
1. Introduction

Fuzzy sets have been around for nearly
40 years and have found many applica-
tions. However as I will explain they suffer
from certain problems. These fuzzy sets
are, in fact, type-1 fuzzy sets. Type-2 fuzzy
sets are 'fuzzy fuzzy' sets and are more
expressive as we shall see in this article.

Recently (Mendel, 2003), I demonstrat-
ed [using Popper's (1954) Falsificationism]
that to use a type-1 fuzzy set (FS) to model
a word is scientifically incorrect, because a
word is uncertain whereas a type-1 FS is
certain. This may come as a shock to many
people, because a FS has been proposed
as a model for a word from the very begin-
ning of fuzzy sets, e.g., Zadeh's (1965) first
example uses a FS to model a word. Just
about every textbook does the same. And
this is also true about computing with
words (e.g., Zadeh (1996)).

Fortunately, most applications of type-1
FSs only use the mathematics of such sets
and do not focus on them as actual models
for words, e.g. rule-based fuzzy systems, in
which antecedents and consequents are
words, are often used only in the context of
some sort of universal function approxima-
tion which is mathematics and not linguis-
tics. 

There are also applications of type-1
FSs in which a fuzzy system is used to
approximate random data, or to model an
environment that is changing in an
unknown way with time. Even though uni-
versal approximation may also be the
underlying basis for these applications, a
type-1 FS has limited capabilities to direct-
ly handle such uncertainties, where by han-
dle I mean to model and minimize the effect
of. That a type-1 FS cannot do this sounds
paradoxical because the word fuzzy has
the connotation of uncertainty. This para-
dox about a type-1 FS has been known for

a long time, and yet not much has been
done about it. It has been largely ignored. 

Zadeh (1975) already recognized there
was a problem with a type-1 FS, when he
introduced a type-2 (and even higher-
types) FS. This occurred almost 10 years
after the publication of his first seminal
paper. One could ask: "Why did it take so
long for this to happen?" and "Why didn't a
type-2 FS immediately become popular?"
Eventually I will answer these questions,
but first there are more fundamental ques-
tions that I will pose and answer about
uncertainty and a type-2 FS, since most of
the readers of this Newsletter will be unfa-
miliar with such a set.

2. Some Questions and Answers

1) Can you be more specific about the
"paradox" of a type-1 FS?

I am not sure who first referred to
"fuzzy" being paradoxical, meaning that the
word fuzzy has the connotation of uncer-
tainty, and yet the MF of a FS is complete-
ly certain once its parameters are specified.
The following quote from Klir and Folger
(1988) uses the word paradoxical: "The
accuracy of any MF is necessarily limited.
In addition, it may seem problematical, if
not paradoxical, that a representation of
fuzziness is made using membership
grades that are themselves precise real
numbers. Although this does not pose a
serious problem for many applications, it is
nevertheless possible to extend the con-
cept of a FS to allow for the distinction
between grades of membership to become
blurred."

2) There are different kinds of uncertain-
ty, so which one(s) are you referring to,
and where does randomness fit into all
of this?

Indeed, uncertainty comes in many guis-
es and is independent of what kind of FS or
any kind of methodology one uses to han-

dle it. One of the best sources for general
discussions about uncertainty is Klir and
Wierman (1998). Regarding the nature of
uncertainty, they state (1998, p. 43): "Three
types of uncertainty are now recognized...
fuzziness (or vagueness), which results
from the imprecise boundaries of FSs; non-
specificity (or information-based impreci-
sion), which is connected with sizes (cardi-
nalities) of relevant sets of alternatives; and
strife (or discord), which expresses con-
flicts among the various sets of alterna-
tives." Observe that these three kinds of
uncertainties all involve something about
sets, and, as we know a FS is character-
ized by its MF. So, I will interpret any and all
kinds of uncertainties as being transferred
to the MF of the FS. If a FS is used to
model a word, then these kinds of uncer-
tainties could be called linguistic uncertain-
ties. A FS may also be used to model ran-
dom or time-varying signals.

I shall distinguish between two high-level
kinds of uncertainties, random and linguis-
tic. Probability theory is associated with the
former, and, as we now know FSs can be
associated with the latter. If FSs are used in
applications in which randomness is pres-
ent (as can occur, e.g. in statistical signal
processing or digital communications) then
both kinds of uncertainties should be
accounted for. This does not necessarily
mean that random uncertainties have to be
modeled probabilistically. Bounded uncer-
tainties can be modeled deterministically
and this can be done within the framework
of a FS. It is also possible to combine fuzzy
sets and probability (e.g., Buckley, 2003),
but this article is not about doing this. My
arguments below about using type-2 fuzzy
sets should apply there as well.

3) What exactly does "both kinds of
uncertainties should be accounted for"
mean?

Within probability theory we begin with a
probability density function (pdf) that
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embodies total information about
random uncertainties. In most
practical applications it is impos-
sible to know or determine the
pdf; so, we fall back on using the
fact that a pdf is completely char-
acterized by all of its moments.
For most pdfs, an infinite number
of moments are required. Of
course, it is not possible, in prac-
tice, to determine an infinite num-
ber of moments; so, instead, we
compute as many moments as
are necessary to extract as much
information as possible from the
data. At the very least, we use
two moments-the mean and vari-
ance; and, in some cases, we
use even higher-than-second-
order moments. To just use the
first-order moments would not be
very useful, because random
uncertainty requires an under-
standing of dispersion about the
mean, and this information is pro-
vided by the variance. So, our
accepted probabilistic modeling of random
uncertainty focuses to a large extent on
methods that use at least the first two
moments of a pdf. This is, for example, why
designs based on minimizing mean-
squared errors are so popular.

Should we expect any less when we use
a FS to model linguistic uncertainties? Just
as variance provides a measure of disper-
sion about the mean, and is used to cap-
ture more about probabilistic uncertainty in
practical statistical-based designs, a FS
also needs some measure of dispersion to
capture more about linguistic uncertainties
than just a single number - which is all that
we will get when we use a type-1 FS. A
Type-2 FS provides this measure of disper-
sion.

4) Where do uncertainties occur in a
rule-based fuzzy system?

Quite often, the knowledge that is used
to construct the rules in a rule-based fuzzy
system is uncertain. Three ways in which
such rule uncertainty can occur are: (1) the
words that are used in antecedents and
consequents of rules can mean different
things to different people; (2) consequents
obtained by polling a group of experts will
often be different for the same rule,
because the experts will not necessarily be
in agreement; and, (3) only noisy training
data is available. Antecedent or conse-
quent uncertainties translate into uncertain

antecedent or consequent MFs.

5) What exactly is a type-2 FS and how
is it different from a type-1 FS?

As already mentioned above, the con-
cept of a type-2 fuzzy set was introduced
first by Zadeh (1975) as an extension of the
concept of an ordinary fuzzy set, i.e. a type-
1 fuzzy set. Type-2 fuzzy sets have grades
of membership that are themselves fuzzy.
At each value of the primary variable (e.g.,
pressure, temperature), the membership is
a function (and not just a point value) -the
secondary MF-, whose domain -the pri-
mary membership- is in the interval [0,1],
and whose range -secondary grades- may
also be in [0,1]. Hence, the MF of a type-2
fuzzy set is three-dimensional, and it is the
new third dimension that provides new
design degrees of freedom for handling
uncertainties. Such sets are useful in cir-
cumstances where it is difficult to deter-
mine the exact MF for a FS, as in modeling
a word by a FS.

As an example, suppose the variable of
interest is eye contact, which we denote as
x. Let's put eye contact on a scale of values
0-10. One of the terms that might charac-
terize the amount of perceived eye contact
(e.g., during flirtation) is "some eye con-
tact." Suppose that we surveyed 100 men
and women, and asked them to locate the
ends of an interval for some eye contact on
the scale 0-10. Surely, we will not get the

same results from all of them, because
words mean different things to different
people. 

One approach to using the 100 sets of
two end-points is to average the end-point
data and to use the average values for the
interval associated with some eye contact.
We could then construct a triangular (other
shapes could be used) MF, MF(x), whose
base end-points (on the x-axis) are at the
two average values and whose apex is
midway between the two end-points. This
type-1 triangular MF can be displayed in
two-dimensions. Unfortunately, it has com-
pletely ignored the uncertainties associated
with the two end-points.

A second approach is to make use of the
average values and the standard devia-
tions for the two end-points. By doing this
we are blurring the location of the two end-
points along the x-axis. Now locate trian-
gles so that their base end-points can be
anywhere in the intervals along the x-axis
associated with the blurred average end-
points. Doing this leads to a continuum of
triangular MFs sitting on the x-axis, e.g.
picture a whole bunch of triangles all hav-
ing the same apex point but different base
points, as in Fig.1. For purposes of this dis-
cussion, suppose there are exactly 100 (N)
such triangles. Then at each value of x,
there can be up to N MF values, MF1(x),
MF2(x),…, MFN(x). Let's assign a weight to
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Figure 1. Triangular MFs when base end-points (l and r) have uncertainty intervals 
associated with them. This is not a unique construction.



each of the possible MF values, say wx1,
wx2,…, wxN (see Fig.1). We can think of
these weights as the possibilities associat-
ed with each triangle at this value of x. At
each x, the MF is itself a function -the sec-
ondary MF- (MFi(x), wxi), where i = 1, …, N.
Consequently, the resulting type-2 MF is
three-dimensional. 

6) If all uncertainty disappears, does a
type-2 FS reduce to a type-1 FS?

Yes, it does. You can already see this in
Fig. 1, because if the uncertainties about
the left and right end points disappear then
only one triangle survives. This is sort of
similar to what happens in probability, when
randomness degenerates to determinism,
in which case the pdf collapses to a single
point. So, just as determinism is embedded
in randomness, a type-1 FS is embedded
in a type-2 FS.

7) Why are the pictures in Fig. 1 two-
dimensional when the MF of a type-2 FS
is three-dimensional?

It is not as easy to sketch three-dimen-
sional figures of a type-2 MF as it is to
sketch two-dimensional figures of a type-1
MF. Another way to visualize a type-2 FS is
to sketch (plot) its two-dimensional domain,
its footprint of uncertainty (FOU), and this is
easy to do. The heights of a type-2 MF (its
secondary grades) sit atop of its FOU. In
Fig. 1, if we filled in the continuum of trian-
gular MFs we would obtain a FOU. Another
example of a FOU is shown in Fig. 2. It is
for a Gaussian primary MF whose standard
deviation is known with perfect certainty,
but whose mean, m, is uncertain and varies
anywhere in the interval from m1 to m2. The
uniform shading over the entire FOU
means that we are assuming uniform
weighting (possibilities). Because of the
uniform weighting, this type-2 FS is called
an interval type-2 FS. Such type-2 FSs are
today the most widely used ones.

8) Is there new terminology for a type-2
FS?

Yes, there is. The fact that we must now
distinguish between a type-1 and type-2
MF is one example of the new terminology.
A lot of the new terminology is due to the
three-dimensional nature of a type-2 MF.
Another term that we have already
explained is the FOU. Some other new
terms are: primary membership, primary
MF, secondary grade, secondary MF, upper
and lower MFs, principal MF, embedded
type-1 FS and embedded type-2 FS. All of

these terms can be defined mathematically
and let us communicate effectively about
type-2 FSs. A good place to learn about
these terms is Mendel and John (2002).
And, don't be put off by having to learn new
terminology and definitions. We all had to
do it when we learned probability, so why
should we expect to have to do less when
we are now going to use a FS to model lin-
guistic uncertainties?

9) How does one choose the MF for a
type-2 FS?

Aha, the $64 question! Just as there is
no one answer to this question for a type-1
FS, there is no one answer to this question
for a type-2 FS. But, I would like to recom-
mend a simplification. Begin by specifying
the FOU. Then, instead of using arbitrary
possibilities at each point of the FOU, use
the same possibility over the entire FOU.
Doing this you will be using an interval
type-2 FS. Since there is in general no sin-
gle best choice for a type-1 MF, it seems a
bit foolhardy (to me) to believe that at each
value of the primary variable, x, there is
some optimal secondary MF. In Mendel
(2003), I explain why at present the only
sensible way to model a word using a type-
2 FS is to use an equally weighted FOU.
This does not mean though that there
couldn't be some very interesting and
important theoretical works to be done on
more general type-2 FSs.

10) Is there an increase in computation-
al complexity using three-dimensional
MFs?

For general type-2 FSs computational
complexity is severe. On the other hand,
set theoretic and arithmetic computations
(yes, you will have to learn how to perform
these for type-2 FSs) for interval type-2
FSs are very simple. They all use interval
arithmetic and many
closed-form formulas
exist. Computing with
interval type-2 FSs is
simple. This is another
important reason for
working with interval
type-2 FSs.

11) What is the earlier
mentioned measure of
dispersion for a type-2
FS?

It should be pretty
clear, just by looking at
the FOU in Fig. 2 that
less (more) uncertainty

can be associated with a smaller (larger)
FOU, but this is not very quantitative. When
we use a type-1 FS, e.g. in a rule-based
system, we perform defuzzification in order
to obtain a numerical output for that sys-
tem. Regardless of what kind of defuzzifi-
cation we choose, we can interpret defuzzi-
fication as a mapping of a two-dimensional
MF into a one-dimensional MF - a number.
When we use a type-2 FS, e.g. in a rule-
based system, we ultimately must also
obtain a number. This is done in two
stages: (1) determine the centroid of the
type-2 FS (Karnik and Mendel, 2001)-it will
be a type-1 FS; and (2) defuzzify the cen-
troid. Computing the centroid of a general
type-2 FS involves an enormous amount of
computation; however, computing the cen-
troid of an interval type-2 FS only involves
two independent iterative computations
that can be performed in parallel. This is
because the centroid of an interval type-2
FS is an interval set, and such a set is com-
pletely characterized by its left- and right
end points-yet another reason for using
interval type-2 FSs. The larger (smaller) the
amount of uncertainty-as reflected by a
larger (smaller) FOU-the larger (smaller)
will the centroid of the type-2 FS be. So the
centroid provides a very useful measure of
dispersion for a type-2 FS.

12) Other than for modeling words, what
are some situations where by using
type-2 FSs we may outperform the use
of type-1 FSs?

Some specific situations where we have
found that using type-2 FSs will let us out-
perform type-1 FSs are: (1) Measurement
noise is non-stationary, but the nature of
the non-stationarity cannot be expressed
ahead of time mathematically (e.g., vari-
able SNR measurements); (2) A data-gen-
erating mechanism is time-varying, but the
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nature of the time-variations cannot be
expressed ahead of time mathematically
(e.g., equalization of non-linear and time-
varying digital communication channels);
and, (3) Features are described by statisti-
cal attributes that are non-stationary, but
the nature of the non-stationarity cannot be
expressed ahead of time mathematically
(e.g., rule-based classification of video traf-
fic).

13) Why do we believe that by using
type-2 FSs we will outperform the use of
type-1 FSs?

Type-2 FSs are described by MFs that
are characterized by more parameters than
are MFs for type-1 FSs. Hence, type-2 FSs
provide us with more design degrees of
freedom; so using type-2 FSs has the
potential to outperform using type-1 FSs,
especially when we are in uncertain envi-
ronments. Note that, at present, there is no
theory that guarantees that a type-2 FS will
always do this.

3. Conclusions

We are now ready to answer the two
questions posed in the Introduction.

a) Why did it take so long for the con-
cept of a type-2 FS to emerge?

It seems that science moves in progres-
sive ways where one theory is eventually
replaced or supplemented by another, and
then another. In school we learn about
determinism before randomness. Learning
about type-1 FSs before type-2 FSs fits a
similar learning model. So, from this point
of view it was very natural for fuzzyites to
develop type-1 FSs as far as possible. Only
by doing so was it really possible later to
see the shortcomings of such FSs when

one tries to use them to model words or to
apply them to situations where uncertain-
ties abound.

b) Why didn't type-2 fuzzy sets immedi-
ately become popular?

Although Zadeh introduced type-2 FSs
in 1975, very little was published about
them until the mid-to late nineties. Until
then they were studied by only a relatively
small number of people, including:
Mizumoto and Tanaka (1976, 1981),
Nieminen (1977), Dubois and Prade (1978,
1979), Gorzalczany (1987), and,
Wagenknecht and Hartmann (1988). Recall
that in the 1970's people were first learning
what to with type-1 FSs, e.g. fuzzy logic
control. Bypassing those experiences
would have been unnatural. Once it was
clear what could be done with type-1 FSs,
it was only natural for people to then look at
more challenging problems. This is where
we are today.

One last question:

c) How can I learn more about type-2
FSs?

I would start with the article by Mendel
and John (2002), and would then read
Mendel (2001) (modulo focusing on interval
type-2 FSs).  Doing the latter will save you
a lot of time. Oh, and there is lots of free
type-2 software available at:
http://sipi.usc.edu/~mendel/software
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