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An Revision on Genetic Fuzzy Systems (GFSs)

 Brief Introduction

 Taxonomy of Genetic Fuzzy Systems

 Why do we use GAs? Considering multiple Objectives

 The birth, GFSs roadmap, current state and most cited

papers

Introduction to genetic fuzzy systems

Multi-Objective Evolutionary Fuzzy Systems (MOEFSs) 
are a particular type of Genetic Fuzzy System using 
Multi-Objective Evolutionary Algorithms (MOEAs)
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 The use of genetic/evolutionary algorithms (GAs) to design
fuzzy systems constitutes one of the branches of the Soft
Computing paradigm: genetic fuzzy systems (GFSs)

 The most known approach is that of genetic fuzzy rule-
based systems, where some components of a fuzzy rule-
based system (FRBS) are derived (adapted or learnt) using
a GA

 Some other approaches include genetic fuzzy neural
networks and genetic fuzzy clustering, among others

Introduction to genetic fuzzy systems
Brief Introduction
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Evolutionary algorithms and machine learning:

 Evolutionary algorithms were not specifically designed as
machine learning techniques, as other approaches like
neural networks

 However, it is well known that a learning task can be
modelled as an optimization problem, and thus solved
through evolution

 Their powerful search in complex, ill-defined problem spaces
has permitted applying evolutionary algorithms successfully
to a huge variety of machine learning and knowledge
discovery tasks

 Their flexibility and capability to incorporate existing
knowledge are also very interesting characteristics for the
problem solving.

Introduction to genetic fuzzy systems
Brief Introduction
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Genetic Fuzzy Rule-Based Systems:

Genetic Algorithm Based
Learning Process

Knowledge Base
Data Base + Rule Base

Fuzzy Rule-
Based System

Output InterfaceInput Interface

DESIGN PROCESS

Computation with Fuzzy Rule-Based Systems EnvironmentEnvironment

Introduction to genetic fuzzy systems
Brief Introduction
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Design of fuzzy rule-based systems:

 An FRBS (regardless it is a fuzzy model, a fuzzy logic
controller or a fuzzy classifier), is comprised by two main
components:
 The Knowledge Base (KB), storing the available problem

knowledge in the form of fuzzy rules
 The Inference System, applying a fuzzy reasoning method on

the inputs and the KB rules to give a system output

 Both must be designed to build an FRBS for a specific
application:
 The KB is obtained from expert knowledge or by machine

learning methods
 The Inference System is set up by choosing the fuzzy operator

for each component (conjunction, implication, defuzzifier, etc.)
Sometimes, the latter operators are also parametric and
can be tuned using automatic methods

Introduction to genetic fuzzy systems
Brief Introduction
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An Example of Fuzzy rule-based system

input Fuzzification
Interface

Defuzzification
Interface

Rule
Base

Data
Base

Knowledge Base

Inference
Mechanism

output

R1: IF X1 is High AND X2 is Low 
THEN Y is Medium

R2: IF X1 is Low AND X2 is Low 
THEN Y is High

…

M
L

X1
S M L

X2
S M L

Y

S

Introduction to genetic fuzzy systems
Brief Introduction



10

The KB design involves two subproblems, related to 
its two subcomponents:

– Definition of the Data Base (DB):
• Variable universes of discourse
• Scaling factors or functions
• Granularity (number of linguistic terms/labels) per 

variable
• Membership functions associated to the labels

– Derivation of the Rule Base (RB): fuzzy rule 
composition

Introduction to genetic fuzzy systems
Brief Introduction
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As said, there are two different ways to design the 
KB:

– From human expert information

– By means of machine learning methods guided by the 
existing numerical information (fuzzy modeling and 
classification) or by a model of the system being controlled

Introduction to genetic fuzzy systems
Brief Introduction
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Genetic fuzzy systems

Genetic tuning 

Genetic KB 
learning

Genetic adaptive
defuzzification 
methods

Genetic tuning of 
KB parameters

Genetic adaptive
inference system

Genetic adaptive
inference engine

Genetic learning
of KB components
and inference 
engine parameters

Genetic learning of
FRBS components

Introduction to genetic fuzzy systems
Taxonomy of Genetic Fuzzy Systems

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary 
Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5

Associated Website: http://sci2s.ugr.es/gfs/



Genetic KB
learning

Genetic rule
selection
(A priori rule
extraction) 

Genetic DB 
learning

Simultaneous 
genetic learning of
KB components

Genetic
learning
of linguistic
models 
RB and DB

Genetic fuzzy rules
learning 
(Approximate
Models, TS-rules ..)

Genetic RB 
learning
for prediction

Genetic
descriptive
rules 
extraction

Genetic rule
learning
(A priori DB)

Embedded
genetic
DB learning

A prioiri
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Introduction to genetic fuzzy systems
Taxonomy of Genetic Fuzzy Systems
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Classically:
– performed on a predefined DB definition
– tuning of the membership function shapes by a 

GA

– tuning of the inference parameters

VS S M VLL

Introduction to genetic fuzzy systems
1. Genetic Tuning
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Introduction to genetic fuzzy systems
1. Genetic Tuning
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A predefined Data Base definition is assumed
– The fuzzy rules (usually Mamdani-type) are 

derived by a GA

Introduction to genetic fuzzy systems
2. Genetic Rule Learning
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Introduction to genetic fuzzy systems
2. Genetic Rule Learning
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– A predefined set of candidate rules is 
assumed

– The fuzzy rules are selected by a GA for 
getting a compact rule base (more 
interpretable, more precise)

Introduction to genetic fuzzy systems
3. Genetic Rule Selection
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Introduction to genetic fuzzy systems
3. Genetic Rule Selection
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Example of genetic rule selection

Learning
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Introduction to genetic fuzzy systems
3. Genetic Rule Selection
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– Learning of the membership function shapes by a GA

Introduction to genetic fuzzy systems
4. Genetic DB Learning
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Introduction to genetic fuzzy systems
4. Genetic DB Learning
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The simultaneous derivation properly addresses the strong 
dependency existing between the RB and the DB

VS S M VLL

Introduction to genetic fuzzy systems
5. Simultaneous Genetic Learning of KB Components
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Introduction to genetic fuzzy systems
5. Simultaneous Genetic Learning of KB Components
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R 1 R 2 R N R 1 R 2 R N R 1 R 2 R N

{ES3,..,EL3} {ES3,..,EL3} {ES3,..,EL3} 1 2  1  … ……
… … …
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Rule Base Connectives

ConjunctionDefuzWEIGTH

W

Example of the coding scheme for learning an RB and the inference 
connective parameters

Introduction to genetic fuzzy systems
6. Genetic Learning of KB Components and Inference Engine

Parameters
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Introduction to genetic fuzzy systems
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Particular Characteristics of the Genetic Fuzzy Systems
 We can code different FS components in a chromosome:

 Identify relevant inputs

 Scaling factors
 Membership functions, shape functions, optimal shape of 

membership funct., granularity (number of labels per 
variable)

 Fuzzy rules, Any inference parameter, .... 

We can define different mechanism for managing them
(combining genetic operators, coevolution,...)

Introduction to genetic fuzzy systems
Why do we use GAs?
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Particular Characteristics of the Genetic Fuzzy Systems

 We can consider multiple objectives in the learning
model (interpretability, precision, ....)

Interpretability

A
cc

ur
ac

y
Pareto
Solutions

Introduction to genetic fuzzy systems
Considering Multiple Objectives



 Thrift’s ICGA91 paper (Mamdani-type Rule Base Learning. Pittsburgh approach)
Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th
International Conference on Genetic Algorithms (ICGA'91), pp 509-513

 Valenzuela-Rendón’s PPSN-I paper (Scatter Mamdani-type KB Learning. Michigan
approach)

Valenzuela-Rendon M (1991) The fuzzy classifier system: A classifier system for
continuously varying variables. In: Proc. of 4th International Conference on Genetic
Algorithms (ICGA'91), pp 346-353

 Pham and Karaboga’s Journal of Systems Engineering paper (Relational matrix-
based FRBS learning. Pittsburgh approach)

Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using
genetic algorithms. Journal of Systems Engineering 1:114-118).

 Karr’s AI Expert paper (Mamdani-type Data Base Tuning)

Karr C (1991) Genetic algorithms for fuzzy controllers. AI Expert 6(2):26-33.

Almost the whole basis of the area were established in the first year!

The birth of GFSs: 1991

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers



Thrift’s GFS:
P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl. 
Conf. on Genetic Algorithms (ICGA’91), San Diego, USA, 1991, pp. 509–513

– Classical approach: Pittsburgh – the decision table is encoded in a 
rule consequent array

– The output variable linguistic terms are numbered from 1 to n and 
comprise the array values. The value 0 represents the rule absence, 
thus making the GA able to learn the optimal number of rules

– The ordered structure allows the GA to use simple genetic operators
S M L
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X 1
X2

R5

R1 R2 R3

R4 R6

R7 R8 R9 1    0    2    0    2    0   2    0   3 
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Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers



1991-1996/7: INITIAL GFS SETTING: KB LEARNING:

 Establishment of the three classical learning approaches in the GFS field: Michigan,
Pittsburgh, and IRL

 Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK

 Generic applications: Classification, Modeling, and Control

1995-…: FUZZY SYSTEM TUNING:

 First: Membership function parameter tuning

 Later: other DB components adaptation: scaling factors, context adaptation (scaling
functions), linguistic hedges, …

 Recently: interpretability consideration

GFSs roadmap

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers



1998-…: APPROACHING TO MATURITY?
NEW GFS LEARNING APPROACHES:

 New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic
algorithms), …

 Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, …

 Multiobjective evolutionary algorithms

 Interpretability-accuracy trade-off consideration

 Course of dimensionality (handling large data sets and complex problems):
 Rule selection (1995-…)
 Feature selection at global level and fuzzy rule level
 Hierarchical fuzzy modeling

 “Incremental” learning

GFSs roadmap

Introduction to genetic fuzzy systems
The birth, GFSs roadmap, current status and most cited papers
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Number of papers on GFSs published in JCR journals

Source: The Thomson Corporation ISI Web of Knowledge
Query: (TS = (("GA-" OR "GA based" OR evolutionary OR "genetic algorithm*" OR "genetic 

programming" OR "evolution strate*" OR "genetic learning" OR "particle swarm" OR "differential 
evolutio*" OR "ant system*" OR "ant colony" OR "genetic optimi*" OR "estimation of distribution 
algorithm*") AND ("fuzzy rule*" OR "fuzzy system*" OR "fuzzy neural" OR "neuro-fuzzy" OR "fuzzy 
control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if" OR "fuzzy model*" OR "fuzzy 
association rule*" OR "fuzzy regression")) 

Date of analysis: January 3th, 2013          Number of papers: 5079    
Number of citations: 30738          Average citations per paper: 6.05

Introduction to genetic fuzzy systems
Current state of the GFS area
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Highly cited papers on GFSs (classic approaches - papers until 2000)

1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy 
controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 302

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems 
using genetic algorithms, IEEE TFS 3 (3) (1995) 260-270. Citations: 284

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5) 
(2000) 509-522 . Citations: 215

4. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for 
multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 177

5. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999) 
109-119. Citations: 126

6. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy 
control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 125

7. Jin, YC (2000) Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability 
improvement. IEEE Transactions on Fuzzy Systems 8(2):212-221. Citations: 121

8. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for
selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems 89(2):135-150 
Citations: 116

9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy 
controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 109

10. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, IJAR 12 (3-4) 
(1995) 299-315. Citations: 108

Introduction to genetic fuzzy systems
Current state of the GFS area
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Highly cited papers on GFSs (recent approaches – 2001 to 2010)

1. Juang, CF (2002) A TSK-type recurrent fuzzy network for dynamic systems processing by neural network 
and genetic algorithms. IEEE Transactions on Fuzzy Systems 10(2):155-170. Citations: 144

2. Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years of genetic fuzzy systems: current 
framework and new trends. Fuzzy Sets and Systems 141(1):5-31. Citations: 142

3. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classifiers through iterative 
complexity reduction. IEEE Transactions on Fuzzy Systems 9(4):516-524. Citations: 105

4. Ishibuchi H, Nakashima T, Murata T (2001) Three-objective genetics-based machine learning for 
linguistic rule extraction. Information Sciences 136(1-4):109-133. Citations: 97

5. Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms 
and rule evaluation measures in data mining. Fuzzy Sets and Systems 141(1):59-88. Citations: 96

6. Cordon O, Herrera F, Villar P (2001) Generating the knowledge base of a fuzzy rule-based system by the 
genetic learning of the data base. IEEE Transactions on Fuzzy Systems 9(4):667-674. Citations: 66

7. Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez J, Diaz AF (2003) Multiobjective evolutionary 
optimization of the size, shape, and position parameters of radial basis function networks for function 
approximation. IEEE Transactions on Neural Networks 14(6):1478-1495. Citations: 61

8. Liu BD, Chen CY, Tsao JY (2001) Design of adaptive fuzzy logic controller based on linguistic-hedge concepts
and genetic algorithms. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 31(1):32-53 
Citations: 53

9. Wang HL, Kwong S, Jin YC, et al. (2005) Multi-objective hierarchical genetic algorithm for interpretable 
fuzzy rule-based knowledge extraction. Fuzzy Sets And Systems 149(1):149-186. Citations: 52

10. Kuo RJ, Chen CH, Hwang YC (2001) An intelligent stock trading decision support system through integration 
of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets and Systems 
118(1):21-45. Citations: 50

Introduction to genetic fuzzy systems
Current state of the GFS area
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– M. Fazzolari, R. Alcalá, Y. Nojima, H. Ishibuchi, F. Herrera. A review of the application of Multi-
Objective Evolutionary Systems: Current status and further directions. IEEE Transactions on Fuzzy 
Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338

– F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. 
Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5, 

– F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions, 
International Journal of Computational Intelligence Research 1 (1) (2005) 59-67

– O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy 
Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31

– F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE 
89 (9) (2001) 1318-1333

GENETIC FUZZY SYSTEMS
Evolutionary Tuning and Learning of Fuzzy 

Knowledge Bases.
O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena

World Scientific, July 2001

H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling 
with Linguistic Information Granules. Advanced Approaches to 
Linguistic Data Mining. Springer (2005)

Introduction to genetic fuzzy systems
Some References
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http://sci2s.ugr.es/gfs/biblio.php

Introduction to genetic fuzzy systems
GFSs and MOEFSs Website

http://sci2s.ugr.es/gfs/
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Multiobjective Optimization
Two-Objective Maximization Problem:
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Pareto-Optimal Solutions
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A Pareto-optimal solution is a solution that
is not dominated by any other solutions.

)(2 xf

Pareto-Optimal Solutions



Pareto Front
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The set of all Pareto-optimal solutions is
called the Pareto front of the problem.
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Pareto Front



Pareto-Optimal Solutions
(Pareto front)
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Evolutionary multiobjective optimization (EMO)
algorithms have been designed to search for
Pareto-optimal solutions in their single run.
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EMO Algorithms
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Comparison: Weighted Sum Approach

Only a single solution is obtained
by the weighted sum approach.
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Comparison: EMO Approach

Only a single solution is obtained
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by an EMO algorithm.
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Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
- This approach can not find any Pareto-optimal solutions in a 

non-convex region of the Pareto front in the objective space.
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Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.
- This approach can not find any Pareto-optimal solutions in a 

non-convex region of the Pareto front in the objective space.
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EMO Approach
- EMO approach can find Pareto-optimal solutions even in a non-

convex region of the Pareto front in the objective space.
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Comparison of the Two Approaches
Two-objective maximization problem 

EMO Approach                     Weighted Sum Approach
Experimental results of a single run of each approach
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Search Direction in Each Approach
Two-objective maximization problem 
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Both the diversity and the convergence should be improved in EMO.



Highly Cited EMO Papers
Two Dominant Algorithms: NSGA-II and SPEA
1. Deb K et al. (2002) A fast and elitist multiobjective genetic

algorithm: NSGA-II. IEEE TEC. NSGA-II
2. Zitzler E, Thiele L (1999) Multiobjective evolutionary

algorithms: A comparative case study and the Strength
Pareto approach. IEEE TEC. SPEA (=> SPEA2 in TIK-Report)

3. Fonseca CM, Fleming PJ (1998) Multiobjective optimization and
multiple constraint handling with evolutionary algorithms (Part I):
A unified formulation, IEEE SMC Part A.

4. Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE TEC.

5. Ishibuchi H, Murata T (1998) A multi-objective genetic local search
algorithm and its application to flowshop scheduling, IEEE SMC
Part C.



Goal of EMO Algorithms
An EMO algorithm is designed to search for
- all Pareto-optimal solutions
- uniformly distributed Pareto optimal solutions
- a solution set which approximates the Pareto front

in their single run.
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Obtained solution



Basic Ideas in EMO Algorithm Design
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Desired search behavior of EMO algorithms

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA2 have some common features.



(1) Pareto Dominance
Converge to the Pareto front
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Basic Ideas in EMO Algorithm Design

low fitness

high fitness

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA2 have some common features:



Basic Ideas in Recent EMO Algorithms

1. Pareto Dominance
2. Crowding
3. Elite Strategy 
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(2) Crowding
Diversity maintenance
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(1) Pareto Dominance
Converge to the Pareto front

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA2 have some common features:



Basic Ideas in EMO Algorithm Design

Example: Crowding Distance in NSGA-II
Distance between adjacent individuals

0 Maximize  f1
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Infinitely
large value

Crowding distance of C  is  (a + b)



(3) Elitist Strategy
Non-dominated solutions are handled as elite solutions.
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(Elite solutions)

Basic Ideas in EMO Algorithm Design

(2) Crowding
Diversity maintenance

(1) Pareto Dominance
Converge to the Pareto front

Recently developed well-known EMO algorithms such as 
NSGA-II and SPEA2 have some common features:



Basic Ideas in Recent EMO Algorithms

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non-Dominated Solutions)
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f 2:
 T

ot
al

 p
ro

fit
 fr

om
 k

na
ps

ac
k 

2 2000th generation
50th generation
20th generation

Pareto
  front

16000 17000 18000 19000 2000016000

17000

18000

19000

20000

21000

(1)
(2)

(2)



Hot Issues in EMO Research

Utilization of Decision Maker’s Preference
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

Handling of Many Objectives by EMO Algorithms
- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.

Hybridization with Local Search
- Hybridization often improves the performance of EMO.
- Balance between local and genetic search is important.

Design of New EMO Algorithms (some alternatives to NSGA-II and SPEA2)

- Indicator-based EMO algorithms 
- Scalarizing function-based EMO algorithms
- Use of other search methods such as PSO, ACO and DE.



New Trend in EMO Algorithm Design 
IBEA: Indicator-Based Evolutionary Algorithm

Maximize f1

M
ax

im
iz

e 
f 2

x1

x3

x2

Basic Idea
To maximize a performance indicator of a solution set 
(not a solution): Hypervolume is often used. 

Maximization of this area



}{ where subject to
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New Trend in EMO Algorithm Design 
IBEA: Indicator-Based Evolutionary Algorithm

(Maximization of an Indicator Function)

S : A set of solutions
N: A pre-specified number

of required solutions
X: A feasible region

x x X

Maximize f1

M
ax

im
iz

e 
f 2

Maximization of this area



New Trend in EMO Algorithm Design 
MOEA/D: Use of Scalarizing Functions 

Its Basic Idea (Decomposition): A multi-objective problem
is handled as a set of scalarizing function optimization
problems with different weight vectors.

(a) Two-objective case          (b) Three-objective case

Weight vector

MOEA/D: Multi-objective evolutionary algorithm based on 
decomposition by Zhang and Li  (IEEE TEC 2007)



New Trend in EMO Algorithm Design 
Hybrid Method: Use of Scalarizing Functions 

Probability for scalarizing fitness functions:
Parent selection: PPS Generation update: PGU

Initialization

Parent selection

Genetic operation

Generation update

PPS

PGU

1PGU

1PPS

End

Scalarizing fitness 
function

NSGA-II fitness 
evaluation mechanism

Ishibuchi et al. (PPSN 2006)



New Trend in EMO Algorithm Design 
Use of Other Meta-Heuristics (PSO, ACO, etc.)  
Highly Cited Papers
[1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple

Objectives with Particle Swarm Optimization, IEEE TEC
[2] McMullen PR (2001) An Ant Colony Optimization Approach to

Addressing a JIT Sequencing Problem with Multiple
Objectives, Artificial Intelligence in Engineering

[3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective
Design Optimization, Engineering Optimization

[4] Li XD (2003) A Non-Dominated Sorting Particle Swarm
Optimizer for Multiobjective Optimization, GECCO 2003.

[5] Ho SL et al. (2005) A Particle Swarm Optimization-Based
Method for Multiobjective Design Optimizations, IEEE Trans.
on Magnetics



For More Information
Webpage for EMO Papers: EMOO

http://www.lania.mx/~ccoello/EMOO/



For More Information
Webpage for EMO Algorithms and Problems: PISA 

http://www.tik.ee.ethz.ch/sop/pisa/
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Types of MOEFSs by Multiobjective Nature and 
Optimized Components

 The flexibility of FRBSs makes them applicable to a wide range of 
problems.

 From among them, problems with multiple conflicting objectives are 
of particular interest to researchers, as they are very common and arise 
wherever optimal decisions need to be taken.

 These problems can be tackled using MOEAs for the design of FRBSs, 
giving way to the so called MOEFSs.

 MOEFSs are a type of GFS exploiting MOEAs to design sets of FRBSs 
with different trade-offs among objectives instead of a single one.
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1) Preventing a Deterioration of Interpretability



Motivations for MOEFSs at their Origin 
Multiobjective Fuzzy System Design (Late 1990s - )

Er
ro

r
Sm

al
l

La
rg

e

ComplexitySimple Complicated

Interpretable
fuzzy system

Accurate
fuzzy systemIdeal 
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Goals 
- Accuracy Maximization
- Interpretability Maximization
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Use of EMO algorithms to search 
for a number of non-dominated 
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Accuracy-Interpretability (A-I) 
Trade-Offs

Motivations for MOEFSs at their Origin 
Multiobjective Fuzzy System Design (Late 1990s - )



Motivations for MOEFSs at their Origin
2) Avoiding too Complex Models helps to Control Overfitting

Test data
accuracy

Training data
accuracy

Accuracy maximization               Overfitting

Complexity

E
rr

or

S*0



Complexity

Test data

S*0

Training data

E
rr

or
Many non-dominated fuzzy systems can be obtained along
the tradeoff surface by a single run of an EMO algorithm.

Motivations for MOEFSs at their Origin
2) Avoiding too Complex Models helps to Control Overfitting



Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on 
the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions. 
IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338

Types of MOEFSs by Multiobjective Nature and 
Optimized Components

 However, MOEFSs have been also applied to solve multiobjective
control problems and for fuzzy association rule mining (where different 
metrics are considered to describe the quality of the obtained rules).

 The type of objectives used in these three main categories (A-I 
trade-off, control and mining fuzzy association rules) represent a 
different multi-objective nature

 Due to this fact, both, the multi-objective nature of the problem 
faced and type of FRBS components optimized, have been considered 
recently to propose a two-level taxonomy in,



Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on 
the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions. 
IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338

Types of MOEFSs by Multiobjective Nature and 
Optimized Components: A Two-level Taxonomy

12 papers 24 papers 12 papers 5 papers

6 papers17 papers36 papers

We will
mainly focuss
on this type.



Jin, Yaochu (Ed.) 
Multi-Objective Machine Learning
Springer-Verlag, 2006 

Associated Webpage (http://ssci2s.ugr.es/gfs)

Multiobjective Evolutionary Fuzzy Systems
Bibliography

H. Ishibuchi, T. Nakashima, M. Hii. 
Classification and Modelling with    Linguistic 
Information Granules. Advanced Approaches 
to Linguistic Data Mining.                    
Springer-Verlag, 2004.

– M. Fazzolari, R. Alcalá, Y. Nojima, H. Ishibuchi, F. Herrera. A review of the application of Multi-
Objective Evolutionary Systems: Current status and further directions. IEEE Transactions on Fuzzy 
Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338



Highly Cited MOEFS Papers
[1] Ishibuchi et al. (1997) Single-objective and two-objective

genetic algorithms for selecting linguistic rules for pattern
classification problems. Fuzzy Sets & Systems.

[2] Ishibuchi et al. (2001) Three-objective genetics-based machine
learning for linguistic rule extraction. Information Sciences.

[3] Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy Sets & Systems.

[4] Wang et al. (2005) Multi-objective hierarchical genetic algorithm
for interpretable fuzzy rule-based knowledge extraction. Fuzzy
Sets & Systems.

[5] Johansen & Babuska (2003) Multiobjective identification of
Takagi-Sugeno fuzzy models. IEEE TFS.
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 Highly used criteria: Complexity criteria in the 
learning of FRBSs.

Number of variables, labels, rules, conditions …

Interpretability Issues in Fuzzy System Design
Complexity Criteria
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 Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

Interpretability Issues in Fuzzy System Design
Semantic Criteria
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 Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

Interpretability Issues in Fuzzy System Design
Syntactic Criteria
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 Interpretability quality: associated to the meaning of 
the labels and the size of the rule base 

Interpretability Issues in Fuzzy System Design
Strategies to Satisfy Interpretability
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 Interpretability quality:

What is the most interpretable rule base?

Interpretability Issues in Fuzzy System Design
Still not Clear Concepts



Rule Base Level Fuzzy Partition Level

Complexity-
based

Interpretability

C1
Number of rules
Number of conditions

C2
Number of membership functions
Number of features

Semantic-based
Interpretability

C3
Consistency of rules
Rules fired at the same time
Transparency of rule structure (rule weights, etc.)
Cointension

C4
Absolute Measures:

Completeness or coverage,
normalization, distinguishability,
complementarity

Relative Measures

A Taxonomy on the Existent Interpretability 
Measures for Linguistic FRBSs

Most works in C1 and C2 are applied to classification
problems. They are the classic measures.

There are few works in C3          
Still an open problem

86Most works in C4 impose absolute measures or
restrictions. Relativity could be a new possibility.         

Still an open problem.



 Interpretability of FRBSs is still an open problem since there is no 
single (or global) comprehensive measure to quantify the 
interpretability of linguistic models

 To get a good global measure it would be necessary to consider 
appropriate measures from all of the quadrants, in order to take into 
account the different interpretability properties required for these kinds 
of systems together.

87

M.J. Gacto, R. Alcalá, F. Herrera

Interpretability of Linguistic Fuzzy Rule-Based Systems: An

Overview on Interpretability Measures, Information Sciences

181:20 (2011) 4340–4360, doi: 10.1016/j.ins.2011.02.021

A thematic website has been developed to maintain this study at:

http://sci2s.ugr.es/fuzzy-interpretability/

A Taxonomy on the Existent Interpretability 
Measures for Linguistic FRBSs (2)



 The different measures from each quadrant could be optimized as different 
objectives within a multi-objective framework.

 They are contradictory to some degree. Not only accuracy is contradictory to inter-
pretability. The different measures represent different properties and requirements.

 Together with accuracy, many interpretability objectives should be optimized at 
the same. Two different solutions:

 Development of new EMO algorithms for many objective problems (incoming for future)

 By grouping complexity measures and semantic measures into two respective indexes.  
(it would represent the present)

 With respect to the objectives nature, while accuracy is hard to improve, interpre-
tability is easy to obtain, since interpretable models can even be provided by hand.

 These differences between both types of objectives influence the optimization 
process, by which the applied MOEAs are usually modified or extended.

Applicability of MOEFSs to the I-A problem
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A-I Trade-Off: Some Example Approaches
Bibliography on this category

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.

• Most of them are based
on 2nd gen. MOEAs

• Usually no more than 3 
objectives

• Complexity at the
beginning; Semantic
aspects in the last years

• Most of them are 
Linguistic and Mamdani
type based approaches

• KB learning in the last
years (granularity as im-
portant factor)

• Most of them are 
improved versions of the
most known MOEAs
(particularly in the case of 
KB learning)



In the following we will see a 
representative example for each type:

o FIRST TYPE: RB Learning

o SECOND TYPE: DB Tuning + Rule Sel.

o THIRD TYPE: KB Learning

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.

A-I Trade-Off: Some Example Approaches
Some Example Cases



FIRST TYPE: RULE BASE LEARNING - CLASSIFICATION

H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining, Fuzzy
Sets and Systems, Vol. 141, pp. 59-88 (2004)

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection



1. Heuristic Rule Extraction
A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

2. Multiobjective Genetic Fuzzy Rule Selection
A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization).

Two-Stage Approach for Rule Base Learning

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining,” Fuzzy Sets and Systems, Vol. 141,
pp. 59-88 (2004).

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection



Fuzzy Rules for n-dimensional Problems
If x1 is A1 and … and xn is An then Class C with CF

Ai : Antecedent fuzzy set
Class C : Consequent class
CF : Rule weight (Certainty factor)

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection

Antecedent Fuzzy Sets (Multiple Partitions)

Usually we do not know an appropriate fuzzy partition for each input variable.
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Possible Fuzzy Rules
Total number of possible fuzzy rules

     n15114114 

Don’t care Don’t care

…
x1 xn

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection

Examined Fuzzy Rules
They only examine short fuzzy rules with only a few antecedent
conditions.

If x1 is small and x48 is large then Class 1 with 0.58



Rule Weight (Certainty Factor)
The rule weight CF of each fuzzy rule is calculated from compatible training patterns.

L
S

M

S LM S LM

L
S

MCF=1.0
(Maximum)

CF=0.37

Class 1
Class 2

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection
Consequent Class
The consequent class of each fuzzy rule is determined by compatible training patterns
(i.e., the dominant class in the corresponding fuzzy subspace).

If x1 is small and x2 is large then Class 1 with 1.0

If x1 is small and x2 is small then Class 1 with 0.37

x1

x2



1. Heuristic Rule Extraction

Possible fuzzy rules: (15)n rules

Restriction on the rule length :
Only short fuzzy rules

Rule evaluation criterion:
The best rules for each class
300 fuzzy rules for each class

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection

They extract a pre-specified number of the best fuzzy rules with
respect to a pre-specified heuristic rule evaluation criterion.



Coding:
N: Total number of candidate rules
sj={0, 1}: Inclusion or exclusion of the j-th rule

Objectives: f1(S), f2(S), f3(S)
f1(S) : Number of correctly classified patterns by S
f2(S) : Number of selected rules in S
f3(S) : Total number of antecedent conditions in S

NsssS  21

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection
2. Multiobjective Genetic Fuzzy Rule Selection
Algorithm: Multi-objective Genetic Local Search (MOGLS)

• Selection based on a weighted fitness function (Number of correctly classified training 
patterns and number of rules)

• Tentative set of non-dominated solutions preserved externally
• Elitist strategy: Nelite individuals of the population are randomly replaced with Nelite

individuals randomly extracted from the tentative set of non-dominated solutions



Maximize f1(S) and minimize f2(S)

Maximize

Maximize f1(S) and minimize f2(S), f3(S)

Maximize

Comparison of Four Approaches

)()( 2211 SfwSfw 

)()()( 332211 SfwSfwSfw 

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection

(1) Two-objective approach

(2) Weighted sum of the two objectives

(3) Three-objective approach

(4) Weighted sum of the three objectives

Data Sets Data set Attributes Patterns Classes Length
Breast W 9 683* 2 3
Diabetes 8 768 2 3

Glass 9 214 6 3
Heart C 13 297* 5 3

Iris 4 150 3 3
Sonar 60 208 2 2
Wine 13 178 3 3



Experimental Results (Cleveland Heart)

We can observe the overfitting due to the 
increase in the number of fuzzy rules. 

(a) Error rates on training data (b) Error rates on test data
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A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection

Experimental Results (Sonar)

The generalization ability is increased 
by increasing the number of fuzzy rules 
(i.e., the overfitting is not observed).  
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Observation
(1) Experimental results showed that each test problem has a different

tradeoff structure.
(2) Knowledge on the tradeoff structure is useful in the design of fuzzy

rule-based classification systems.

Error

Complexity

Test Data

Training Data
0

Error

Complexity

Test Data

Training Data
0

A-I Trade-Off: Some Example Approaches
MODEL 1: Multiobjective Rule Selection



SECOND TYPE: DATA BASE TUNING (+ RULE SELECT.) - REGRESSION

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic
algorithm for tuning and rule selection to obtain accurate and compact
linguistic fuzzy rule-based systems, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 15:5 (2007) 539–557

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection

M.J. Gacto, R. Alcalá, F. Herrera, Adaptation and Application of Multi-
Objective Evolutionary Algorithms for Rule Reduction and Parameter
Tuning of Fuzzy Rule-Based Systems. Soft Computing 13:5 (2009) 419-436
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R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm for 
tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based 
systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 
15:5 (2007) 539–557,

Multi-objective EAs are powerful tools to generate GFSs but they 
are based on getting a large, well distributed and spread off, 
Pareto set of solutions

– The two criteria to optimize in GFSs are accuracy and 
interpretability. The former is more important than the latter, 
so many solutions in the Pareto set are not useful

– Solution: Inject knowledge through the MOEA run to bias the 
algorithm to generate the desired Pareto front part

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection
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Pareto front classification in an interpretability-accuracy GFSs:
 Bad rules zone: solutions with bad 

performance rules. Removing them 
improves the accuracy, so no Pareto 
solutions are located here

 Redundant rules zone: solutions with 
irrelevant rules. Removing them does 
not affect the accuracy and improves 
the interpretability

 Complementary rules zone: solutions 
with neither bad nor irrelevant rules. 
Removing them slightly decreases the 
accuracy

 Important rules zone: solutions with 
essential rules. Removing them 
significantly decreases the accuracy

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection
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Accuracy-oriented modifications performed:

– Restart the genetic population at the middle of the run 
time, keeping the individual with the highest accuracy 
as the only one in the external population and 
generating all the new individuals with the same 
number of rules it has

– In each MOGA step, the number of chromosomes in the 
external population considered for the binary 
tournament is decreased, focusing the selection on the 
higher accuracy individuals

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection
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Obtained results for the medium voltage line problem:
Multi-objective genetic tuning + rule selection method:

• 5-fold cross validation  6 runs = 30 runs per algorithm
• T-student test with 95% confidence

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection



M.J. Gacto, R. Alcalá, F. Herrera,
Adaptation and Application of Multi-Objective Evolutionary Algorithms for Rule Reduction and
Parameter Tuning of Fuzzy Rule-Based Systems, Soft Computing 13:5 (2009) 419-436,

 To perform the study we have applied six different approaches
based on the two most known and successful MOEAs:

 Application of SPEA2 and NSGA-II
 Two versions of NSGA-II for finding knees,

NSGA-IIA and NSGA-IIU
 Two extensions for specific application,

SPEA2Acc and SPEA2Acc2

 Two objectives are considered:
MSE and Number of Rules

 Proper operators have to be selected.

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection

STUDY ON SEVERAL ALTERNATIVE APPROACHES AND IMPROVEMENTS: 
ADAPTATION AND APPLICATION OF MOEAs



NSGA-II FOR FINDING KNEES

 A variation of NSGAII in order to find knees in the Pareto 
front by replacing the crowding measure by either an angle-
based measure or an utility-based measure

 In our case, a knee could represent the best compromise 
between accuracy and number of rules.

J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding Knees in Multi-objective 
Optimization,” Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242, 
(Birmingham, UK, 2004) 722–731.

Angle Based 
Approach

Utility Based 
Approach

Two different 
approaches

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection



 Objective: to improve the search with a more intelligent
operator replacing the HUX crossover in SPEA2ACC

 Once BLX is applied a normalized euclidean distance is
calculated between the centric point of the MFs used by each
rule of the offpring and each parent

 The closer parent determines if this rule is selected or not for
this offpring

 Whit this crossover operator, mutation can be particularly used
to remove rules

Extension of SPEA2Acc (SPEA2Acc2)
A New Crossover Operator for the Rule Part 

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection



Obtained results for the medium voltage line problem:

• 5-fold cross validation  6 runs = 30 runs per algorithm
• T-student test with 95% confidence

Method #R MSEtra tra t MSEtst tst t

100,000 evaluations

WM 65.0 57605 2841 + 57934 4733 +

T 65.0 17020 1893 + 21027 4225 +

S 40.9 41158 1167 + 42988 4441 +

TS 41.3 13387 1153 + 17784 3344 +

TS-SPEA2 28.9 11630 1283 + 15387 3108 +

TS-NSGA-II 31.4 11826 1354 + 16047 4070 +

TS-NSGA-IIA 29.7 11798 1615 + 16156 4091 +

TS-NSGA-IIU 30.7 11954 1768 + 15879 4866 +

TS-SPEA2Acc 32.3 10714 1392 = 14252 3181 =

TS-SPEA2Acc2 29.8 10325 1121 * 13935 2759 *

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection
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Comparison of the SPEA2acc2 and classical GA 
for  for the medium voltage line problem:

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection



Convergence and an example model

A-I Trade-Off: Some Example Approaches
MODEL 2: Multiobjective Tuning and Rule Selection



THIRD TYPE: KNOWLEDGE BASE LEARNING - REGRESSION

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data
Bases of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy
Systems 17:5 (2009) 1106-1122, doi:10.1109/TFUZZ.2009.2023113

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases 
of Linguistic Fuzzy Rule-Based Systems  17:5 (2009) 1106-1122, IEEE 
Transactions on Fuzzy Systems, doi:10.1109/TFUZZ.2009.2023113,

 Rule bases and parameters of the membership functions of the
associated linguistic labels are learnt concurrently.

 Accuracy and interpretability are measured in terms of
approximation error (MSE) and rule base complexity
(#Conditions), respectively.

 To manage the size of the search space, the linguistic 2-tuple
representation model, which allows the symbolic translation of a
label by only considering one parameter, has been exploited

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



This proposal decreases the tuning complexity, since the 3 parameters
per label of the classical tuning are reduced to only 1 translation
parameter (the tuning is applied to the level of linguistic partitions)

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



Coding Scheme and Operators

 A double coding scheme (C = CRB+ CDB)

 Crossover operator: one point + BLX- crossovers (2 offsprings)

 Mutation operators:

 Rule Adding: It adds  random rules to the RB, where  is 
randomly chosen in [1, max]

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



 Modify RB: It randomly changes  elements of the RB 
part. The number  is randomly generated in [1, max]

 Modify DB: It changes a gene value at 
random in the DB part

PAES, NSGA-II and SOGA 
were applied using this 
representation and 
crossover

Operators and Selection Schemes

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



Analysed Methods

 Different population sizes were probed for these MOEAs showing
better results when the population used for parent selection has similar 
sizes than those considered by single objective oriented algorithms.

 300,000 evaluations to allow complete convergence in all the
algorithms

Method Description Pop. size

SOGARB Rule Base learning with SOGA 64

NSGA-IIRB Rule Base learning with NSGA-II 64

PAESRB Rule Base learning with PAES 64

SOGAKB (Rule Base + Data Base) learning with SOGA 64

NSGA-IIKB (Rule Base + Data Base) learning with NSGA-II 64

PAESKB (Rule Base + Data Base) learning with PAES 64

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



Average Pareto Fronts and average solution by SOGA 
(medium voltage lines problem) 

1. Most accurate 
solution is selected 
from each Pareto

2. Average values are 
computed and 
represented

3. These solutions are 
no more used

4. Repeat to extract 
the desired avarage 
Pareto

Only the first 20 
solutions are 
considered

5 Data partitions 80% - 20%
6 Runs per partition
A total of 30 Runs
Test t-student α = 0.05

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



REMINDER
5 Data partitions 80% - 20%
6 Runs per partition
A total of 30 Runs
Test t-student α = 0.05

Statistical Analysis

Statistical comparison among MOEAs

Statistical comparison of the best MOEA with SOGA

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



Convergence

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB



 The models obtained by these new approaches
presented a better trade-off than those obtained by
only considering performance measures.

 Between both multi-objective experimented, namely a
modified (2+2)PAES and the classical NSGA-II, the
modified (2+2)PAES has shown a better behavior than
NSGA-II.

 Finally, the linguistic 2-tuples representation
presented has shown a good positive synergy.

A-I Trade-Off: Some Example Approaches
MODEL 3: Multiobjective Learning of DB and RB
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MOEFSs for Multiobjective Control Problems
Bibliography on this category

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.

• Most of them deal with the post-processing of FLC parameters (simplest with reduced search space)

• Earlier works consider 1st-gen. algorithms and only recently the 2nd-gen. have been applied (2006)

•Almost all of them are Linguistic and Mamdani-type based approaches

The multiobjective nature is
specific to each problem



In the following we will see a representatibe
example for the control HVAC Systems

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.

MOEFSs for Multiobjective Control Problems
An example for the control of HVAC Systems
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MOEFSs: APPLICATION TO A HVAC 
CONTROL PROBLEM
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Heating Ventilating and Air Conditioning Systems
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Single Objective Previous Approaches

R. Alcalá, J.M. Benítez, J. Casillas, O. Cordón, R. Pérez, Fuzzy Control of HVAC 
Systems Optimized by Genetic Algorithms. Applied Intelligence 18:2 (2003) 155-
177. 

R. Alcalá, J. Casillas, O. Cordón, A. González, F. Herrera, A Genetic Rule Weighting
and Selection Process for Fuzzy Control of Heating, Ventilating and Air 
Conditioning Systems. Engineering Applications of Artificial Intelligence 18:3 
(2005) 279-296. 

R. Alcalá, J. Alcalá-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic Controllers
Obtained by Experts: A Case Study in HVAC Systems. Applied Intelligence 31:1 
(2009) 10-35.

A new MOEFS to Solve the Problem

M.J. Gacto, R. Alcalá, F. Herrera, A Multi-Objective Evolutionary Algorithm for an 
Effective Tuning of Fuzzy Logic Controllers in Heating, Ventilating and Air 
Conditioning Systems. Applied Intelligence 36:2 (2012) 330-347

Models for Fuzzy Control of HVAC Systems
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Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings

 Energy consumption in buildings is the 40% of the total and more 
than a half is for indoor climate conditions

 The use of appropriate automatic control strategies could result in 
energy savings ranging 15-85 %

 Moreover, in current systems, several criteria are considered and 
optimized independently without a global strategy

Generic Structure of an 
Office Building 
HVAC System

 It maintain a good thermal quality in summer and winter
 It dilutes and removes emissions from people, equipment and activities and 
supplies clean air
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Initial Data Base
17 Variables

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings

Initial Rule Base and  FLC Structure
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Representation of the Test Cells

 Two adjacent twin cells were available

 A calibrated and validated model of this site was 
developed to evaluate each FLC

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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 Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of
the energy consumption but maintaining the required indoor comfort levels

 INITIAL RESULTS

MODELS #R PMV>0.5
01

PMV<-0.5
02

C02

03

ENERGY
04 %

STABILITY
05 %

ON-OFF - 0,0 0 0 3206400 - 1136 -

FLC 172 0,0 0 0 2901686 9,50 1505 -32,48

Fuzzy Logic Controllers for Energy 
Efficiency Consumption in Buildings
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 The controller accuracy is assessed by means of simulations which 
approximately take 3-4 minutes

 The Lateral Tuning is combined with a Rule Selection

 Necessity of efficient tuning methodologies:

 Efficient adjustment of the MF parameters

 Steady-State Genetic Algorithms were applied in the previous 
aproaches: quick convergence

2000 evaluations  1 run took approximately 4 days

 Considering a small population (31 individuals)

 A doble coding scheme is considered with the joining

of the selection binary values and the lateral parameters

C = CS CT

MOEFSs for Fuzzy Control of HVAC Systems: 
Problem Restrictions and Tuning Approach
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Example of genetic lateral tuning and rule selection

MOEFSs for Fuzzy Control of HVAC Systems: 
Lateral Tuning + Rule Selection
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 Since the experts were able to provide trusted weights, performance criteria 
have been combined into a single function F. Thus the objectives are:

• Minimization of F (to improve the performance)

• Minimization of the number of rules (to favour the tuning efficiency)

 The following mechanisms or operators have been integrated into the well-
known SPEA2 algorithm to improve the Exploration/Exploitation trade-off

• An incest prevention mechanism as the well-known CHC algorithm

• Automatic restarting aplication to avoid local optima

• Progressive concentration on the most accurate solutions for parent
selection

• An intelligent crossover operator

MOEFSs for Fuzzy Control of HVAC Systems:
An Improved MOEA: SPEA2E/E
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MOEFSs for Fuzzy Control of HVAC Systems: 
RESULTS
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MOEFSs for Fuzzy Control of HVAC Systems: 
Pareto Fronts Obtained

The obtained fronts are not so wide but they dominate
the remaining wider ones
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• Predictive induction: Induces rule sets acting as classifiers for solving classification 
and prediction tasks

• Descriptive induction: Discovers individual rules describing interesting regularities 
in the data

Therefore: Different goals, different heuristics, different evaluation criteria

• One way to represent knowledge extracted with data mining techniques is by means of 
association rules, whose basic concept is to represent associations (simultaneity and not 
causality) between different pairs of sets of attribute values

MOEFSs for Fuzzy Association Rule Mining
Fuzzy Association Rule Mining

The use of fuzzy sets to describe associations between data: 
• extends the types of relationships that may be represented, 
• facilitates the interpretation of rules in linguistic terms, and 
• avoids unnatural boundaries in the partitioning of the attribute domains



MOEFSs for Fuzzy Association Rule Mining
Bibliography on this category

Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.

• In most cases, the classical measures of data mining, support and confidence, are used as objectives

• The application of MOEAs to extract fuzzy association rules is quite recent, beginning in 2006

• Therefore, the majority of works exploit a 2nd-generation MOEA

With respect to the multiobjective nature in this category, the aim of the optimization 
process is not only to improve the general trade-off between the usual metrics of the 
data mining for the whole set of rules, but also to obtain a large number of different 
rules, each of them satisfying the objectives to different degrees.



Michela Fazzolari, Rafael Alcalá, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.

MOEFSs for Fuzzy Association Rule Mining
An example on Subgroup Discovery

In the following we will see a representatibe
example for Subgroup Discovery on Databases



Subgroup discovery is a process to identify relations between a dependent 
variable (target variable) and usually many explaining, independent variables. 

For example, consider the subgroup described by 

”smoker=true AND family history=positive” 

for the target variable coronary heart disease=true.

Subgroup discovery does not necessarily focus on finding complete relations; 
instead partial relations, i.e., (small) subgroups with ”interesting” characteristics 
can be sufficient.

MOEFSs for Subgroup Discovery
How does subgroup discovery work?



• Non-dominated Multi-objective Evolutionary algorithm based 
on Fuzzy rules extraction for Subgroup Discovery (NMEEF-
SD)

MOEFSs for Subgroup Discovery
NMEEF-SD

C. J. Carmona, P. González, M. J. del Jesus, and F. Herrera, 

“NMEEF-SD: Non-dominated Multiobjective Evolutionary Algorithm for 
Extracting Fuzzy Rules in Subgroup Discovery”,  

IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 958–970, 2010



• Each candidate solution is codified according to the “Chromosome = Rule“ 
approach, where only the antecedent is represented

• NMEF-SD is able to work with crisp or fuzzy rules

• The fuzzy logic:
– Is used in continuous variables
– Linguistic labels are defined by means of the corresponding membership 

functions
– Defines uniform partitions with triangular membership functions

MOEFSs for Subgroup Discovery
NMEEF-SD



• NMEEF-SD can extract canonical or DNF rules. 

– For the canonical rules, only the antecedent is represented through a conjunction of 
value-variable pairs.

IF X1 = Value3 AND X4 = LL4
2 THEN Class 2

– For the DNF rules extension, a fixed-length binary representation is used
IF X1 = (Value1 OR Value3) AND X3 = LL31 THEN Class 2

X1 X2 X3 X4

1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

MOEFSs for Subgroup Discovery
NMEEF-SD

X1 X1 X1 X1

3 0 0 2



MOEFSs for Subgroup Discovery
NMEEF-SD

Operation diagram of NMEEF-SD

• This algorithm is based on NSGA-II approach.

• The quality measures selected as objectives:
– Support (SupcN)
– Unusualness (WRAcc)



• To create an initial population whose size is prefixed by an external 
parameter.

• A part of the population (75%) using only a maximum percentage of the 
variables (25% of the rule) which form part of the rule.

• The rest of variables and rules of the population are randomly generated.

• This operator obtains a set of rules with a high generality.

Biased initialisation

MOEFSs for Subgroup Discovery
NMEEF-SD



• The algorithm uses different operators:
– Tournament Selection
– Multi-point Crossover
– Biased Mutation

Genetic operators

3 2 4 2
Two types of mutation (50%)

0 2 4 2
Variable eliminated

1 2 4 2
Value modified

MOEFSs for Subgroup Discovery
NMEEF-SD



• The algorithm joins two populations in only one:
– Initial population
– Offspring population

• The algorithm applies the fast non-dominated sort over the population 
obtained previously.

• The individuals of the population are classified in fronts of dominance.

• The first front is the Pareto front.

• The algorithm obtains diversity with the operator of crowding distance.

Fast non-dominated sort

MOEFSs for Subgroup Discovery
NMEEF-SD



• When the algorithm obtains the fronts of dominance checks 
the evolution of the Pareto front.

If the Pareto front evolves during more than five percent of the evolutive process

Re-Initialisation based on coverage

EVOLVES

1. Introduce the fronts in the next 
population.

2. If the front has more individuals 
than can enter in the population, 
the inviduals are introduced by 
greater crowding distance.

DOES NOT EVOLVE

1. Eliminates the individuals
repeated in the Pareto front.

2. Replaces these individuals with
new individuals generated
based on coverage.

MOEFSs for Subgroup Discovery
NMEEF-SD



• The evolutionary process ends when the number of evaluations is reached. 

• The algorithm returns the rules in the Pareto front which reach a 
predefined fuzzy confidence value threshold.

• The fuzzy confidence is defined in:

Stop condition

MOEFSs for Subgroup Discovery
NMEEF-SD

M.J. Del Jesus, P. González, F. Herrera, M. Mesonero

Evolutionary fuzzy rule induction process for subgroup discovery: a case study in 
Marketing

IEEE Transactions on Fuzzy Systems, Vol. 15 (4), 2007, pp. 578-592.



• Different data sets available in UCI repository has been carried out: 
Australian, Balance, Echo and Vote.

http://www.ics.uci.edu/~mlearn/MLRepository.html

• Ten fold cross validation

• Algorithms compared:
– Evolutionary algorithms SDIGA and MESDIF.
– Classical methods CN2-SD and Apriori SD.

• Parameters for NMEF-SD:
– Population size: 25
– Maximum number of evaluations: 5000
– Crossover probability 0.60 and mutation probability 0.01

Experimentation

MOEFSs for Subgroup Discovery
NMEEF-SD



Experimentation

MOEFSs for Subgroup Discovery
NMEEF-SD

Database Algorithm Rul Var COV SIGN WRAcc SUPcN FCNF

Australian

NMEF-SD 3.58 2.92 0.454 23.178 0.171 0.783 0.930

MESDIF 10.00 3.52 0.311 7.594 0.060 0.577 0.807

SDIGA 2.68 3.28 0.310 16.348 0.120 0.803 0.591

CN2-SD 30.50 4.58 0.400 15.350 0.055 0.649 0.830

AprioriSD 10.00 2.02 0.377 16.998 0.074 0.654 0.863

Balance

NMEF-SD 2.30 2.00 0.362 5.326 0.070 0.530 0.698

MESDIF 28.10 3.08 0.163 3.516 0.022 0.318 0.557

SDIGA 7.40 2.39 0.291 5.331 0.049 0.487 0.664

CN2-SD 15.60 2.23 0.336 8.397 0.063 0.512 0.583

AprioriSD 10.00 1.20 0.333 5.444 0.058 0.480 0.649

Echo

NMEF-SD 3.62 2.35 0.428 1.293 0.043 0.628 0.757

MESDIF 19.74 3.30 0.164 0.877 0.017 0.355 0.591

SDIGA 2.32 2.27 0.394 1.165 0.013 0.566 0.590

CN2-SD 17.30 3.23 0.400 1.181 0.019 0.490 0.667

AprioriSD 9.80 1.70 0.194 0.901 0.034 0.226 0.510

Vote

NMEF-SD 1.10 2.05 0.577 21.974 0.217 0.946 0.979

MESDIF 7.86 3.44 0.429 19.937 0.187 0.827 0.957

SDIGA 3.06 3.19 0.422 18.243 0.180 0.802 0.891

CN2-SD 8.00 1.79 0.438 18.830 0.176 0.858 0.932

AprioriSD 10.00 1.44 0.428 17.060 0.147 0.800 0.930



• When analysing the results is important to take into account:
– The relation between Support and Confidence.
– Good results in the quality measures of Subgroup Discovery: 

Unusualness and Significance.
– A good interpretability of the results.

• NMEF-SD obtains:
– The best results for the quality measures in the data sets selected.
– Better results in generality and precision than others.
– The subgroups are good, useful and representative.

Experimentation

MOEFSs for Subgroup Discovery
NMEEF-SD
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Current and Future Research Directions
in MOEFSs
1) Development of New MGFS Methods with Improved Algorithms
- Particular algorithms for multiobjective input selection
- Particular algorithms for multiobjective fuzzy partition learning
- .  .  .

An example for learning granularities and selecting conditions can be found 
in:

M. Antonelli, P. Ducange, B. Lazzerini, and F. 
Marcelloni, “Learning concurrently partition
granularities and rule bases of Mamdani fuzzy systems 
in a multi-objective evolutionary framework,” Int. J. 
Approx. Reason., vol. 50, n. 7, pp. 1066–1080, 2009.

M. Antonelli, P. Ducange, B. Lazzerini, and F. 
Marcelloni, “Multi-objective evolutionary learning of 
granularity, membership function parameters and rules 
of Mamdani fuzzy systems,” Evolutionary Intelligence, 
vol. 2, n. 1-2, pp. 21–37, 2009.

Exploiting the concept of virtual 
partitions with modified PAES



Current and Future Research Directions
in MOEFSs (2)
1) Development of New MGFS Methods with Improved Algorithms (2)
An example for learning granularities and for selecting variables can be found 
in:

2) Performance evaluation of MOGFSs
• Visualization of Pareto-Optimal Fuzzy Systems
• How to compare MGFSs

- A statistical Analysis is needed
- Use of non-parametric statistical tests

R. Alcala, M. J. Gacto, and F. Herrera, “A Fast and 
Scalable Multi-Objective Genetic Fuzzy System for
Linguistic Fuzzy Modeling in High-Dimensional Regression
Problems,” IEEE Transactions on Fuzzy Systems 19:4 
(2011) 666-681, doi: 10.1109/TFUZZ.2011.2131657

Exploiting the embedded learning
of the DB with improved SPEA2

Evaluation indexes in the EMO framework
evaluate the exploration and exploitation
capabilities of the MOEA. But we are also
interested in generalization capabilities of
the FRBSs



Current and Future Research Directions
in MOEFSs (3)
2) Performance evaluation of MOGFSs
• How to compare MGFSs
A recent possibility to apply non-parametric statistical tests:

An extension for the case of more than two
objectives:

R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. 
Marcelloni, “A Multi-objective evolutionary approach
to concurrently learn rule and data bases of linguistic
fuzzy rule-based systems,” IEEE Trans. Fuzzy. Syst., 
vol. 17, n. 5, pp. 1106–1122, 2009.

Analyzing the averages on
three representative points by
non-parametric statistical tests
for bi-objective problems
(FIRST, MEDIAN, LAST)

M. J. Gacto, R. Alcala, and F. Herrera, “Integration 
of an index to preserve the semantic interpretability in 
the multi-objective evolutionary rule selection and 
tuning of linguistic fuzzy systems,” IEEE Trans. 
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010.

Projections on bi-objective planes.Then, representative
points can be obtained in the new non-dominated solutions



Current and Future Research Directions
in MOEFSs (4)
3) Reliable Interpretability Measures (Formulations of the Interpretability)
- We need well established and accepted measures
- Use of new ones for C3 (semantic-RB) as cointension or number of fired rules

The use of relative measures for C4 (semantic-DB) could be promising. First 
proposal in:

Some recent approaches are also using this kind of measures:

M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Learning knowledge bases of multi-
objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and 
partition integrity, Soft Computing vol. 15, n.12, pp. 2335–2354, 2011.

Measuring the differences to a given
linguistic partition (obtained from
experts or automatically by using
absolute measures): GM3M index
based on three metrics

M. J. Gacto, R. Alcala, and F. Herrera, “Integration 
of an index to preserve the semantic interpretability in 
the multi-objective evolutionary rule selection and 
tuning of linguistic fuzzy systems,” IEEE Trans. 
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010.

displacement aspect area



Current and Future Research Directions
in MOEFSs (5)
4) Objective dimensionality
- New EMO algorithms
- Aggregation or selection of a reasonable set of significant measures

5) Scalability issues
- High Dimensinality (handling the length of the rules)
- Large scale problems (using a reduced subset of examples)

Some approaches dealing with large scale problems:

• M.A. de Vega, J.M Bardallo, F.A. Marquez, A. Peregrin, “Parallel distributed two-level
evolutionary multiobjective methodology for granularity learning and membership functions
tuning in linguistic fuzzy systems,” in Proc. of ISDA 2009, pp. 134–139.

• M. Cococcioni, B. Lazzerini, F. Marcelloni, “On reducing computational overhead in multi-
objective genetic Takagi–Sugeno fuzzy systems,” Appl. Soft Computing 11:1 (2011), 675-688.

• M. Antonelli, P. Ducange, F. Marcelloni, “Exploiting a coevolutionary approach to 
concurrently select training instances and learn rule bases of Mamdani fuzzy dystems,” in 
Proc. of WCCI 2010, 1366–1372.

Parallelization

Fitness
estimation

Instance
Selection



5) Scalability issues (2)

Some approaches dealing with high dimensional problems:

An approach dealing with both high dimensional and large scale problems:

Current and Future Research Directions
in MOEFSs (6)

• H. Ishibuchi, and T. Yamamoto, “Fuzzy rule selection by multi-objective genetic local search 
algorithms and rule evaluation measures in data mining,” Fuzzy Sets and Systems, vol. 141, 
pp. 59–88, 2004.

• M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni, “Multi-objective Evolutionary
Generation of Mamdani Fuzzy Rule-Based Systems based on Rule and Condition Selection,” 
in Proc. of GEFS 2011.

Imposing a 
maximum rule 
lenght

Condition
selection
by specific
approach

• R. Alcala, M. J. Gacto, F. Herrera, “A Fast and Scalable Multi-Objective Genetic Fuzzy 
System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems,” IEEE 
Trans. on Fuzzy Systems 19:4 (2011) 666-681.

Using a  specific approach for variable selection and fitness
stimation by using a short subset of the examples



6) Automatic selection of the most suitable solution
- Determining those solutions with the best generalization ability
- Only training data can be took into account

A recent approach on this topic:

Current and Future Research Directions
in MOEFSs (7)

• Ishibuchi H, Nakashima Y, Nojima Y, Double cross-validation 
for performance evaluation of multi-objective genetic fuzzy 
systems. In GEFS 2011, pp 31-38.

Using a double cross-validation with two cross-validation
loops. The inner loop uses the training data to determine 
the complexity of the systems with the best validation
measure, which is used to select the solutions used for the
outer loop.



Rafael Alcalá

Dpto. Computer Science and A.I.
University of Granada

18071 – SPAIN

Multi-Objective Evolutionary Fuzzy 
Systems: An Overview by Problem objectives 

nature and optimized components

FUZZ-IEEE 2013 Tutorial, Hyderabad, India
Afternoon Session: 14:00-17:00, July 7, 2013

Thank you very much for your attention !!!
Questions?


