process is repeated until either a desired
number of rules has been retrieved or a given classification accu-
racy on the training set has been achieved. Notice that Adaboost,
unlike the iterative genetic rule learning, down-weights the im-
portance of training examples, rather than discarding them alto-
gether once they are covered by a fuzzy rule. In the iterative rule
learning scheme, it might happen that a deleted training instance
is incorrectly classified by another fuzzy rule that emerges in a
later invocation of the rule learner. The “cooperation-competi-
tion problem” is addressed in a subsequent stage which globally
refines the initial rule base. As Adaboost never completely dis-
cards a training instance cooperation is implicitly achieved and
the refinement stage becomes obsolete, in other words the rules
generated by the incremental search already constitute the final
rule base.

From the above we can conclude that boosting and iterative
rule learning are similar techniques. The most important dif-
ferences are: a) in iterative learning, the weight of an instance
is either 0 or 1, and b) in Adaboost the multiselection stage
becomes obsolete, as instances are never completely removed
from the training, but rather down-weighted according to the ac-
curacy that a new rule achieves. This property allows Adaboost
to identify potential conflicts among rules already during rule
generation.

III. BOOSTING Fuzzy RULES
A. Outline of the Algorithm

For the sake of simplicity, we restrict the discussion for the
time being to two-class problems. Following with the similar-
ities between confidence rated weak learners and fuzzy rules
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Input data:
Training set (X1,¥1), ..+, (Xm: Ym ),
Number of fuzzy rules H € {1,...,N}

Local Variables:
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x; € R, ys € {—1,+1}

w € R™ (weights of the examples in the training set)

« € R (votes of the weak hypotheses)

¢ € {—1,1}™ (consequents of the weak hypotheses)

s: A x {=1,1} — [0, 1] (fuzzy relationship = consequents of rules)

Local Procedures:

Generate a new fuzzy rule: begin

Generate by means of an evolutionary algorithm the rule “ if x is A" then ¢

with A® € A, that minimizes the fitness
end
Convert votes into confidences: begin

for all j do

if(0 >0andd = 1)or(a/ <0and¢ = —1) 5] = |a?|/ max |o] clse s | = |o7|/ max |a!|

end
begin of main algorithm
Initialize w; «— 1/m, of =0, 8], =0

repeat H times

Generate a new fuzzy rule « if x is A then ¢”

Calculate the number of votes of the rule: votes( if x is A" then c*) = «

Update the weights of the examples
end-repeat

Convert votes into confidences

h

Output the classifier: for all j, if 5{ #0or sl 1 7 0 emit the rule

ifzyis A7 and ...z, is A7 then tr(class = 1) = 7 and tr(class = —1) = &7 ,

end of main algorithm

J

Fig. 2. Adaboost algorithm applied to the induction of a descriptive, two-class, fuzzy-rule-based classification system.

introduced in (7), the space of weak hypotheses is identified
with the product of the fuzzy partition and the class labels,

Fig. 2 shows an outline of the algorithm. In the following, the
individual steps of the method are explained in detail: namely
how to obtain a new fuzzy rule, how to compute its number
of votes and how to adjust the weights of the training exam-
ples once the new rule has been added to the base. Notice, that
the values of o/ (the number of votes) that Adaboost generates
are not restricted to the interval [0,1]; some of the schemes to
assign the number of votes may produce negative results, and
all of them can produce a vote weight larger than 1. Therefore,
vote weights generated by Adaboost can not be coherently inter-
preted as confidence rates. The degrees o/ in the consequents
are normalized to a range [0,1] before the entire rule base is
generated.

In descriptive rule bases A is finite, thus the best weak
hypothesis can be found by exhaustive search, as long as the
number of features N is small. As the number of features
increases, one has to use more efficient albeit potentially
suboptimal search and optimization techniques. In approxi-
mate representations, membership functions are defined by
continuous parameters. Therefore, the solution space is infinite
and the identification of the best rule becomes an optimization
problem. We propose evolutionary algorithms for identifying

fuzzy rules that are well adapted to the training set in the rule
generation step.

B. Objective (Fitness) Function

There are several criteria that determine how well a fuzzy rule
captures the weighted training examples. Given the results in
[26], the fitness of a fuzzy rule is

fitness(if x is A7 then ¢/) = Zw,; exp (—yicd A"(x;)). (8)

This expression can be interpreted as a measure of the weighted
difference between the sum of the memberships of “class 1”
and “class —1” examples. This objective function is, in essence,
similar to other heuristics previously suggested for fuzzy rule
learning. In particular, it is related to criteria in which new rules
are selected depending on the maximum difference between the
sum of the memberships of “positive” and “negative” examples
[10]. We evaluated criteria like the above in combination with
boosting and observed that in terms of final classification accu-
racy there are no significant between (8) and the conventional
heuristics. In particular, in [4], the authors propose to evaluate
different aspects of the quality of a fuzzy classification rule, such
as a high frequency value, a high covering degree over positive
examples and the k-consistency property to penalize negative
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examples covered by a rule. The fitness function employed in
that approach considers two objectives, namely the number of
training instances covered by the rule j compared to the overall
number of training instances with the rules’ class label ¢/

Zin i =cJ wLA] (Xi)
fr=="& ‘ ©))
Zi:gh:cj w;

and the frequency of negative examples covered by a rule

Zi:yz #ci Wi AJ (Xl)

fr= ) (10)
Both objectives are aggregated into a scalar fitness value
0, J2 > kmax
f:{fl*(l—,ﬁ%), fo < b D

where the parameter k., denotes the maximal rule inconsis-
tency that is still tolerated.

C. Number of Votes of a Rule

Adaboost can determine the number of votes assigned
to a weak hypothesis by different means. Confidence-rated
Adaboost employs an optimization-based approach which
determines the confidence degree by minimizing the following
expression:

Z(a) = ZwL exp (—ay; A7 (x;)) . (12)

For this problem, classical optimization techniques, such as
Brent’s linear search method [19], turn out to be more efficient
than evolutionary search algorithms. Z(«) is convex except
for the case in which the rule antecedent does not cover any
negative examples; in which case the above expression is
minimized for « — oo. The problem that « is unbounded is
common to all implementations of Adaboost, see for example
[26]. Brent’s method converges in a few iterations in the convex
case. However, in practice low error rates also lead to numerical
instabilities. To avoid these numerical instabilities during
optimization, a term that penalizes large values of « is added

Z(0) = Y wiexp (—opAT(x) + Y

i1 A3 (x;)=0

w; exp (|ael)

13)
where € is a small manually determined parameter.

Other implementations of Adaboost do not solve the direct
optimization problem but instead optimize an analytic approx-
imation as follows: The boosting algorithm computes the error
E; of the fuzzy rule number generated in iteration j. In our
case, each fuzzy classification rule constitutes an incomplete,
weak classifier. Incomplete in the sense, that it is able to clas-
sify those instances covered by its antecedent but makes no pre-
diction about the other training examples. Therefore, the clas-
sification error E; of a fuzzy rule is weighted by the degree of
matching A7(x;) between the ith training instance (x;, ;) and
the rule antecedent as well as the weight w;

B = E’i,:yi;ﬁcj wLA](XL)
T Y wAi(x,)

(14)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 12, NO. 3, JUNE 2004

Fig. 3. [Initialization of two trapezoidal fuzzy sets A, A» using a pair of
training instances i, Zs.

In other words, the goal of the fuzzy rule generation method
is to find classification rules that perform well over the current
distribution of training examples. By means of the previously
defined error measure, one can apply the approximation given
in [25] to calculate the number of votes assigned to the jth rule

. 1- E.
oﬂzlog( E]>'
J

Rules with small classification error E; obtain a larger weight.
To avoid numerical instabilities, the same correction term that
was applied in (13) is included in the calculation of the error

Zi:y#cj w; Mmax (67 AJ (xz))
>, w; max (e, AJ(x;))

15)

Ej = (16)

where the parameter € is small and determined in advance.

D. Updating the Weights of the Examples

The original implementation of Adaboost only updates the
weights of correctly classified examples: The weight of an in-
stance (x;,;) is multiplied by some factor j3; if the jth rule
classifies the example correctly and is left unchanged otherwise

w;, ify; # ¢!
v <_{ﬂiwi, ify; =¢ a7
The factor
Ej AT (Xl)
L — 1
()T e

depends on the error F; of the fuzzy rule and the degree of
matching A7(x;) between the fuzzy rule and the training ex-
ample. Effectively, examples that are classified correctly and
which match the rule antecedent obtain a lower weight, and mis-
classified or uncovered examples get relatively higher weights.
Thereby, the boosting algorithm increases the weight of those
examples which are most difficult to classify correctly for the
genetic fuzzy system.

The most up to date implementations of Adaboost (confi-
dence-rated Adaboost) simultaneously update the importance of
all examples not just the correctly classified ones: the weight of
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Input data:
Training set (x1,91), ..., (Xm, Ym),
Number of fuzzy rules H € {1,..., N}

Local Variables:
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x; €R™, yi € {1,...,p}

w € R™ (weights of the examples in the training set)

a € RY (votes of the weak hypotheses)

c€{1,...,p}™ (conscquents of the weak hypotheses)

s: A x {=1,1} — [0, 1] (fuzzy relationship = consequents of rules)

Local Procedures:

Generate a new fiizzy rule: begin

Generate by means of an evolutionary algorithm the rule “ if x is A" then ¢

with A" € A, that minimizes the fitness
end
Convert votes into confidences: begin

v = max o/ |

for all j do

if (0 >0)s] =0,.. .,si,,_l =0, a‘ih = |a|/v, 8i“+1 =0,..., 5‘; =0

else 8] = |o|/v, ..., 8!, = l|a’|/v, 8!, =0,8), e o | /v, ..., 83 = || /v
end

begin of main algorithm
Initialize w; « 1/m, ad =0, a{l =0

repeat [ times

Generate a new fuzzy rule “ if x is A* then ¢*”

Calculate the number of votes of the rule: votes( if x is A" then ¢) =

Update the weights of the examples
end-repeat

Convert votes into confidences

h

Output the classifier: for all j, if any s’; # 0 emit the rule

if 21 is Al and ...z, is A7 then tr(class = 1) = s] and ... and tr(class = p) = s/

end of main algorithm

Fig. 4. Adaboost algorithm applied to the induction of a descriptive, fuzzy-rule-based classification system. Straightforward extension of the two-class version

to the multiclass version.

correctly classified instances is lowered, but that of misclassi-
fied examples is increased, by means of

w; exp (—ajyiAj(Xi))
> wiexp (—ady; AV (x;))

(19)

Notice, that an instance is never completely removed unless
o) — oo, which is prevented by the penalty term in (13).

E. Implementation Issues of the Evolutionary Algorithms

Adaboost depends on a procedure that fits a weak learner to
the weighted training set. We have seen that in our case the weak
learning process generates the pair (A", c) that minimizes the
fitness function explained in Section III-B.

The optimization problem is different for approximate and
descriptive fuzzy rules. Descriptive rule bases require to search
a finite hypothesis space, but approximate rule bases require

it to explore a continuous search space defined by the param-
eters of the fuzzy sets that form the antecedents of the rules.
According to the nature of the optimization problem, an integer
coded genetic algorithm solves the weak learning of descriptive
bases, and an evolution strategy learns approximate rules. De-
tails about population sizes, type and probability of operators
algorithms are given in Section IV; this section focuses on the
coding of fuzzy rules and membership functions and the gener-
ation of the initial population.

1) Coding of Fuzzy Memberships in Descriptive
Rules: Descriptive fuzzy rules are usually coded by a
pair of integers: the index j of the antecedent A7 in A, and the
consequent ¢/, but the search process is faster if the rule instead
is encoded by a sequence of n integers: that refer to labels of
the linguistic terms in the underlying fuzzy partitions.

In addition to the concrete linguistic labels such as “LOW”
and “HIGH,” each linguistic variable includes a wild card
label “ANY VALUE,” with a membership degree of 1 across
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Input data:
Training set (x1,21),..., (Xm,2m), i € R", z; € {1,...,p}
Number of fuzzy rules [T € {1,...,N}

Local Variables:

w € R™ (weights of the examples in the training set)

a € RY*P (votes of the weak hypotheses)

st Ax {—1,1} — [0, 1] (fuzzy relationship = consequents of rules)

¢ € {—1,1}™ (consequents of the weak hypotheses)

y € {—1,1}"™ (labels of the examples in the two-class problems)
Local Procedures:

Generate a new fuzzy rule: see Figure 4

Convert votes into confidences: begin

5,0
forjinl...N
forkinl...p

if(a{_ > 0) a{ — s+ a{.
else 9{ — 9{ - QL, ... 8',7;_1 — s,i_l - (}L, .9,’;_‘_1 — S'LH - (NL, e O‘;«
end-for
end-for
Normalize consequents: s] « s1 / max s,
end
begin of main algorithm
fork=1,....,p
Initialize w; < 1/m, a,( =0;if(zi =k)y, =1lelsey; = —1
repeat H /p times
Generate a new fuzzy rule « if x is A" then ¢"”

Calculate the number of votes of the rule: votes( if x is A" then ¢*) = o

Update the weights of the examples
end-repeat
end-for

Convert votes into confidences

Output the classifier: for all j, if any s,{ # 0 emit the rule

if 1 is AJ and ..

end of main algorithm

Fig. 5.

the entire universe of discourse. The linguistic expression of
a fuzzy rule that contains a wild card can be simplified, as
illustrated by the following example: Assume a classification
problem with two features (weight, height), where height={low,
high} and weight={light, heavy}. The two linguistic variables
are extended with a wild card term such that height={low, high,
anyvalue} and weight={light, heavy, anyvalue}. If the rule
antecedent is described by “anyvalue X heavy,” the linguistic
expression

if height is anyvalue and weight is heavy then class = 1

is simplified to

if weight is heavy then class = 1.

. Ty is A7 then tr(cy) = s}, . ..

Jtr(ep) = )

Adaboost algorithm applied to the induction of a descriptive, multiclass, fuzzy-rule-based classification system.

This property of the genetic representation allows it to code gen-
eral rules that only refer to a subset of all possible features, thus
enabling the boosting algorithm to take advantage of feature
selection.

The last rule is coded by the sequence (3,2,1), as “anyvalue”
is the third linguistic term in the first linguistic variable, “heavy”
is the second term in the second linguistic variable and “1” is the
class label in the rule consequent.

2) Coding of Fuzzy Membership in Approximate Rules: The
membership function of trapezoidal fuzzy sets is parameterized
by four characteristic points: A} is defined by the points

a’ s b s cjc, and djc thus A7 is encoded by the sequence
al,bl,cl,dl,...al,bi ci di.Rather than encoding the abso-
lute values, the chromosome encodes the left most point and the
distances between successive points. This representation pre-

serves the order of points as long as the transformed parameters
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Fig. 6. Dispersion of test errors for Pima, Cancer, Gauss, Glass, Image, and Gauss5 datasets, over ten experiments with 50% train/test partitions (5 X 2 cv
statistical test settings). Columns are named as follows. LIN: Linear. QUA: Quadratic. NEU: Neural Network. INN: Nearest Neighbor. WM: Wang and Mendel.
ISH: Ishibuchi. PM: Pal and Mandal. GIL: Genetic Iterative Rule Learning. ABD, ABA: Fuzzy Adaboost, descriptive and approximate rules. The first three datasets
are two-class problems, the last three are multiclass. (5 X 2 cv statistical test settings).

are restricted to positive values. The entire rule chromosome is
formed by a real-valued vector that is the concatenation of the
individual fuzzy set code segments.

As the number of rules required to cover the entire input space
grows rapidly with the number of features the coding scheme
provides for general rule antecedents that only refer to a subset
of attributes. The chromosome contains an additional bitstring
S = {s1,...,5,} in which the bit s indicates whether the
input clause x5 is A;c occurs or is omitted in the rule antecedent.
Adaptation of the bitstring S enables the evolutionary algorithm

to take advantage of feature selection and to focus on fuzzy rules
based on the most relevant attributes for classification.

3) Initial Population in Approximate Rules: The initial pop-
ulation is randomly generated for descriptive classifiers. This
approach is less efficient for approximate classifiers due to the
more complex search space.

The initialization scheme uses the training instances as proto-
types to seed the membership function parameters of individuals
in the first generation. The initialization scheme randomly picks
a pair of training instances (x1,y1) and (X2, y2) with the same
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Fig. 7. Evolution of train and test errors versus the number of rules in ABD (left) and ABA (right) methods in a typical execution, for PIMA (upper part) and
IMAGE (lower part) datasets. Observe that Adaboost based learning is robust to overfitting.

MEAN VALUES OF TEST RESULTS OVER THE S1X DATASETS STUDIED. DIFFERENCES BETWEEN VALUES IN THIS TABLE ARE ONLY MEANINGFUL IF THEIR

TABLE 1

CORRESPONDING P-VALUE Is LOWER THAN 0.05 (SEE TABLES II, 111, IV, V, VI, AND VII)

LIN QUA NEU INN WM ISH PM GIL ABD ABA

pima | 0.227 0252 0255 0.289 0.287 0301 0464 0.269 0.241 0.252

cancer | 0.044 0.051 0.047 0.048 0.129 0.058 0.087 0.099 0.040 0.049
gauss | 0.239 0.190 0.200 0.267 0.477 0304 0.457 0205 0213 0.187

glass | 0.403 - 0.439 0.354 0.453 0503 0.647 0.363 0.359 0.359

image | 0.084 - 0.090 0.049 0.329 0833 0.755 0.130 0.136  0.100
gaussS | 0.317 0.317 0.323 0413 0539 0344 0931 0.338 0327 0.347

class label 43 = y2. The likelihood of a training instance x; to
serve as a prototype is proportional to the weight w; assigned to
it by the boosting algorithm. Let A = A; x Ao X ... x A, € A
be a generic antecedent of a rule in the initial population. Trape-
zoidal sets Ay are selected such that the two training examples
span the core of the fuzzy sets

by

Cf

min{:l:lf, Jigf}

max{a:lf,a:Qf} (20)

as depicted in Fig. 3. The left and right most points a ¢, d ¢ of the
fuzzy set Ay are computed such that the support of Ay is twice
as large as its core

1

af :bf - §|."171f —:U2f|
1

df :Cf+§|.’1?1f—£172f|. (21)

The width of the core |21 — x| also determines the initial
values of the mutation rates 04, b, c;.a, = (1/5)|15 — 22¢]in
the evolution strategy.
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TABLE 1I
P-VALUES OF 5 X 2 CV STATISTICAL TEST, PIMA DATASET. LOW VALUES
(<0.05) MEAN THAT THE DIFFERENCE BETWEEN TWO ALGORITHMS IS
STATISTICALLY RELEVANT
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TABLE V
P-VALUES OF 5 X 2 CV STATISTICAL TEST, GLASS DATASET. LOW VALUES
(<0.05) MEAN THAT THE DIFFERENCE BETWEEN TWO ALGORITHMS IS
STATISTICALLY RELEVANT

QUA NEU INN WM ISH PM GIL ABD ABA QUA NEU INN WM ISH PM GIL ABD ABA
LIN | 017 008 001 011 000 000 014 008 008 LIN - 014 042 079 011 000 0.18 073 054
QUA 062 012 047 000 001 057 040 087  QUA . . . . . . . .

NEU 008 073 003 001 079 073 033 NEU 0.19 035 050 000 005 028 025
INN 084 003 001 068 071 0.00 INN 041 003 000 088 080 0.75
WM 0.05 003 092 090 047 WM 0.14 000 0.1 072 058
ISH 0.14 001 001 001 ISH 020 0.03 021 0.09
PM 0.05 0.0z  0.00 PM 0.00 001  0.00
GIL 096  0.49 GIL 0.75 0.75
ABD 0.40 ABD 0.89

TABLE III

P-VALUES OF 5 X 2 CV STATISTICAL TEST, CANCER DATASET. LOW VALUES
(<0.05) MEAN THAT THE DIFFERENCE BETWEEN TWO ALGORITHMS IS
STATISTICALLY RELEVANT

QUA NEU INN WM ISH PM GIL ABD ABA
LIN | 086 0.63 047 0.16 036 003 022 0.05 049
QUA 091 080 0.17 058 0.14 031 063 0.77
NEU 0.78 011 0.10 001 0.13 0.59 0.54
INN 0.05 020 0.01 0.02 075 076
WM 0.19 0.68 0.20 0.07 0.08
ISH 0.05 050 003 021
PM 0.06 0.01  0.00
GIL 0.04  0.05
ABD 1.00

TABLE IV

P-VALUES OF 5 X 2 CV STATISTICAL TEST, GAUSS DATASET. LOW VALUES
(<0.05) MEAN THAT THE DIFFERENCE BETWEEN TWO ALGORITHMS IS
STATISTICALLY RELEVANT

QUA NEU INN WM ISH PM GIL ABD ABA

LIN | 0.00 000 000 0.00 020 0.00 000 010 0.03

QUA 0.13  0.00 0.00 0.10 0.00 0.06 0.17 0.02
NEU 0.00 000 0.10 0.00 0.18 040 030
INN 0.00 036 000 0.00 0.00 0.01
WM 0.02 080 0.00 0.00 0.00
ISH 0.11  0.11  0.16 0.14

PM 0.00 0.00 0.00

GIL 0.68 045
ABD 0.87

F. Extension to Multiclass Problems

The extension of two-class Adaboost to multiclass problems
is not unique. Let us first write (see Fig. 4) an straightforward
extension of the algorithm given in Fig. 2. The fitness function
derived from confidence-rated Adaboost is defined by

Z w; exp (—Ah(xi))

i=1,...,my;=ch

+ Z w; exp (A"(x;)) .

i=1,...,my;Fch

fitness(A", ") =

(22)

The formulas for determining the number of votes and for
weight updates in the same approach also need to be adapted.
The number of votes is the value " that minimizes

Z(a) = Z w; exp (—ozAh(xi))

i=1,...,m:y; =ch

+ Z w; eXp (ozAh (x5)) (23)
i=1,...,m:y; #ch
and the weights are updated according
i —a AP (x;
if (yz = ch)wi — Wi eXp ( @ (X ))
> wi
;e hAh X;
else w; «— wi exp (" A" (x;)) . (24)
2w

The analytical approximation in (17) and (18) can be used
without modifications. Apart from these modifications, re-
sulting from the differences in the notation (classes numbered
from 1 to p instead of —1 and 1), there is a significant alteration
in the routine that assigns confidences to the consequents of the
fuzzy rules. Observe that a negative number of votes produces a
type 3 fuzzy rule because in two-classes problems the sentence
“x does not belong to class 1” implies that x is in class —1, but
in multiclass problems the same assertion only implies that x
can be in classes 2 to p.

A theoretically more efficient extension of the two-class
problem, inspired by the relationship between probabilistic
classifiers and boosting stated in [7], is outlined in Fig. 5.
Following the results in this article, it can be concluded that
the solution of a p-class problem is equivalent to solve p
corresponding two-class problems. In each two-class problem,
one class is classified against all the other classes. The final
rule base for the multiclass is obtained by merging the rule
bases generated for the m two-class problems.

Let us define the “two-class problem number £”
(k = 1...,p) as that of labeling with the number “1” all
examples in class k, and labeling with the number “—1" all
other examples in the sample. After applying the algorithm
discussed in the preceding section to the problem number &, we
obtain a classification system comprised of fuzzy rules such as

if z1 is AJ and ... and ,, is A7 then tr(class = 1) = s

J

and tr(class = —1) = 57 |. (25)
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TABLE VI
P-VALUES OF 5 X 2 CV STATISTICAL TEST, IMAGE DATASET. LOW VALUES
(<0.05) MEAN THAT THE DIFFERENCE BETWEEN TWO ALGORITHMS IS
STATISTICALLY RELEVANT

QUA NEU INN WM ISH PM GIL ABD ABA
LIN | - 046 013 000 000 000 003 0.7 097
QUA - - - - - - - -

NEU 0.80 000 000 000 009 018 0.72
INN 0.00 000 000 001 003 049
WM 0.00 000 001 003 0.0l
ISH 0.16 0.00 000 0.00
PM 0.00 0.0  0.00
GIL 061 033
ABD 029

TABLE VII

P-VALUES OF 5 X 2 CV STATISTICAL TEST, GAUSS-5 DATASET. LOW VALUES
(<0.05) MEAN THAT THE DIFFERENCE BETWEEN TWO ALGORITHMS IS
STATISTICALLY RELEVANT

QUA NEU INN WM ISH PM GIL ABD ABA

LIN 1.00 003 0.02 0.00 0.13 0.00 023 015 0.10
QUA 0.04 0.0l 0.00 006 000 023 013 0.10
NEU 0.02 000 048 0.00 0.88 060 057
INN 0.00 0.04 0.00 0.01 002 0.06
WM 0.00 0.00 0.00 0.00 0.00
ISH 0.00 051 037 092

PM 0.00 0.00 0.00

GIL 096  0.57
ABD 0.49

These rules can be replaced by their equivalent p-class conse-
quents, by substituting the “all-other-classes”-label cp with the
corresponding class label cj, of the multiclass problem, i.e.,

if 21 is A{ and ... and z,, is A7 then

_ (I ) JoJ J
tr(cl,...,ck7...7cp)—(3_17...73_1,3173_1,...75_1).
(26)

We obtain p fuzzy rule bases, that are merged into the overall
multiclass rule base. It is important not to normalize the number
of votes until all p binary problems are solved as all confidence
degrees must be divided by the same normalization factor to ob-
tain a meaningful decomposition; the procedure used to convert
votes into confidences is shown in Fig. 5.

IV. NUMERICAL RESULTS

Three two-class and three multiclass problems were selected
to assess the performance of the proposed fuzzy boosting
method. Four of the datasets stem from the UCI ML database
and the other two are artificially generated Gaussian distri-
butions of which the theoretical error bound is known. The
two-class problems are Pima and Breast Cancer from UCI and
an artificial dataset defined in [12], comprising 4000 samples
of two equiprobable bidimensional Gaussian distributions with
centers in (0,0) and (2,0) and covariances matrices I and 41,
which makes a quadratic problem. Multiclass problems are
glass and image recognition from UCI and a synthetic problem
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called “Gauss-5,” comprising 50, 100, 150, 200, and 250
samples from five bidimensional Gaussian distributions with
centers in (0,0), (—1,—1), (—1,1), (1,—1), and (1,1) and unity
covariances matrix.

An evolution strategy was used to minimize the fitness
function in approximate rule bases, and an integer coded genetic
algorithm in descriptive bases. For this last case, Ruspini’s
partitions of size 3 were used for all datasets but Image, with
only two linguistic elements. All fuzzy sets are triangular and
their support set is given by the range of their corresponding
variable in the training set.

The rule generation processes were terminated after 30 rules
for Pima, 40 for Cancer, 16 for Gauss, 100 for Glass, 125 for
Image, and 50 for Gauss5; the size of the rule base for Ad-
aboost problems was determined after applying the tests in [24].
We combined the optimization-based fitness, number of votes
and weight updating (derived from confidence-rated Adaboost)
with descriptive rules, and the analytic approximation of these
three quantities with approximate rule bases. In multiclass prob-
lems, the first version of the algorithm (Fig. 4) was used, and the
second one was combined with descriptive bases (Fig. 5).

The evolution strategy in approximate Adaboost uses a de-
terministic (44, A) selection scheme, with 4 = 10 and A = 200,
which run over 40 generations to obtain the best rule. The ge-
netic algorithm in descriptive Adaboost is steady-state, with a
population size of 100 and every rule is obtained from the best
individual in the population after 1000 crossover operations.

We used Dietterich’s 5 X 2 cv statistical contrast, which is
considered to be superior to paired k-fold cross validation in
classification problems [6]. Four statistical methods (linear and
quadratic discriminant analysis, two layer perceptron—with a
hidden layer of size equal to half the number of features—and
nearest neighbor) plus four well-known fuzzy descriptive rule-
based classifiers (Wang and Mendel’s [27], Ishibuchi’s [15], Pal
and Mandal’s [22] and genetic iterative learning [5]) were com-
pared to fuzzy Adaboost.

There is not statistical evidence against boosted classifiers
being equal to the best classifiers for all datasets, neither there
is evidence about the settings derived from confidence rated
Adaboost being superior to that of the original Adaboost when
evolving fuzzy rule bases. It seems that the version of the algo-
rithm in Fig. 5 is more efficient in multiclass problems, even
though this observation was not true for all experiments and
the relevance of the difference is not statistically significant,
thus further experimentation is needed before stating a definite
conclusion.

The performance of Adaboost is better than Wang and
Mendel’s, Ischibuchi, or Pal-Mandal’s algorithms, besides
the variance in the output of these methods can be so high
that it sometimes prevents statistical contrasts from giving
useful information (see Fig. 6). Adaboost also improves GIL,
besides the statistical difference is only significant in one of
the experiments. Notice that current implementations of GIL
algorithm are slower than Adaboost by more than one order of
magnitude. The size of the final rule base is also much larger
in GIL, but it is not meaningful to compare them, because GIL
adjusts membership functions (Adaboost do not) but Adaboost
weights the consequents of the rules and GIL produces type 1
fuzzy rules.
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Fig. 7 provides graphical insight into the average performance
of the method and about the evolution of training and test er-
rors as the number of rules increases, showing robustness to-
ward overfitting either in two-class and multiclass, approximate
and descriptive problems. Table I contains the means of the test
errors of all experiments. Tables II-VII contain the p-values of
all statistical contrasts. Differences between values in Table I are
only meaningful when the corresponding value in their p-values
table is lower than 0.05.

V. CONCLUDING REMARKS

Boosting of fuzzy rule bases can be regarded as an extension to
the Iterative Learning. Boosting rather down-weights instances
instead of removing them, and thereby implicitly promotes
cooperation among rules when building the rule base in an
incremental fashion. Due to this property of the Adaboost
scheme the otherwise mandatory simplification stage of iterative
rule learning becomes obsolete.

The Adaboost approach was compared with other fuzzy and
nonfuzzy classification methods and demonstrated no statisti-
cally relevant difference in performance to the best classifier on
the respective datasets. Also, the Adaboost algorithm produced
more compact results than other genetic fuzzy systems. Rule
bases depend on fewer parameters than those induced with GIL
or other rule generation methods. This obviously favors the in-
terpretability, but the non standard fuzzy reasoning method of
Adaboost is a detrimental to the objective of rule comprehen-
sibility. In applications for which interpretability is more cru-
cial than classification accuracy nonweighted fuzzy rules may
be preferred over the weighted representation generated by Ad-
aboost. Anyway, there exists a clear advantage of Adaboost over
their competitors: learning time. Even if we lack a detailed study
by now, our experimentation seems to show important differ-
ences, from minutes to days, in the time required to solve some
of the classification problems included in this paper.
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