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Introduction to genetic fuzzy systems

(MOEFSSs)

are a particular type of using
Multi-Objective Evolutionary Algorithms (MOEAS)

An Revision on Genetic Fuzzy Systems (GFSs)

Brief Introduction
Taxonomy of Genetic Fuzzy Systems
Why do we use GAs? Considering multiple Objectives

The birth, GFSs roadmap, current state and most cited

papers



Introduction to genetic fuzzy systems

Brief Introduction

The use of genetic/evolutionary algorithms (GAs) to design
fuzzy systems constitutes one of the branches of the Soft
Computing paradigm: (GFSs)

The most known approach is that of

, where some components of a fuzzy rule-
based system (FRBS) are derived (adapted or learnt) using
a GA

Some other approaches include genetic fuzzy neural
networks and genetic fuzzy clustering, among others



Introduction to genetic fuzzy systems

Brief Introduction

Evolutionary algorithms and machine learning:

Evolutionary algorithms were not specifically designed as
machine learning techniques, as other approaches like
neural networks

However, it is well known that a learning task can be
modelled as an optimization problem, and thus solved
through evolution

Their powerful search in complex, ill-defined problem spaces
has permitted applying evolutionary algorithms successfully
to a huge variety of machine learning and knowledge
discovery tasks

Their flexibility and capability to Incorporate existing
knowledge are also very interesting characteristics for the
problem solving. 6



Introduction to genetic fuzzy systems

Brief Introduction

Genetic Fuzzy Rule-Based Systems:

DESIGN PROCESS
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Introduction to genetic fuzzy systems

Brief Introduction

Design of fuzzy rule-based systems:

o« An FRBS (regardless it is a fuzzy model, a fuzzy logic
controller or a fuzzy classifier), is comprised by two main

components:

e The , storing the available problem
knowledge in the form of fuzzy rules

e The , applying a fuzzy reasoning method on

the inputs and the KB rules to give a system output

Both must be designed to build an FRBS for a specific

application:

e The KB is obtained from expert knowledge or by machine
learning methods

e The Inference System is set up by choosing the fuzzy operator
for each component (conjunction, implication, defuzzifier, etc.)

Sometimes, the latter operators are also parametric and
can be tuned using automatic methods 8



Introduction to genetic fuzzy systems
Brief Introduction
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An Example of Fuzzy rule-based system



Introduction to genetic fuzzy systems

Brief Introduction

The KB design involves two subproblems, related to
Its two subcomponents:

— Definition of the (DB):
« Variable universes of discourse
« Scaling factors or functions

o Granularity (number of linguistic terms/labels) per
variable

 Membership functions associated to the labels

— Derivation of the (RB): fuzzy rule
composition

10



Introduction to genetic fuzzy systems

Brief Introduction

As said, there are two different ways to design the
KB:

— From iInformation

— By means of guided by the
existing numerical information (fuzzy modeling and
classification) or by a model of the system being controlled

11



Introduction to genetic fuzzy systems

Taxonomy of Genetic Fuzzy Systems

Genetic fuzzy systems

4/\

Genetic tuning Genetic learning of
P FRBS components
- Genetic tuning of Genetic KB | | Genetic learning
| KB parameters learning of KB components
and inference
L T~ . engine parameters
Genetic adaptive Genetic adaptive
inference system defuzzification
nethods

F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects. Evolutionary
Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5

Associated Website: http://sci2s.ugr.es/gfs/ 12




Introduction to genetic fuzzy systems

Taxonomy of Genetic Fuzzy Systems

Genetic KB
learning
Genetic rule | | Genetic rule Simultaneous
learning selection Genetic DB genetic learning of
(A priori DB) | | (A priori rule learning KB components
/\ extl’aCtion)A/\‘ /\
Genetic Genetic RB Genetic Genetic fuzzy rules
descriptive learning A prioiri Embedded learning learning
rules for prediction genetic genetic of linguistic || (Approximate
extraction DB learning || DB learning || models Models, TS-rules ..)
RB and DB
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Introduction to genetic fuzzy systems

1. Genetic Tuning

Classically:
— performed on a predefined DB definition

— tuning of the membership function shapes by a
GA

TT VS s M L VL

o » » g _ —
b b ¢ c

— tuning of the inference parameters

14



Introduction to genetic fuzzy systems

1. Genetic Tuning
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Introduction to genetic fuzzy systems

2. Genetic Rule Learning

A predefined Data Base definition is assumed

— The fuzzy rules (usually Mamdani-type) are
derived by a GA 5
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Introduction to genetic fuzzy systems

2. Genetic Rule Learning

Genetic Rule
i > Learning
: Process

Predefined RB *
DB

Evaluation
Module
(RB)
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Introduction to genetic fuzzy systems

3. Genetic Rule Selection

— A predefined set of candidate rules is
assumed

— The fuzzy rules are selected by a GA for
getting a compact rule base (more
Interpretable, more precise)

18



Introduction to genetic fuzzy systems

3. Genetic Rule Selection

Rule Extraction Genetic Rule
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| : Y
Rule o RB
set
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Introduction to genetic fuzzy systems
3. Genetic Rule Selection

Initial Data Base
S ML v s, M L Selected Rule Base
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0 2 0 2
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Example of genetic rule selection
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Introduction to genetic fuzzy systems

4. Genetic DB Learning

— Learning of the membership function shapes by a GA
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Introduction to genetic fuzzy systems

4. Genetic DB Learning
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Introduction to genetic fuzzy systems

5. Simultaneous Genetic Learning of KB Components

The simultaneous derivation properly addresses the strong
dependency existing between the RB and the DB
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Introduction to genetic fuzzy systems

5. Simultaneous Genetic Learning of KB Components
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Introduction to genetic fuzzy systems

6. Genetic Learning of KB Components and Inference Engine
Parameters
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Example of the coding scheme for learning an RB and the inference
connective parameters
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Introduction to genetic fuzzy systems
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Introduction to genetic fuzzy systems

Why do we use GAs?

= We can code different FS components in a chromosome:
n ldentify relevant inputs

m Scaling factors

m Membership functions, shape functions, optimal shape of
membership funct., granularity (number of labels per
variable)

m Fuzzy rules, Any inference parameter, ....

We can define different mechanism for managing them
(combining genetic operators, coevolution,...)

C. C-2
Cll > R § Clm CZ:L C22 . . R CZ m— 1 CZm
1 | | |
Two points crossover BLX-alpha
Flip a gene at random Random mutation




Introduction to genetic fuzzy systems

Considering Multiple Objectives

=  We can consider multiple objectives in the learning
model (interpretability, precision, ....)

Pareto
Solutions

Accuracy

Interpretability

28



Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers
The birth of GFSs: 1991

Thrift's ICGA91 paper (Mamdani-type Rule Base Learning. approach)

Thrift P (1991) Fuzzy logic synthesis with genetic algorithms. In: Proc. of 4th
International Conference on Genetic Algorithms (ICGA'91), pp 509-513

Valenzuela-Rendon’s PPSN-I paper (Scatter Mamdani-type KB Learning.
approach)

Valenzuela-Rendon M (1991) The fuzzy classifier system: A classifier system for

continuously varying variables. In: Proc. of 4th International Conference on Genetic
Algorithms (ICGA'91), pp 346-353

Pham and Karaboga’'s Journal of Systems Engineering paper (Relational matrix-
based FRBS learning. approach)

Pham DT, Karaboga D (1991) Optimum design of fuzzy logic controllers using
genetic algorithms. Journal of Systems Engineering 1:114-118).

Karr's Al Expert paper (Mamdani-type Data Base )

Karr C (1991) Genetic algorithms for fuzzy controllers. Al Expert 6(2):26-33.
Almost the whole basis of the area were established in the first year!



Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

P. Thrift, Fuzzy logic synthesis with genetic algorithms, Proc. Fourth Intl.
Conf. on Genetic Algorithnms (ICGA’91), San Diego, USA, 1991, pp. 509-513

— Classical approach: Pittsburgh — the decision table is encoded in a
rule consequent array

— The output variable linguistic terms are numbered from 1 to n and
comprise the array values. The value 0 represents the rule absence,
thus making the GA able to learn the optimal number of rules

— The ordered structure allows the GA to use simple genetic operators

x\2X1 S M L
. R4 12 3
S — | M Y > {B, M, A}
R4 R
M| — M —




Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

GFSs roadmap

o Establishment of the three classical learning approaches in the GFS field: Michigan,
Pittsburgh, and IRL

o Different FRBS types: Mamdani, Mamdani DNF, Scatter Mamdani, TSK

o Generic applications: Classification, Modeling, and Control

o First: Membership function parameter tuning

o Later: other DB components adaptation: scaling factors, context adaptation (scaling
functions), linguistic hedges, ...

o Recently: interpretability consideration



Introduction to genetic fuzzy systems

The birth, GFSs roadmap, current status and most cited papers

GFSs roadmap

o New EAs: Bacterial genetics, DNA coding, Virus-EA, genetic local search (memetic
algorithms), ...

» Hybrid learning approaches: a priori DB learning, GFNNs, Michigan-Pitt hybrids, ...

o Multiobjective evolutionary algorithms
o Interpretability-accuracy trade-off consideration

o Course of dimensionality (handling large data sets and complex problems):
e Rule selection (1995-...)
o Feature selection at global level and fuzzy rule level
e Hierarchical fuzzy modeling

“Incremental” learning



Introduction to genetic fuzzy systems

Current state of the GFS area

Number of papers on GFSs published in JCR journals

Published ltems in Each Year Citations in Each Year
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Source: The Thomson Corporation 1S1 Web of Knowledge

Query: (TS =(("GA-" OR "GA based" OR evolutionary OR "'genetic algorithm*" OR "'genetic
programming’ OR *‘evolution strate*"* OR "'genetic learning" OR "'particle swarm™ OR "differential
evolutio*"* OR "ant system*"* OR "ant colony' OR *'genetic optimi*** OR *‘estimation of distribution
algorithm**) AND (*'fuzzy rule*"" OR "fuzzy system*" OR "fuzzy neural™ OR ""neuro-fuzzy" OR "‘fuzzy
control*** OR "'fuzzy logic cont*" OR "*fuzzy class*"* OR "'fuzzy if"* OR "‘fuzzy model*" OR "fuzzy
association rule*" OR "'fuzzy regression™)) 33

Date of analysis: January 3th, 2013 Number of papers: 5079
Number of citations: 30738 Average citations per paper: 6.05



Introduction to genetic fuzzy systems

Current state of the GFS area

Highly cited papers on GFSs (classic approaches - papers until 2000)

1. Homaifar, A., McCormick, E., Simultaneous Design of Membership Functions and rule sets for fuzzy
controllers using genetic algorithms, IEEE TFS 3 (2) (1995) 129-139. Citations: 302

2. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H., Selecting fuzzy if-then rules for classification problems
using genetic algorithms, 1EEE TFS 3 (3) (1995) 260-270. Citations: 284

3. Setnes, M., Roubos, H., GA-fuzzy modeling and classification: complexity and performance, IEEE TFS 8 (5)
(2000) 509-522 . Citations: 215

4. Ishibuchi, H., Nakashima, T., Murata, T., Performance evaluation of fuzzy classifier systems for
multidimensional pattern classification problems, IEEE TSMC B 29 (5) (1999) 601-618. Citations: 177

5. Shi, Y.H., Eberhart, R., Chen, Y.B., Implementation of evolutionary fuzzy systems, IEEE TFS 7 (2) (1999)
109-119. Citations: 126

6. Park, D., Kandel, A., Langholz, G., Genetic-based new fuzzy reasoning models with application to fuzzy
control, IEEE TSMC B 24 (1) (1994) 39-47. Citations: 125

7. Jin, YC (2000) Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability
improvement. 1EEE Transactions on Fuzzy Systems 8(2):212-221. Citations: 121

8. Ishibuchi H, Murata T, Turksen IB (1997) Single-objective and two-objective genetic algorithms for
selecting linguistic rules for pattern classification problems. Fuzzy Sets and Systems 89(2):135-150
Citations: 116

9. Juang, C.F., Lin, J.Y., Lin, C.T., Genetic reinforcement learning through symbiotic evolution for fuzzy
controller design, IEEE TSMC B 30 (2) (2000) 290-302. Citations: 109

10. Herrera, F., Lozano, M., Verdegay, J.L., Tuning fuzzy-logic controllers by genetic algorithms, 1JAR 12 (3-4)
(1995) 299-315. Citations: 108

34



Introduction to genetic fuzzy systems

Current state of the GFS area

Highly cited papers on GFSs (recent approaches — 2001 to 2010)

1. Juang, CF (2002) A TSK-type recurrent fuzzy network for dynamic systems processing by neural network
and genetic algorithms. IEEE Transactions on Fuzzy Systems 10(2):155-170. Citations: 144

2. Cordon O, Gomide F, Herrera F, Hoffmann F, Magdalena L (2004) Ten years of genetic fuzzy systems: current
framework and new trends. Fuzzy Sets and Systems 141(1):5-31. Citations: 142

3. Roubos H, Setnes M (2001) Compact and transparent fuzzy models and classifiers through iterative
complexity reduction. IEEE Transactions on Fuzzy Systems 9(4):516-524. Citations: 105

4., Ishibuchi H, Nakashima T, Murata T (2001) Three-objective genetics-based machine learning for
linguistic rule extraction. Information Sciences 136(1-4):109-133. Citations: 97

and rule evaluation measures in data mining. Fuzzy Sets and Systems 141(1):59-88. Citations: 96

6. Cordon O, Herrera F, Villar P (2001) Generating the knowledge base of a fuzzy rule-based system by the
genetic learning of the data base. IEEE Transactions on Fuzzy Systems 9(4):667-674. Citations: 66

7. Gonzalez J, Rojas I, Ortega J, Pomares H, Fernandez J, Diaz AF (2003) Multiobjective evolutionary
optimization of the size, shape, and position parameters of radial basis function networks for function
approximation. IEEE Transactions on Neural Networks 14(6):1478-1495. Citations: 61

8. Liu BD, Chen CY, Tsao JY (2001) Design of adaptive fuzzy logic controller based on linguistic-hedge concepts
and genetic algorithms. IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics 31(1):32-53
Citations: 53

9. Wang HL, Kwong S, Jin YC, et al. (2005) Multi-objective hierarchical genetic algorithm for interpretable
fuzzy rule-based knowledge extraction. Fuzzy Sets And Systems 149(1):149-186. Citations: 52

5. Ishibuchi H, Yamamoto T (2004) Fuzzy rule selection by multi-objective genetic local search algorithms «

10. Kuo RJ, Chen CH, Hwang YC (2001) An intelligent stock trading decision support system through integration
of genetic algorithm based fuzzy neural network and artificial neural network. Fuzzy Sets and Systems
118(1):21-45. Citations: 50 35



Introduction to genetic fuzzy systems

Some References

GENETIC FUZZY SYSTEMS
Evolutionary Tuning and Learning of Fuzzy
Knowledge Bases.

O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena
World Scientific, July 2001

GENETIC FUZZY SYSTEMS
EVOLUTI RNING

Classification and
Modelling with
Linguistic Information

e H. Ishibuchi, T. Nakashima, M. Nii, Classification and Modeling
T with Linguistic Information Granules. Advanced Approaches to
Linguistic Data Mining. Springer (2005)

— M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, F. Herrera. A review of the application of Multi-
Objective Evolutionary Systems: Current status and further directions. IEEE Transactions on Fuzzy
Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338

—  F. Herrera, Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects.
Evolutionary Intelligence 1 (2008) 27-46 doi: 10.1007/s12065-007-0001-5,

—  F. Herrera, Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions,
International Journal of Computational Intelligence Research 1 (1) (2005) 59-67

— 0. Cordodn, F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena, Ten Years of Genetic Fuzzy
Systems: Current Framework and New Trends, FSS 141 (1) (2004) 5-31

—  F. Hoffmann, Evolutionary Algorithms for Fuzzy Control System Design, Proceedings of the IEEE
89 (9) (2001) 1318-1333



Introduction to genetic fuzzy systems
GFSs and MOEFSs Website

Logo Thematic Public Webscites

http://sci2s.ugr.es/gfs/
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colony" OR "genetic optimi*" OR "estimation of distribution algorithm*'') AND ("fuzzy rule*" OR "fuzzy system*"
OR "fuzzy neural" OR "neuro-fuzzy' OR "fuzzy control*" OR "fuzzy logic cont*" OR "fuzzy class*" OR "fuzzy if"
OR "fuzzy model*" OR "fuzzy association rule*'"" OR "fuzzy regression"))

Collaborations If you would like to include or correct any of the references on this page, please contact the maintainers in their e-mail addresses:
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bases of linguistic furzy rule-based systems. TEEE Transactions on Fuzzy Systems (2008) In press, doi:10.110%TFUZE 2009 2023113
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Multiobjective Optimization

Two-Objective Maximization Problem:
Maximize f(x)=(f;(x), f,(x))

fa(x)
A

Maximize

> f,(X
Maximize 1(X)




Comparison between Two Solutions

Maximize f(x)=(f,(x), f,(x))

fZ(X) A
AN
O A dominates
E is dominated by A
L2 (A is better than B )
Maximize g fl(x)

>




Comparison between Two Solutions

Maximize f(x)=(f,(x), f,(x))

A
O A and C are non-dominated
‘C with each other.
Maximize g fl(x)

=




Pareto-Optimal Solutions

A Pareto-optimal solution is a solution that
IS not dominated by any other solutions.

f2(x)
A . i
. . Pareto-Optimal Solutions
g o Oo o ©
, c>é o (@) o O ®
©00° 0,°
1S160°7% & > o
© 0 o 90 o
. > 11(x)
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Pareto Front

The set of all Pareto-optimal solutions iIs
called the Pareto front of the problem.

f(x)
Pareto Front

Maximize




EMO Algorithms

Evolutionary multiobjective optimization (EMO)
algorithms have been designed to search for
Pareto-optimal solutions in their single run.

f2(x)
Pareto-Optimal Solutions
o (Pareto front)

Maximize




Comparison: Weighted Sum Approach

Maximize g(Xx) = wyq f1(X) + wy fo(X)

f,(x)
A Only a single solution is obtained

by the weighted sum approach.
W = (W, W,)

Maximize

> fl (X)

Maximize



Comparison: EMO Approach

Maximize f1(x), fo(X)

f5(x)

Maximize

Only a single solution Is obtained
by the weighted sum approach.

Multiple solutions are obtained
by an EMO algorithm.

> 1:1 (X)

Maximize



Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.

- This approach can not find any Pareto-optimal solutions in a
non-convex region of the Pareto front in the objective space.

f5(x)

W= (W, W,)

Maximize

> 1:1 (X)

Maximize



Difficulties in Weighted Sum Approach

- This approach is sensitive to the weight vector specification.

- This approach can not find any Pareto-optimal solutions in a
non-convex region of the Pareto front in the objective space.

f5(x)

W = (W;—a, W,+a)

Maximize

> 1:1 (X)

Maximize



EMO Approach

- EMO approach can find Pareto-optimal solutions even in a non-
convex region of the Pareto front in the objective space.

f5(x)

Maximize

> fl (X)

Maximize



Comparison of the Two Approaches

Two-objective maximization problem
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Experimental results of a single run of each approach



Search Direction in Each Approach

Two-objective maximization problem
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Both the diversity and the convergence should be improved in EMO.



Highly Cited EMO Papers

Two Dominant Algorithms: NSGA-Il and SPEA

1. Deb K et al. (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE TEC. NSGA-II

2. Zitzler E, Thiele L (1999) Multiobjective evolutionary
algorithms: A comparative case study and the Strength
Pareto approach. IEEE TEC. SPEA (=> SPEA2 in TIK-Report)

3.Fonseca CM, Fleming PJ (1998) Multiobjective optimization and
multiple constraint handling with evolutionary algorithms (Part 1):
A unified formulation, IEEE SMC Part A.

4.Zitzler E, Thiele L, Laumanns M (2003) Performance assessment of
multiobjective optimizers: An analysis and review. IEEE TEC.

5.1shibuchi H, Murata T (1998) A multi-objective genetic local search
algorithm and its application to flowshop scheduling, IEEE SMC
Part C.



Goal of EMO Algorithms

An EMO algorithm is designed to search for

- all Pareto-optimal solutions

- uniformly distributed Pareto optimal solutions
- a solution set which approximates the Pareto front

In their single run.

DTLZ2

17000

N -
S a
~

| - ---Pareto front Y

\}
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18000 1000 2000




Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features.
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f,: Total profit from knapsack 1

Desired search behavior of EMO algorithms



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features:

(1) Pareto Dominance

Converge to the Pareto front

— Maximize

high fitness

42
L

Iow fitness

— Maximize



Basic Ideas in Recent EMO Algorithms

1. Pareto Dominance « 51000
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Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features:

(1) Pareto Dominance

Converge to the Pareto front € 4 fitness
° .
high
® ° 9

(2) Crowding . fitness

- . o o
Diversity maintenance o o g
>

— Maximize

high fitness

O

— Maxim




Basic Ideas in EMO Algorithm Design

Example: Crowding Distance in NSGA-II
Distance between adjacent individuals

A
*--o. B

o bj Ces a+b

g \ a /.\A

>< \

s ®

= Infinitely

large value ~®
— >
0 Maximize f,

Crowding distance of C is (a+ b)



Basic Ideas in EMO Algorithm Design

Recently developed well-known EMO algorithms such as
NSGA-Il and SPEA2 have some common features:

(1) Pareto Dominance

Converge to the Pareto front

(2) Crowding

Diversity maintenance

— Maximize

(3) Elitist Strategy

Non-dominated

solutions
(Elite solutions)

— Maximize

Non-dominated solutions are handled as elite solutions.



Basic Ideas in Recent EMO Algorithms

(1) Pareto Dominance (Convergence to the Pareto front)
(2) Crowding (Diversity Maintenance)
(3) Elite Strategy (Non -Dominated Solutions)

o 2000th generatlon
o 50th generation
e 20th generation

21000 -

20000
19000
front -

18000

17000

f,: Total profit from knapsack 2

16000

76000 17000 18000 19000 20000
f,: Total profit from knapsack 1



Hot Issues iIn EMO Research

Utilization of Decision Maker’s Preference
- Preference is incorporated into EMO algorithms.
- Interactive EMO approaches seem to be promising.

Handling of Many Objectives by EMO Algorithms
- Pareto dominance-based algorithms do not work well.
- More selection pressure is needed.

Hybridization with Local Search
- Hybridization often improves the performance of EMO.
- Balance between local and genetic search is important.

Design of New EMO Algorithms (some alternatives to NSGA-Il and SPEA2)
- Indicator-based EMO algorithms
- Scalarizing function-based EMO algorithms
- Use of other search methods such as PSO, ACO and DE.



New Trend in EMO Algorithm Design

IBEA: Indicator-Based Evolutionary Algorithm

Basic ldea
To maximize a performance indicator of a solution set
(not a solution): Hypervolume is often used.

Maximize f,



New Trend in EMO Algorithm Design

IBEA: Indicator-Based Evolutionary Algorithm

Maximize | (S) (Maximization of an Indicator Function)
subject to|S|< N where S = {x|xe X}

S: A set of solutions

N: A pre-specified number
of required solutions

Maximize f,

X: A feasible region

Maximize f,




New Trend in EMO Algorithm Design

MOEA/D: Use of Scalarizing Functions

MOEA/D: Multi-objective evolutionary algorithm based on
decomposition by Zhang and Li (IEEE TEC 2007)

Its Basic ldea (Decomposition): A multi-objective problem
IS handled as a set of scalarizing function optimization

problems with different weight vectors.

; Weight vector

V4
l, _->*

-

l, _
s >0—>

(a) Two-objective case (b) Three-objective case



New Trend in EMO Algorithm Design

Hybrid Method: Use of Scalarizing Functions

Initialization
Scalarizing fitness
A Parent selection ( function
Genetlc operatlon

PS
\— Generation update ‘ NSGA-I1 fitness

1-Pgsy evaluation mechanism

End

Probability for scalarizing fitness functions:
Parent selection: P, Generation update: P

Ishibuchi et al. (PPSN 2006)



New Trend in EMO Algorithm Design

Use of Other Meta-Heuristics (PSO, ACO, etc.)

Highly Cited Papers

[1] Coello CAC, Pulido GT, Lechuga MS (2004) Handling Multiple
Objectives with Particle Swarm Optimization, IEEE TEC

[2] McMullen PR (2001) An Ant Colony Optimization Approach to
Addressing a JIT Sequencing Problem with Multiple
Objectives, Artificial Intelligence in Engineering

[3] Ray T, Liew KM (2002) A Swarm Metaphor for Multiobjective
Design Optimization, Engineering Optimization

[4] Li XD (2003) A Non-Dominated Sorting Particle Swarm
Optimizer for Multiobjective Optimization, GECCO 2003.

[5] Ho SL et al. (2005) A Particle Swarm Optimization-Based
Method for Multiobjective Design Optimizations, IEEE Trans.
on Magnetics




For More Information

Webpage for EMO Papers: EMOO

< EMOO Home Page — Windows Internet Explorer = (]
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Complete List of References
In alphabetical oraer

http://www.lania.mx/~ccoello/EMOQO/




For More Information

Webpage for EMO Algorithms and Problems:

/Z ETH - SOP — PISA — Windows Internet Explorer
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Independent Interface for Search
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Types of MOEFSs by Multiobjective Nature and

Optimized Components

O The flexibility of FRBSs makes them applicable to a wide range of
problems.

O From among them,
to researchers, as they are very common and arise
wherever optimal decisions need to be taken.

O These problems can be tackled :
giving way to the so called

O MOEFSs are a type of GFS exploiting MOEAs to design sets of FRBSs
with Instead of a single one.



Motivations for MOEFSs at their Origin

1) Preventing a Deterioration of Interpretability
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Motivations for MOEFSs at their Origin

Multiobjective Fuzzy System Design (Late 1990s -)

Goals
- Accuracy Maximization
- Interpretability Maximization

Interpretable

Accurate
T Y fuzzy system

Small €=—— Error > Large

Simple €—— Complexity =——= Complicated



Motivations for MOEFSs at their Origin

Multiobjective Fuzzy System Design (Late 1990s -)

Use of EMO algorithms to search
for a number of non-dominated
fuzzy systems with different
) Accuracy-Interpretability (A-1)
. Trade-Offs

Interpretable

Small €= Error = Large

Simple €—— Complexity =——= Complicated



Motivations for MOEFSs at their Origin

2) Avoiding too Complex Models helps to Control Overfitting

Accuracy maximization Overfitting

A

Error

Test data

/ accuracy
Training data

— accuracy
0 S* Complexity




Motivations for MOEFSs at their Origin

2) Avoiding too Complex Models helps to Control Overfitting

Many non-dominated fuzzy systems can be obtained along
the tradeoff surface by a single run of an EMO algorithm.

A

Error

/ Test data

Training data

>

0 S*  Complexity



Types of MOEFSs by Multiobjective Nature and

Optimized Components

O However, MOEFSs have been
(where different
metrics are considered to describe the quality of the obtained rules).

a used in these three main categories (A-I
trade-off, control and mining fuzzy association rules)

O Due to this fact, both, the multi-objective nature of the problem
faced and type of FRBS components optimized, have been considered
recently to propose in,

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on
the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions.
IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338



Types of MOEFSs by Multiobjective Nature and

Optimized Components: A Two-level Taxonomy

Categories by MOEFS
objective type 2
or nature
36 papers 17 papers 6 papers
We will Designed to generate Designed for Multi-objective Designed for Fuzzy
mainly focuss FRBSs with different A-I Control Problems Association Rule Mining
hi trade-offs
on this type Performance vs Interpretability Performance vs Performance Rules Qudlity vs Description
- 12papers >°C_ Spapers >— — T T T T T T T 7
: Identification of || Learning of FLC
Tunmglcsjf FRBSs KB learning FLC parameters Structure
(including (tuning) (learning of KB
rule set tuning) components)
/\ \:\‘ Categories by
M bershi Inf Simultaneous type Of FHBS
e;me s Wehollay Learning by : Learning of
unctions Farameters B RE learning KE compo nents
Tuning Tuning components (.
optimized

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on
the application of Multi-Objective Genetic Fuzzy Systems: current status and further directions.
IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65, doi: 10.1109/TFUZZ.2012.2201338



Multiobjective Evolutionary Fuzzy Systems

Bibliography
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Objective Evolutionary Systems: Current status and further directions. IEEE Transactions on Fuzzy
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Highly Cited MOEFS Papers
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[4]

[5]

Ishibuchi et al. (1997) Single-objective and two-objective
genetic algorithms for selecting linguistic rules for pattern
classification problems. Fuzzy Sets & Systems.

Ishibuchi et al. (2001) Three-objective genetics-based machine
learning for linguistic rule extraction. Information Sciences.

Ishibuchi & Yamamoto (2004) Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining. Fuzzy Sets & Systems.

Wang et al. (2005) Multi-objective hierarchical genetic algorithm
for interpretable fuzzy rule-based knowledge extraction. Fuzzy
Sets & Systems.

Johansen & Babuska (2003) Multiobjective identification of
Takagi-Sugeno fuzzy models. IEEE TFS.
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Interpretability Issues in Fuzzy System Design

Complexity Criteria

Highly used criteria: Complexity criteria in the

learning of FRBSs.

x
i Simple
T & Inaccurate /y
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Number of variables, labels, rules, conditions ...
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Interpretability Issues in Fuzzy System Design

Semantic Criteria

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Interpretability considerations: semantic criteria

Semantics: the study of meanings

@ Distinguishability: Each linguistic label has semantic meaning
@ Number of elements: Compatible with human capabilities
@® Coverage: Any element belongs to at least one fuzzy set
@ Normalization: At least one element has unitary membership
@® Complementarity: For each element. the sum of memberships is one
_J Cold Cool Warm Hot l Cold Cool Warm ~ Hot

/ 1
/

d Temperature Temperature

82



Interpretability Issues in Fuzzy System Design

Syntactic Criteria

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Interpretability considerations: syntactic criteria

Syntax: the way in which linguistic elements are put together

@® Completeness: for any input. at least one rule must fire

® Rule—base simplicity: Set of rules as small as possible

@® Rule readability: small number of condifions in rule antecedents

@ Consistency: rules firing simultaneously must have similar consequents

YLD . 4 R . 7 A
| R7| Re | Ry Rp L Rp |
N ! o A N N J
| R4 Bs | Re R4 | Rs| Ra . I Rs| Ra
s — {1 ‘r_ — ih o -1‘: kr‘—ﬂ,_ — = : e =1
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Interpretability Issues in Fuzzy System Design

Strategies to Satisfy Interpretability

Interpretability quality: associated to the meaning of
the labels and the size of the rule base

Strategies to satisfy interpretability criteria

@® Linguistic labels shared by all rules

® Normal. orthogonal membership functions

® Don’t care conditions

4 4 N
' Cold Warm Hot | R-B | |
8 B |8
\H ."'/ \\ /j L i
Y : - |Rs|Ra
/\ /\ ' Ro i |
[\ [\ N . N,
17 20 6 29 M
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Interpretability Issues in Fuzzy System Design

Still not Clear Concepts

Interpretability quality:

Y

What is the most interpretable rule base?

85



A Taxonomy on the Existent Interpretability

Measures for Linguistic FRBSs

Most works in C1 and C2 are applied to classification
problems. They are the classic measures.

Rule Base Level uzzy Partition Level

C1

Number of rules
Number of conditions

Complexity-
based
Interpretability

Cs

i Consistency of rules
Semantic-based y

C

Number of membership functions
Number of features

Cs

Absolute Measures:

Rules fired at the same time Completeness or coverage,

Interpretability  Transparency of rule structure (rule weights, etc.) normalization, distinguishability,

Cointension

complementarity
Relative Measures

There are few works in C3
Still an open problem

Most works in C4 impose absolute measures or
restrictions. Relativity could be a new possibility.
Still an open problem.




A Taxonomy on the Existent Interpretability

Measures for Linguistic FRBSs (2)

O Interpretability of FRBSs is still an open problem since there is no
single (or global) comprehensive measure to quantify the
Interpretability of linguistic models

U To get a good global measure it would be necessary to consider
appropriate measures from all of the quadrants, in order to take into
account the different interpretability properties required for these kinds
of systems together.

M.J. Gacto, R. Alcala, F. Herrera

Interpretability of Linguistic Fuzzy Rule-Based Systems: An INEEI%&&%EEN

g i’ g e

Brlgm Spym

Overview on Interpretability Measures, Information Sciences L e

S s e el

181:20 (2011) 43404360, doi: 10.1016/j.ins.2011.02.021

A thematic website has been developed to maintain this study at:

http://sci2s.uqgr.es/fuzzy-interpretability/




Applicability of MOEFSs to the I-A problem

O The different measures from each quadrant could be optimized as different
objectives within a multi-objective framework.

U They are contradictory to some degree. Not only accuracy is contradictory to inter-
pretability. The different measures represent different properties and requirements.

O Together with accuracy, many interpretability objectives should be optimized at
the same. Two different solutions:

» Development of new EMO algorithms for many objective problems (incoming for future)

= By grouping complexity measures and semantic measures into two respective indexes.
(it would represent the present)

O With respect to the , While to improve,
to obtain, since interpretable models can even be provided by hand.

O These differences between both types of objectives influence the optimization
process, by which the applied
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A-l Trade-Off: Some Example Approaches

Bibliography on this category

A-1 trade-off FRBS approach Objectives MOEA
Authors Ref. Year Rules Type #0bi.  Type Name Gen. Type Problem type °
_ | = | Wang et al [79] 2005 TSK LING. = 5 A+C+C+5+8 MOHGA Ist Ie REG. MOSt Of them are based
% | 2 | Alcald et al [41] 2007 Mam. LG, 2 A+C SPEA2acc Ind e REc.
% f Gonzalez et al. [84] 2007 TSK Scar. 2 A+C NoN. Ind 17 R, On an gen ' M OEAS
i é Gomez et al. [85] 2007 TSK Scar. 4 A+C+C+S MONEA 2nd N REG.
z ; Pulkkinen et al. [45] 2008 Mam. Ling. 3 A+C+C NSGA-I Ind G Cras.
'g' : Pulkkinen et al. [47] 2008 Mam. Lini. 3 A+A+S NSGA-II 2nd G CLas. ® Usual Iy no more than 3
= . ;
il - Guenounou et al.  [38] 2009 TSK Ling. = 2 A+C NSGA-II 2nd G REG. 0 =
z ; Gacto et al. [43] 2009 Mam. Ling. 2 A+C VARIOUS Ind G REC. Obj eCtlves
g ; Baotta et al [49] 2009 Mam. Lini. 2 A+S NSGA-II 2nd G REc.
Z |7 | Gactoet al. [29] 2010 Mam. Lama, 3 A+C+3 SPEA2-51 2nd le ReG. o Com IeXlt at the
% £ | Marquez et al. [50] 2009 Mam. Lan. 2 A+C VARIOUS Ind 1 e ReG. p y
EERR o7 et al. 51 2010 Mam. Ling. E A+C+8 MNoMN. Ind 1 REG. 1 1 . 1
|z arquez et al [51] AM ANG +C+ 0 n T EG beglnnlng, SemantIC
g | Ishibuchi et al [19], [52] 19971998  Mam. Ling. 2 A+C MNoN. Ist N CLas. 1
; Ishibuchi et al [34] 2001 Mam. Lini. 3 A+C+C GBML Ist N CLas. aSpECtS In the IaSt years
=z | Ishibuchi et al [53] 2004 Mam. Lanc. 3 A+C+C MOGLS Ist N CLas,
= | Alcald et al. [72] 2011 Mam. L. 3 A+CHC NEGA-II 2nd G CLas, °
% Ishibuchi et al [59] 2006 Mam. Lini. 2 A+C NSGA-II 2nd G CLas. MOSt Of them are
& | Ishibuchi et al 58 2007 Mam. Ling. 3 A+C+C GBML Ind 1 CLas. 1 1 1 1
= | Ishibachietal  [58] - o i 17 G Linguistic and Mamdani
Z | Sewkorn et al. [&0] 2005 Mam. Lanc. 3 A+C+C MNoM, 2nd | CLas,
% | Cococcionietal.  [61] 2007 Mam. LinG. 2 AsC (2+2)M-PAES  2nd 1+ R type based approaches
3 | Xing et al. [82] 2007 TSK LinG. = 2 A+C PMOCCA 2nd N REG. Ts.
= g Ducange et al. [63] 2010 Mam. Lanc. 3 A+A+C NSGA-II 2nd G IME. CLas, . .
<
% @ Cordén et al [64] 2003 Mam. Lanc. 2 A+C MNoM, Ist N CLas, ® KB Iearnlng In the IaSt
% | 2 | Cococcioni et al [89] 2008 TSK Scar. 2 A+C (2+2)M-PAES 2nd I+ REG. g o
2 |2 | Akaletal [65] 2009 Mam. Lin. 2 A (2+)M-PAES  2nd 1+  Ri years (granularity as im-
E Antonelli et al [&7] 2009 Mam. LinG. 2 A+C (2+2)M-PAES 2nd 1% REG. f
5 Antonelli et al [68] 2009 Mam. Lani. 2 A+C (2+2)M-PAES 2nd 1= REc. po rtant aCtO r)
# | Casillas et al. [70] 2009 DMF-ruies  Ling. 2 A+C MNoM. 2nd i REG.
2 | Pulkkinen et al. [71] 2010 Mam. LinG. 2 A+C NoN. 2nd i REG.
E Alonso et al. [74] 2010 Mam. Lani. 3 A+C+58 NSGA-II 2nd g CLas. ® MOSt Of them are
; Cannone et al. [77] 2011 Mam. Ling. 3 A+C+3 NSGA-I Ind g CLas. - H
Z | Cannove etal.  [78] 001 Mam Livc. 2 A+SanA+S  NSGAI md g Cuas. Improved versions of the
Z | Cococcioni et al [20] 2011 TSK. Scar. 2 A+C (2+2)M-PAES nd I+ REG.
2 | Antonellietal  [69] 2011 Mam. LinG. 3 A+C+S (+2M-PAES  2nd 1+ R most known MOEASs
_-E Antonelli et al [28] 2011 Mam. LinG. 2 AHC+S) (2+2)M-PAES 2nd 1% REG. o o
“ | Alcald et al [731 2011 Mam Ling, 3 AsC NoN. md 11 R (parthUlarly in the case of

IF=Inference Parameters, Mam.=Mamdani, TSK=Takagi-Sugeno-Kang, Linc.=Linguistic, Scar.=5catter, «In the antecedent;
A=Accuracy, C=Complexity, S=Semantic aspects;

NoN.=No name, N=Novel algorithm, I=Improved version, G=General use:

Cras.=Classification, Rec.=Regression, Ts.=Time Series, Ime.=Imbalanced;

TNSGA-IT based, *PAES based, cMOGA based, #SPEAZ2 based.

KB learning)

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.



A-l Trade-Off: Some Example Approaches

Some Example Cases

A-1 trade-off FRBS approach Objectives MOEA
Authors Ref. Year Rules Type #0bi.  Type Name Gen. Type Problem type
— | & | Wang et al, 79 2005 TSK LING, = 5 A+C+C+5+5  MOHGA It I REG,
2 [ 2 || Aleald et al v AsC SPEAZic ni Ric.
% = | Gonzalez et al [84] 2007 TSK SCaT. 2 A+C NoN. nd 17 REG.
i é Gomez et al. [85] 2007 TSK Scar. 4 A+C+C+S MONEA 2nd N REG.
Z | 2 | Pulkkinen et al. [45] 2008 Mam. Lang. 3 A+C+C NSGA-II 2Znd G CLas.
% | = | Pulkkinen et al. [47] 2008 Mam. Lini. 3 A+A+S NSGA-I 2nd G CLas.
ES % 3 1 3 - 2 g 3 n
& ; Gacto et al. 2 VARIGUS
g ; Baotta et al [49] 2009 Mam. Lini. 2 A+S NSGA-II 2nd G REc.
Z |7 | Gactoet al. [29] 2010 Mam. Lama, 3 A+C+3 SPEA2-S1 2nd | REG.
% £ | Marquez et al. [50] 2009 Mam. Lan. 2 A+C VARIOUS Ind 1 e ReG.
i ; Marquez et al. [51] 2010 Mam. LG, 3 A+C+8 NoN. nd I7 Reg.
= | =
; Ishibuchi et al [1%], [52] 19971998 Mam. L. 2 A+C NoM. Ist N CLas.
s i P = - . I ACHC .
= mﬂiﬂ‘,himmhimwﬁmhhmmmmmmmmmﬂ\ﬁﬂvﬂmmmmmmmmmmmmmmmMmM\HMMmmmmmwwu i 3 Mi . N
E | Alcald et al. [73] 2011 Mam. Ling. 3 A+C+C NSGA-II Ind G CLas.
% Ishibuchi et al [59] 2006 Mam. Lamc. 2 A+C NSGA-I 2nd G CLas.
& | Ishibuchi et al [58] 2007 Mam. Lama, 3 A+C+C GBML nd It ClLas,
2 Setzkorn et al. [&0] 2005 Mam. Lanc. 3 A+C+C MNoM, 2nd | CLas,
% Cococcioni et al [&1] 2007 Mam. L. 2 A+C (2+2)M-PAES 2nd I+ REG.
3 | Xing et al. [82] 2007 TSK LinG. = 2 A+C PMOCCA 2nd N REG. Ts.
= g Ducange et al. [63] 2010 Mam. Lanc. 3 A+A+C NSGA-II 2nd G IME. CLas,
<
% @ Cordén et al [64] 2003 Mam. Lanc. 2 A+C MNoM, Ist N CLas,
= | 2 | Cococcioni et al.  [89] 2008 TSK SCAT. 2 A+C (2+2M-PAES  2nd 14 REG.
2 |2 || Alkalaetal [63] 2009 Mam, Ling, oy A+C (2+2IM-PAES B
z nionellt et al. 7 Mam. 7 + 2+ h: EG.
5 Antonelli et al [68] 2009 Mam. Lani. 2 A+C (2+2)M-PAES 2nd 1= REc.
% | Casillas et al [70] 2009 DNF-puiEs  LiNG. 2 A+C NoN, and 1% R, In the fO”OWIﬂg we WI" see a
Z Pulkkinen et al. [71] 2010 Mam. LinG. 2 A+C MoM. Ind 17 REG. .
Z | Alomsoetal [74] 00 Mam Linc. 3 A+C+S NSGA-II md g cus. representative example for each type:
= | Cannone et al. [77] 2011 Mam. Ling. 3 A+C+3 NSGA-I Ind g CLas.
: Cannone et al. [78] 2011 Mam. Lanc. 2 A4S aNnDA+S NSGA-N 2nd g CLas, . g
% | Cococcionietal.  [90] 011 TSK. Scar. 2 A+C sampaEs md 1. R O FIRST TYPE: RB Learning
f Antonelli et al [&9] 2011 Mam. Ling. 3 A+C+S (2+2)M-PAES 2nd I= REG.
Z | Antonelli et al [28] 2011 Mam. LinG. 2 AHC+S) (2+2)M-PAES 2nd I= REG. . A
“ Alcald et al. [73] 2011 Mam. L. 2 A+C NoN. nd If R, o SECOND TYPE DB Tunlng + RUIe Sel
I.F=Inference Parameters, Mam.=Mamdani, TSK=Takagi-Sugeno-Kang, Linc.=Linguistic, Scar.=5catter, «In the anteceden
A=Accuracy, C=Complexity, S=Semantic aspects; o THIRD TYPE: KB Learn|ng

NoN.=No name, N=Novel algorithm, I=Improved version, G=General use;
Cras.=Classification, Rec.=Regression, Ts.=Time Series, Ime.=Imbalanced;
FNSGA-II based, *PAES based, cMOGA based, «SPEA2 based.

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.
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MODEL 1: Multiobjective Rule Selection

FIRST TYPE: RULE BASE LEARNING - CLASSIFICATION

H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic
local search algorithms and rule evaluation measures in data mining, Fuzzy
Sets and Systems, Vol. 141, pp. 59-88 (2004)
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MODEL 1: Multiobjective Rule Selection

Two-Stage Approach for Rule Base Learning

1.

Heuristic Rule Extraction

A pre-specified number of candidate fuzzy rules are extracted from
numerical data using a heuristic rule evaluation criterion (data mining).

Multiobjective Genetic Fuzzy Rule Selection

A small number of fuzzy rules are selected from the extracted
candidate rules using a multi-objective genetic algorithm (evolutionary
optimization).

H. Ishibuchi and T. Yamamoto, “Fuzzy rule selection by multi-
objective genetic local search algorithms and rule evaluation
measures in data mining,” Fuzzy Sets and Systems, Vol. 141,
pp. 59-88 (2004).
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MODEL 1: Multiobjective Rule Selection

Fuzzy Rules for n-dimensional Problems
If x, 1IsA;and ... and x Is A, then Class C with CF

A : Antecedent fuzzy set
Class C : Consequent class
CF: Rule weight (Certainty factor)

Antecedent Fuzzy Sets (Multiple Partitions)
A

1.0 1.0

S2 ) 3 L3

A
0.0 1.0 o
0.0 1.0
A DC
1.0 ~
0%0 10>

st : e XM X1LP
NN /AVA g
0.0 1.0 0.0 1.0

Usually we do not know an appropriate fuzzy partition for each input variable.
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MODEL 1: Multiobjective Rule Selection

Possible Fuzzy Rules
Total number of possible fuzzy rules

> [
XX XXy Xn
XXXXM% XXXXX@% (14+1)x - x(14+1)=(15)"

Don’t care Don’t care

Examined Fuzzy Rules

They only examine short fuzzy rules with only a few antecedent
conditions.

IT x, 1s small and x,g4 Is large then Class 1 with 0.58
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MODEL 1: Multiobjective Rule Selection
Consequent Class

The consequent class of each fuzzy rule is determined by compatible training patterns
(i.e., the dominant class in the corresponding fuzzy subspace).

Rule Weight (Certainty Factor)

The rule weight CF of each fuzzy rule is calculated from compatible training patterns.

If X, is small and x, is large then Class 1 with 1.0

If X, is small and x, is small then Class 1 with 0.37

CF=1.0

(Maximum)

@ Class 1
o Class 2
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MODEL 1: Multiobjective Rule Selection

1. Heuristic Rule Extraction

They extract a pre-specified number of the best fuzzy rules with
respect to a pre-specified heuristic rule evaluation criterion.

Possible fuzzy rules: (15)" rules

Restriction on the rule length
Only short fuzzy rules

Rule evaluation criterion:
The best rules for each class
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MODEL 1: Multiobjective Rule Selection
2. Multiobjective Genetic Fuzzy Rule Selection

Algorithm: Multi-objective Genetic Local Search (MOGLS)

» Selection based on a weighted fitness function (Number of correctly classified training
patterns and number of rules)

» Tentative set of non-dominated solutions preserved externally

 Elitist strategy: N, individuals of the population are randomly replaced with N
individuals randomly extracted from the tentative set of non-dominated solutions

elite

Coding: S =§,S, Sy
N: Total number of candidate rules
5={0, 1}: Inclusion or exclusion of the j-th rule

Objectives: f,(S), 1,(S), f5(S)
f,(S) : Number of correctly classified patterns by S
f,(S) : Number of selected rules in S
f3(S) : Total number of antecedent conditions in S
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MODEL 1: Multiobjective Rule Selection

Comparison of Four Approaches

(1) Two-objective approach
Maximize f,(S) and minimize f,(S)
(2) Weighted sum of the two objectives
Maximize W, - f,(S)—w, - f,(S)
(3) Three-objective approach
Maximize f,(S) and minimize f,(S), f5(S)
(4) Weighted sum of the three objectives
Maximize W, - f,(S)-w, - f,(S)—w, - f,(S)

Data Sets Data set Attributes Patterns Classes Length

Breast W 9 683* 2 3

Diabetes 8 768 2 3

Glass 9 214 6 3

Heart C 13 297+ 5 3

Iris 4 150 3 3

Sonar 60 208 2 2

Wine 13 178 3 3
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MODEL 1: Multiobjective Rule Selection

Experimental Results (Cleveland Heart)

O Three-objective rule selection O Three-objective rule selection
@ Two-objective rule selection @ Two-objective rule selection
9\;« 4OB§ S ) S sof o 4
E 381 ] g a9+ -
3§} r Q
2 36f é - & o
2 ] S 4t O - .
£ af § 1 8 8308839'0"-.. * We can observe the overfitting due to the
g ol 5 ] 5 7B 97 o ®1 increase in the number of fuzzy rules.
g 3ol @Q 1 ? 1©P°C & OOO T
g I O.Oo 1 g © ©
5® ‘.o..‘- w 456] T
6 8 10 12 14 16 18 20 22 6 8 10 12 14 16 18 20 22
Number of fuzzy rules Number of fuzzy rules
(a) Error rates on training data (b) Error rates on test data
Experimental Results (Sonar)
O Three-objective rule selection O Three-objective rule selection
@® Two-objective rule selection @® Two-objective rule selection
g 22-0 ] e (& o
g 1 = a8t .
g 20 O 7 = O Y
g2 le ] £ o6l - .. e e
I ] 2 S The generalization ability is increased
8 e 1 £ af © 5 1 by increasing the number of fuzzy rules
c  14f o i, S ©c o | . h fitting i b d
& M 8 g (i.e., the overfitting is not observed).
g 12F 8 . = 22 o &
5 0l 8 -
T R T =
2 3 4 5 6 7 8 2 3 4 5 6 7 8
Number of fuzzy rules Number of fuzzy rules

(@) Error rates on training data (b) Error rates on test data
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MODEL 1: Multiobjective Rule Selection

Observation
(1) Experimental results showed that each test problem has a different
tradeoff structure.

(2) Knowledge on the tradeoff structure is useful in the design of fuzzy
rule-based classification systems.

Error Error
*

%, Test Data

L )
“, “-“
Syggunt®

. Test Data

....
.l........

Training Data Training Data

Complexity Complexity
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MODEL 2: Multiobjective Tuning and Rule Selection

SECOND TYPE: DATA BASE TUNING (+ RULE SELECT.) - REGRESSION

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic
algorithm for tuning and rule selection to obtain accurate and compact
linguistic fuzzy rule-based systems, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 15:5 (2007) 539-557

M.J. Gacto, R. Alcala, F. Herrera, Adaptation and Application of Multi-
Objective Evolutionary Algorithms for Rule Reduction and Parameter
Tuning of Fuzzy Rule-Based Systems. Soft Computing 13:5 (2009) 419-436
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MODEL 2: Multiobjective Tuning and Rule Selection

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, A multi-objective genetic algorithm for
tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based
systems, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
15:5 (2007) 539-557,

Multi-objective EAs are powerful tools to generate GFSs but they
are based on getting a large, well distributed and spread off,
Pareto set of solutions

— The two criteria to optimize in GFSs are accuracy and
Interpretability. The former is more important than the latter,
so many solutions in the Pareto set are not useful

— Solution: Inject knowledge through the MOEA run to bias the
algorithm to generate the desired Pareto front part
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MODEL 2: Multiobjective Tuning and Rule Selection

Pareto front classification in an interpretability-accuracy GFSs:

ERROR

4

| |
| I
| |
- !
I ‘.o;o‘.
| T
| |
| I

I | I -

Bad | | Complejment
Rules | |Rules |
| Redundant |

:Rules
I |
+ RULES
— Desired pareto zone

== (Optimal pareto frontier

. solutions with bad
performance rules. Removing them
improves the accuracy, so no Pareto
solutions are located here

. solutions with
irrelevant rules. Removing them does
not affect the accuracy and improves
the interpretability

- solutions
with neither bad nor irrelevant rules.
Removing them slightly decreases the
accuracy

. solutions with
essential rules. Removing them
significantly decreases the accuracy
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MODEL 2: Multiobjective Tuning and Rule Selection

Accuracy-oriented modifications performed:

, keeping the individual with the highest accuracy
as the only one in the external population and

generating all the new individuals with the same
number of rules it has

— In each MOGA step,

, focusing the selection on the
higher accuracy individuals
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MODEL 2: Multiobjective Tuning and Rule Selection

Obtained results for the medium voltage line problem:

Multi-objective genetic tuning + rule selection method:

Method 4R MSE,,, o,. t-test MSE,, o, t-test

WM 65 57605 2841 + 57934 4733 +
WM+T 65 18602 1211 + 22666 33856 +
WNM+S 40.8 41086 1322 + 59942 4931 +
WM+TS 41.9 14957 391 + 18973 3772 +
NSGAII 41.0 14488 965 -+ 18419 3054 +
NSGAIllace 48.1 16321 1636 + 20423 3138 +

¥

SPEA2 33 272 1265 + 175 3226 +

SPEA2 40 3.5 11081 1186 2191 *
5-fold cross validation x 6 runs = 30 runs per algorithm
T-student test with 95% confidence
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MODEL 2: Multiobjective Tuning and Rule Selection

M.J. Gacto, R. Alcald, F. Herrera,

STUDY ON SEVERAL ALTERNATIVE APPROACHES AND IMPROVEMENTS:
ADAPTATION AND APPLICATION OF MOEAs

Adaptation and Application of Multi-Objective Evolutionary Algorithms for Rule Reduction and
Parameter Tuning of Fuzzy Rule-Based Systems, Soft Computing 13:5 (2009) 419-436,

To perform the study we have applied six different approaches
based on the two most known and successful MOEAs:

m Application of SPEAZ2 and NSGA-I1
m Two versions of NSGA-I1 for finding knees,

NSGA-I1,and NSGA-11,,
m Two extensions for specific application,

SPEAZ2,,.and SPEA2,,..

Two objectives are considered.:
MSE and Number of Rules

Proper operators have to be selected.

Method Description

WM Wang & Mendel algorithm

T Tuning of Parameters

S Rule Selection

TS Tuning & Selection
Application of standard MOEAs for general use

TS-SPEA2 Tuning & Selection by SPEA2

TS-NSGA-II Tuning & Selection by NSGA-II

TS-NSGA-IT4 Tuning & Selection by NSGA-Tlapn 10
TS-NSGA-II;; Tuning & Selection by NSGA-IT, 440

Extended MOEAs for specitfic application
TS-SPEA2 4. Accuracy-Oriented SPEA2
TS-SPEA2,, .2 Extension of SPEA2 4.
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MODEL 2: Multiobjective Tuning and Rule Selection

NSGA-11 FOR FINDING KNEES

J. Branke, K. Deb, H. Dierolf, and M. Osswald, “Finding Knees in Multi-objective
Optimization,” Proc. Parallel Problem Solving from Nature Conf. - PPSN VIII, LNCS 3242,
(Birmingham, UK, 2004) 722-731.

A variation of NSGAII in order to find knees in the Pareto
front by replacing the crowding measure by either an angle-
based measure or an utility-based measure

Angle Based g . ;
Two different | APProach g | -
approaches — : 1
Utility Based : B
Approach j 1

- - L X )
o1 2 3 4 5 8 T B 8 0 1 2 3 4 5 6 T 8

In our case, a knee could represent the best compromise
between accuracy and number of rules.
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MODEL 2: Multiobjective Tuning and Rule Selection

A New Crossover Operator for the Rule Part

Objective: to improve the search with a more intelligent
operator replacing the HUX crossover in SPEA2,-

Once BLX is applied a normalized euclidean distance is
calculated between the centric point of the MFs used by each
rule of the offpring and each parent

The closer parent determines if this rule is selected or not for
this offpring

Whit this crossover operator, mutation can be particularly used
to remove rules



A-l Trade-Off: Some Example Approaches

MODEL 2: Multiobjective Tuning and Rule Selection

Obtained results for the medium voltage line problem:

Method #R MSE,,  Oyq t  MSE, ot

100,000 evaluations

WM 65.0 57605 2841 + 57934 4733 +

65.0 17020 1893 + 21027 4225 +
S 40.9 41158 1167 + 42988 4441 +
TS 41.3 13387 1153 + 17784 3344 +
TS-SPEA2 28.9 11630 1283 + 15387 3108 +
TS-NSGA-II 31.4 11826 1354 + 16047 4070 +
TS-NSGA-I1,, 29.7 11798 1615 + 16156 4091 +
TS-NSGA-II,, 30.7 11954 1768 + 15879 4866 +
TS-SPEA2,., 32.3 10714 1392 = 14252 3181 =
TS-SPEA2, ., 29.8 10325 1121 * 13935 2759 *

5-fold cross validation x 6 runs = 30 runs per algorithm
T-student test with 95% confidence
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MODEL 2: Multiobjective Tuning and Rule Selection

Comparison of the SPEA2acc? and classical GA
for for the medium voltage line problem:

SPEA2, (and WM+TS —e—)

5000 Evaluations

O 100000

" 15000 O 50000
25000 A 30000

o & 20000
T 35000 Q 15000
45000 W 10000

+ 55000 A 7500
@ 5000

P00 55 45 35 25 15 [©_3000
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MODEL 2: Multiobjective Tuning and Rule Selection

Convergence and an example model

"z 1y
50000 —
| — SPEA2p. (training) TS (training)
- == SPEA2 pp2 (test) TS (training)
— Ln 1 & | & § | ] & n § & 1 B 1 |3 1 &

u s oo
420001

X4

e

I I T O O I |

B

34000+ '-‘
1

|

. y " = W F Labelling the final MFs:
g 1" = Very Small
L 12" = Small
1o 13" = Medium
260007 ". O 4000 | 8000 | 12000 | 14" = Large
I5' = Very Large
#R: 28 MSE-tra: 8232 MSE-ist: 14670
X1 X2 X3 X4 Y
180001 X1 X2 X3 X4 |Y X1 X2 X3 X4|Y 14 13 13 1213
1 111 1312 11312 14t 13 13 13 i
MR 112 12 13 12 12 13 13 14 13 12 13
P N A R E R I S S A A A P S A P AR P
| 2 1[I 12 13 I I 12 13 14 14 14 1a s
10000 - - - 12 [ 02 12 13 14 13 13 13 14 15 4 12 1w
0 20000 40000 60000 80000 100000 127 12 12 1012 W12 12 140505 13 s
Number of Evaluations 12 1313 113 141312 1R 15 11215 e

1< - A I I A ™ S < S - 1< S < S = P < S i <
13" 12" 112 12 14 13t 12t 14 a3t 15 14 13 15T I
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MODEL 3: Multiobjective Learning of DB and RB

THIRD TYPE: KNOWLEDGE BASE LEARNING - REGRESSION

R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data
Bases of Linguistic Fuzzy Rule-Based Systems, IEEE Transactions on Fuzzy
Systems 17:5 (2009) 1106-1122, doi:10.1109/TFUZZ.2009.2023113
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MODEL 3: Multiobjective Learning of DB and RB

R. Alcala, P. Ducange, F. Herrera, B. Lazzerini, F. Marcelloni, A Multi-
Objective Evolutionary Approach to Concurrently Learn Rule and Data Bases
of Linguistic Fuzzy Rule-Based Systems 17:5 (2009) 1106-1122, IEEE
Transactions on Fuzzy Systems, doi:10.1109/TFUZZ.2009.2023113,

Rule bases and parameters of the membership functions of the
associated linguistic labels are learnt concurrently.

Accuracy and interpretability are measured In terms of
approximation error (MSE) and rule base complexity
(#Conditions), respectively.

To manage the size of the search space, the linguistic 2-tuple
representation model, which allows the symbolic translation of a
label by only considering one parameter, has been exploited
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MODEL 3: Multiobjective Learning of DB and RB

| |
Af1 Af2 Af.S Af4 Af5

-0.3

| | 1 | |

| | 217 1 I [

1 2 - 4 9
A
]
!

(As3,-0-3)
a) Simbolic Translation of a label b) Lateral Displacement of a Membership function

This proposal decreases the tuning complexity, since the 3 parameters
per label of the classical tuning are reduced to only 1 translation
parameter ( )
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MODEL 3: Multiobjective Learning of DB and RB

Coding Scheme and Operators

A double coding scheme (C= Crg+ Cpp)

| M
R R })l PF+1

_/"\_ ,A; )\, ) _/‘\_

/’ \l I/ -“‘ I‘f \l If \}
1 g | 4 M M| B
..]l iRy Jf .]F-I-l - jl - j[_ .IF+[ G(LI sew a’LT‘ . a‘p_'_l.l see aF_’_]'TI &
PEY J
__\/» ‘\‘/
C p (integer coding) C 1 (real coding)

Crossover operator: one point + BLX-a crossovers (2 offsprings)

Mutation operators:

It adds y random rules to the RB, where y is
randomly chosen in [1, y,..]
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MODEL 3: Multiobjective Learning

of DB and RB

Operators and Selection Schemes

It randomly changes 6 elements of the RB
part. The number 6 is randomly generated in [1, 6,,,,]

It changes a gene value at

random in the DB part

: and
were applied using this
representation and
crossover

[pP1, p2] = selection(archive/population) ;

if (rand() < Pcross)
[s1, s2] = crossover (p;,p:);
Pmgg = 0.01;
else
51 = Pa;
Sz = P2;
Pmgg = 1;
endif
Loop i=1,2
if (rand() < Pmgg)
if (rand <Pmggq)
8; = add _rule();
else
g8; = modify rule base();
endif
endif
if (rand() < Pmpg)
s; = mutate DB () ;
endif
endLoop
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MODEL 3: Multiobjective Learning of DB and RB

Analysed Methods

Method Description Pop. size

SOGA,; Rule Base learning with SOGA 64
NSGA-11 45 Rule Base learning with NSGA-11 64

PAES 45 Rule Base learning with PAES 64

SOGA,; (Rule Base + Data Base) learning with SOGA 64
NSGA-11,, (Rule Base + Data Base) learning with NSGA-11 64

PAES,; (Rule Base + Data Base) learning with PAES 64

Different population sizes were probed for these MOEAs showing
better results when the population used for parent selection has similar
sizes than those considered by single objective oriented algorithms.

300,000 evaluations to allow complete convergence in all the

algorithms
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MODEL 3: Multiobjective Learning of DB and RB

Average Pareto Fronts and average solution by SOGA
(medium voltage lines problem)

5 Data partitions 80% - 20%

Traning sel +PAESw ANSCGAdlg BSOGAL "
it * PAES. s ONSGAd|yx # SOGA 6 Runs per partition
25000 " 25000 X A total of 30 Runs
" }_, X % Test t-student a = 0.05
X ’ X
Kx - L O XX x
e XX o Oo?)'*(',f' E e Most accurate
w - - Xx w PR & | - .
§ sl Op b X KX X 5 " | C OC'CQP;H‘H- . solution is selected
= 04 a "‘H"hq.,_,_l_ » |- Yo0oon 58 from each Pareto
- * il 5
1500 b OOOC by }_. 15000 T ©o
.. 006, - ‘eela, Average values are
00000 computed and
12500 LI 12500} .
‘eee,.. . represented
BTl ST w6 These solutions are
Complaxity Complaxity no more used
000 5000 o
o ® X« 28533 Repeat to extract
25w} wsw} X x N the desired avarage
* X S " X % x Pareto
wom} X X x ; 2000 ++ ++++ X 3
x : O e
W ++ L W O ~
W 17500 h + R ox W 17500 h OO0 An A~ +hy -
g oy T | © 54, , | Only the first 20
- O o ++ o l® . ‘ ~ 00 :
ot = 900 o R AT solutions are
e . < 0 O O e ‘ e o -
1250 e, oo 12500} EERITI considered
* 4. " .
10000 2 ; 1 2.2 2:.‘ 2.4 2.‘ 2:' ; 7 215 8.9 T;ll 10000 20 2:' 2.2 [‘ 3 2.4 £‘ 2“‘5 2. T’ Z.E- .::- 7;3
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MODEL 3: Multiobjective Learning of DB and RB

Statistical Analysis

Statistical comparison among MOEAs

Using the Pareto most accurate solution Using the Parcto median solution Using the Pamto simplest solution
(FirsT) (MEDIAN) (LasT)
Me thod #RC Euppy oprg It Epgy Tyoe U # RIC Eyppy oppg Bt By opg 1| # RIC Ky oppg By oy 1t
NSGA-Nlgpgp | 3¥ed 17116 4283 + 19834 4996 + | 25/4E 18B53 4672 + 21533 5149 + | 1830 23649 5852 + 26660 6342 +
PAES g I¥ed 15454 3882 + 17135 4234 + | 2ZW51 16378 4112 + 18472 4740 + | 2M38 18352 4631 + 20238 5419 +
NSGA-Ilgm | 2W6T 13137 3378 + 13587 4806 + | 2¥46 15073 4126 + 17581 5853 + [ 1729 21629 12156 + 25716 14722 +
PAES Kk i ves 11044 X771 ¢ 12607 3106 | 2550 12133 3380 * 13622 3353 v | 2OVE5 14297 4449 ¢ 15951 405 ¢

Statistical comparison of the best MOEA with SOGA

Method # RC Eiva o0tra 0 Etar o 1l
SOGA ;i 30/83 24340 8450 + 28633 11861 +
SOGAKk B 30/88 16502 5136 o 19112 6273 o
PAES i g (FIrsT) VeSS 11044 2771 - 12607 3106 -
PAES i g (MEDIAN) | 25/50 12133 3380 - 13622 3353 -
PAES g (LAsT) 20/35 14297 4449 =% 15051 4405 -

1t s (-) with 91% confidence

REMINDER
5 Data partitions 80% - 20%

6 Runs per partition
A total of 30 Runs
Test t-student a = 0.05
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MODEL 3: Multiobjective Learning of DB and RB

Convergence
Evolution of SOGA and PAES s (FIRST) Pareto evolution of PAESks and SOGA evolution
30000 - 20000
| #*
280001 |y — PAES,g (training) | - 1000 %
I — — — PAESka (test) * %
26000 SOGAkg(training)| 18000 * * *
SOGAks(test)
240001 = il 1?01:(}[] 4 \
T OO
22000} -
LU LU 1 D%DD e
w 20000 _ w 0O i
= = i O s
15000 0y m i ]
180001 i Bl @ [ [4 PAESkg (25000 evs.)
14000 - e [0 PAESKg (50000 evs.) |
16000 “ ] IO R0 O PAESkg (100000 evs.)
ook 00 ey Y e « - 13000+ M »E( * PAESkge (150000 evs.)}| |
- o Te ] “teeee > LN | A\ PAESKR (200000 evs.)
12000l A 120001 « PAESkg (300000 evs.)| _
e 3=:.'3 SOGAkg
'1 1 1 1 1 1 1'1 I 1 I 1 1 1
00005 50000 100000 150000 200000 250000 300000 ) 40 50 60 70 80 P 100
Number of evaluations Complexity
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MODEL 3: Multiobjective Learning of DB and RB

The models obtained by these new approaches
presented a better trade-off than those obtained by
only considering performance measures.

Between both multi-objective experimented, namely a
modified (2+2)PAES and the classical NSGA-II, the
modified (2+2)PAES has shown a better behavior than
NSGA-II.

Finally, the linguistic 2-tuples representation
presented has shown a good positive synergy.
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MOEFSs for Multiobjective Control Problems

Bibliography on this category

Fuzzy Control FRBS approach MOEA
Authors Ref. Year Rules  Type #0bj. Name Gen. Type  Application Framework
Ahlawat et al. [96] 2001 Mam. LING. 2 NoN. st I » BUILDING VIBRATION
Ahlawat et al. [97], [99] 2002,2004  Mam. LING. 2 NoN. st I » BUILDING VIBRATION
'g Ahlawat et al. [98] 2002 Mawm. LinNG. 3 NoN. Ist I BUILDING VIBRATION
E . Chipperfield et al.  [101] 2002 Mawm. LinG. 9 NoN. Ist N GAS TURBINE ENGINE
E E Ahlawat et al. [100] 2004 Mam. LING. 2 NoN. st I BUILDING VIBRATION
£ S | Jurado et al. [102] 2005 Mawm. LinG. 16 NoN. Ist Io SOLID OXIDE FUEL CELL
é E Kim et al. [103] 2006 Mawm. Scart. 2 NSGA-II 2nd G BASE-ISOLATION SYSTEM
z E Kim et al. [104] 2007 Manm. Scart. 4 NSGA-II 2nd G BASE-ISOLATION SYSTEM
% Shook et al. [105] 2008 Mam. LiNG. 4 NSGA-II CE 2nd I SEISMIC LOADS MITIGATION
o Muiioz et al. [106] 2008 Mawm. LiNG. 2 VARIOUS 2nd G Fuzzy VISUAL SYSTEM FOR ROBOTS
Daum et al. [108] 2010 TSK ScaT. 2 NSGA-II 2nd G HVAC sYSTEMS
Ebner et al. [109] 2010 I I 3 NoN. 2nd [e WATER TREATMENT
Gacto et al. [93] 2012 Manm. LinNG. 2 SPEA2g/E 2nd [e HVAC sysTEMs
e | Blumel et al. [110] 2001 Mam. LING. 4 NSGA st N MISSILE AUTOPILOT
2 E Chen et al. [113] 2002 TSK LING. = 2 NoN. st N INCINERATION PROCESS
z % | Stewart et al. [111] 2004 Manm. LinNG. 3 NoN. Ist N DC MOTOR MOTION CTRL.
E H Serra et al. [114] 2006 Manm. LiNG. 3 NoN. 2nd N NONLINEAR PLANTS
- Fazendeiro et al. [112] 2007 Mam. LING. 2 NoN. 2nd [e DRUG DOSAGE FOR SURGERIES

Mam.=Mamdani, TSK=Takagi-Sugeno-Kang, Linc.=Linguistic, Scar.=Scatter, =In the antecedent, FPatented FLC, not

available information; . ) )
A=Accuracy, C=Complexity, S=Semantic aspects; The mU|t|ObJECtIVG nature IS
NoN.=No name, N=Novel algorithm, I=Improved version, G=General use: -

*2-branch tournament GA, oMOGA based, TNSGA-II based, «SPEA?2 based. SpeCIfIC to eaCh problem

» Most of them deal with the post-processing of FLC parameters (simplest with reduced search space)
» Earlier works consider 1st-gen. algorithms and only recently the 2nd-gen. have been applied (2006)

*Almost all of them are Linguistic and Mamdani-type based approaches

Michela Fazzolari, Rafael Alcald, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.



MOEFSs for Multiobjective Control Problems

An example for the control of HVAC Systems

Fuzzy Control FRBS approach MOEA
Authors Ref. Year Rules  Type #0bj. Name Gen. Type  Application Framework
Ahlawat et al. [96] 2001 Mam LING. 2 NoN. st I » BUILDING VIBRATION
Ahlawat et al. [97], [99] 2002,2004 Mam LING. 2 NoN. st I » BUILDING VIBRATION
'g Ahlawat et al. [98] 2002 Mam LiNG. 3 NoN. Ist I BUILDING VIBRATION
E . Chipperfield et al.  [101] 2002 Mam LiNG. 9 NoN. Ist N GAS TURBINE ENGINE
E E Ahlawat et al. [100] 2004 Mam LiNG. 2 NoN. st I BUILDING VIBRATION
z S | Jurado et al. [102] 2005 Mam LinG. 16 NoN. Ist Io SOLID OXIDE FUEL CELL
é E Kim et al. [103] 2006 Mam Scar. 2 NSGA-II 2nd G BASE-ISOLATION SYSTEM
z 5 Kim et al. [104] 2007 Mam Scart. 4 NSGA-II 2nd G BASE-ISOLATION SYSTEM
% Shook et al. [105] 2008 Mam LING. 4 NSGA-II CE 2nd I SEISMIC LOADS MITIGATION
o Muiioz et al. [106] 2008 Mam LiNG. 2 VARIOUS 2nd G Fuzzy VISUAL SYSTEM FOR ROBOTS
Daum et al. [108] 2010 TSK Scar. 2 NSGA-II 2nd G HVAC sYSTEMS
Ebner et al. [109] 2010 I I 3 NoN. 2nd [e WATER TREATMENT
e | Blumel et al. [1 10] 2001 Mam LING. 4 NSGA st N MISSILE AUTOPILOT
2 E Chen et al. [113] 2002 TSK LING. = 2 NoN. st N INCINERATION PROCESS
z % | Stewart et al. [111] 2004 Mam LiNG. 3 NoN. Ist N DC MOTOR MOTION CTRL.
E Lj Serra et al. [114] 2006 Mam LiNG. 3 NoN. 2nd N NONLINEAR PLANTS
- Fazendeiro et al. [112] 2007 Mam. LING. 2 NoN. 2nd [e DRUG DOSAGE FOR SURGERIES
Mam.=Mamdani, TSK=Takagi-Sugeno-Kang, Linc.=Linguistic, Scar.=Scatter, =In the antecedent, *Patented FLC, not

available information;
A=Accuracy, C=Complexity, S=Semantic aspects;
NoN.=No name, N=Novel algorithm, I=Improved version, G=General use:

*2-branch tournament GA, oMOGA based, TNSGA-II based, «SPEA?2 based.

In the following we will see a representatibe
example for the control HVAC Systems

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.



MOEFSs: APPLICATION TO A HVAC
CONTROL PROBLEM

Heating Ventilating and Air Conditioning Systems

_

A B C D E F G

Aire del Exterior Aire Suministrado

Aire de Retorno

Aire de Salida

I - Enfriamiento
I - calentamiento Sala Sala,
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Models for Fuzzy Control of HVAC Systems

Single Objective Previous Approaches

R. Alcala, J.M. Benitez, J. Casillas, O. Cordon, R. Pérez, Fuzzy Control of HVAC
Systems Optimized by Genetic Algorithms. Applied Intelligence 18:2 (2003) 155-
177.

R. Alcala, J. Casillas, O. Cordon, A. Gonzalez, F. Herrera, A Genetic Rule Weighting
and Selection Process for Fuzzy Control of Heating, Ventilating and Air
Conditioning Systems. Engineering Applications of Artificial Intelligence 18:3
(2005) 279-296.

R. Alcala, J. Alcala-Fdez, M.J. Gacto, F. Herrera, Improving Fuzzy Logic Controllers
Obtained by Experts: A Case Study in HVAC Systems. Applied Intelligence 31:1
(2009) 10-35.

A new MOEFS to Solve the Problem

M.J. Gacto, R. Alcala, E Herrera, A Multi-Objective Evolutionary Algorithm for an
Effective Tuning of Fuzzy Logic Controllers in Heating, Ventilating and Air
Conditioning Systems. Applied Intelligence 36:2 (2012) 330-347
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Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

and more
than a half is for indoor climate conditions
The use of strategies could result in
energy savings ranging
Moreover, in current systems, are considered and

optimized independently without a global strategy

A B C D E F G

Qutside Air

Return Air

Generic Structure of an
Office Building Exhaust Air
HVAC System

BN - Cooling
I - Heating

It maintain a good thermal quality in summer and winter
It dilutes and removes emissions from people, equipment and activities and
supplies clean air 128



Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Initial Data Base _
T ——— 17 Variables

VL L M H VH
Vi Vo6
-0.60 0.60 770.00 860.00 11
S O e Initial Rule Base and FLC Structure
ettt : #R = 172
! V2 ! ! 1
. 0.2 .2 -1 .
O'Of,L o D\.,Ds 31_01_ N Hovi : Mt K= EEE V3 i V13: Valve old position :
V3 V8 Vi PMY i Il A e A ! V5: Required heat ;
H 19 15| 5| La| L4 |La ' - - !
3.00 3.00 V. P ot el V1 [ ]2 5] e s : : ;
LM H =0 L M HZIOO ' o Lz i V11: Thermal/Energy priority ; ¥14: Valve
A Ve ' L L | L | L i | fpieinininiinieinieini i H new position
1 1 1
1
0.00 : : \}15: Fan
-15.00 15.00 .| 16.00 1 =
- VI . M H VH V10 VL. . M H VH | VS::ThermaI E CEJ”SF'eed
preference : 1
1 1 :
! 1
1
2,00 2.00 2000.00 10000.00 Va4: Tout-Tin +——— ,
vip £ M H Vi6 L M ! :
' i
! 1
1
1
-1.00 1.00 0.00 100,00 Lg Inteoral 1 H
T H L M H - Integra ! 1
Vi2 V17 : of PMV : :
1 1
V10aintegral of ! '
energy:consum tion ! 1
0.00 1.00 0.00 100.00 . \ !
V13 L M H ! M-1b L V8 ! (5| FRIRRY A RN E] [ 1
V6: CO.— LifL2fs ! VAY: New
EaCEH o] o] ! Li| 12| L] 13| 3]s
INITIAL : : i visl| extract fan
0.00 100.00 DATA BASE VT: doQd : I ] L 12| Lz| La3|L3| L3|L] !3
: t 3| L) e 1
TS Y. e NEEEC0 vgogonsi | [l |
Associated linguistic terms: | H Fan Speed ' : -1 i
______________________ R |
0.00 100.00 Esry LEW: VL Layer 1: System Demands Layer 3: Control Decisions
W=
vis Medium = M
High = H Module 1a,: Thermal Demands Module 2: Energy Priorities
Very High = VH Module 1a,: Thermal Preference  Module 3a: Required HVAC System Status

0.00 3.00 Module 1b: Air Quality Demands ~ Module 3b: Required Ventilation System Status




Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Representation of the Test Cells

o . ATGC Test Cells
- PASSAGEWAY N
CONTROL \_ - Builtin 1992.
HOOM - Volume: 30 or 60 m?3

- Full control of temperature range (-15/45°C).
- Full control of relative humidity (10/90%).

- Maximum heating/cooling power: 48 kW.

- Fully configurable test cells.

- Equiped with various sensors for indoor
climate evaluation: air flow velocity,
relative humidity, CO. concentration, etc.

Two adjacent twin cells were available

A calibrated and validated model of this site was
developed to evaluate each FLC
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Fuzzy Logic Controllers for Energy

Efficiency Consumption in Buildings

Goal: multi-criteria optimization of an expert FLC for an HVAC system: reduction of
the energy consumption but maintaining the required indoor comfort levels

O: Upper thermal comfort limit 3: if PMV > 0.5,01 = O1 + (PMV —0.5).

Os Lower thermal comfort limit: if PMV < —0.5,02 = Os + (—PMV —0.5).

O3 TAQ requirement: if COs cone. > 800ppm, O3z = O3 + (CO2 — 800).

O4 Energy consumption: Oy = O4+ Power at time ¢.

Os System stability: Cs = Cs+ System change from time ¢ to (£ — 1).

MODELS | #R | PMV>0.5 | PMV<-0.5 | CO0, ENERGY STABILITY
0, 0, 0, 0, % 0, %
ON-OFF - 0,0 0 0 3206400 - 1136 -
FLC 172 0,0 0 0 2901686 | 9,50 | 1505 | -32,48
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MOEFSs for Fuzzy Control of HVAC Systems:

Problem Restrictions and Tuning Approach

The controller accuracy is assessed by means of simulations which

approximately take 3-4 minutes

Necessity of efficient tuning methodologies:
of the MF parameters

teady-State Genetic Algorithms were applied in the previous
aproaches:

2000 evaluations = 1 run took approximately 4 days

Considering a (31 individuals)

The Lateral Tuning is combined with a Rule Selection =, G d

A doble coding scheme is considered with the joining >\/\ /
/ /

of the selection binary values and the lateral parameters

C=C.C;



MOEFSs for Fuzzy Control of HVAC Systems:

Lateral Tuning + Rule Selection

| [Fh =If Xis H{ THENY is La]

: \ CS
R, R, Rj
1 1 1

Lateral Tuning + Rule
Selection Process
L+ My Hy Lo My, H: Ry Ry Rj
02 {04) o [02]-03|-05] 1 1
C C

T l
L ; W W L R1=) Xis H; THENYiis Lo
0 0 1 Ra=If XisM{THENY isH>

Example of genetic lateral tuning and rule selection
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MOEFSs for Fuzzy Control of HVAC Systems:

An Improved MOEA: SPEA2, .

Since the experts were able to provide trusted weights, performance criteria
have been combined into a single function F. Thus the objectives are:

Minimization of F (to improve the performance)

Minimization of the number of rules (to favour the tuning efficiency)

The following mechanisms or operators have been integrated into the well-
known SPEAZ2 algorithm to improve the Exploration/Exploitation trade-off

An mechanism as the well-known CHC algorithm

Automatic aplication to avoid local optima

Progressive concentration on the most accurate solutions for parent
selection

An intelligent crossover operator

134



MOEFSs for Fuzzy Control of HVAC Systems:

RESULTS

PMV CO; Energy Stability
Method #R F' F M M> M3 My o Ms %o
Initial controllers
ON-OFF - 6.58 6.58 0.0 0 0 3206400 - 1136 -
Initial controller 172 5.69 6.32 0.0 0 0 2901686 9.5 1505 —32.5
Mono-objective steady-state genetic algorithms
S 160 5.91 6.15 0.1 0 0 2886422 10.0 1312 —15.5
T 172 4.55 5.71 0.0 0 0 2586717 19.3 1081 4.8
TS 109 4.36 5.66 0.1 0 0 2536849 20.9 1057 7.0
W 172 3.37 5.88 0.1 0 1 2783010 13.2 1202 5.8
WS 109 4.95 5.64 0.6 0 0 27755851 14.1 949 16.5
L 172 3.75 4.97 0.9 0 0 2325093 27.5 1072 5.7
LS 113 3.35 4.69 0.7 0 0 2287993 28.6 800 29.6
LA 172 3.23 4.61 0.9 0 0 2245812 30.0 797 29.8
LAS 104 3.14 4.50 0.8 0 0 2253996 20.7 634 44.2
Multi-objective evolutionary algorithms
LS-NSGA-II 82.7 3.830 4.909 0.5 0 1.3 2480182 22.6 636 44.0
L5-NSGA-II 4 69.3 3.964 5.003 0.7 0 0 2502374 21.9 106 37.8
LS-NSGA-IIy 71.3 4.304 5.264 0.6 0 0 2562149 20.1 909 19.9
LS-SPEA2 82 3.587 4.830 0.8 0 0 2373620 26.0 T80 31.3
LS-SPEA24cc 96.3 3.383 4.708 1.0 0 0 2264251 29.4 874 23.0
LS-SPEA2g/E 70.7 J.064 4.412 0.9 0 0 2231310 30.4 564 50.3
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MOEFSs for Fuzzy Control of HVAC Systems:

Pareto Fronts Obtained

Pareto Front

Median Pareto Front 100 O¢|‘1055
8 1 <113 o5
e . &= " ?
81 Q\ \O \ - \E\E \
79 =) -
€ 7 o £ \\:GR -
F] g é ” \ 3
- < 9.4 & 75 P i\\
73 = $ =-—
71 N & -
- %
69 i 65 -
67 60
3 3.2 34 36 38 4 42 3 25 . 45 5
Fitness(F") Fitness(F')
Methods = “@PLS-SPEA2ce <@rLS-SPEA2 {gLS-NSGAIl < LS Methods | “@LS-SPEA2:c {@rLS-SPEA2 {mLS-NSGAIl <pLS

< LS-SPEA2 ¢ s LS-SPEA 25l LS-NSGAIlss g LAS <9 LS-SPEAZ 5@ LS-SPEA2s< i LS-NSGAlss iggp LAS

The obtained fronts are not so wide but they dominate
the remaining wider ones
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MOEFSs for Fuzzy Association Rule Mining

Fuzzy Association Rule Mining

* Predictive induction: Induces rule sets acting as classifiers for solving classification
and prediction tasks

« Descriptive induction: Discovers individual rules describing interesting regularities
in the data

Therefore: Different goals, different heuristics, different evaluation criteria

e One way to extracted with data mining techniques is
, Whose basic concept is to represent associations (simultaneity and not
causality) between different pairs of sets of attribute values

The use of fuzzy sets to describe associations between data:

« extends the types of relationships that may be represented,

« facilitates the interpretation of rules in linguistic terms, and

e avoids unnatural boundaries in the partitioning of the attribute domains



MOEFSs for Fuzzy Association Rule Mining

Bibliography on this category

Fuzzy association Objectives MOEA
rule mining

Authors Ref. Year  #0bj.  Description Name Gen.  Type
Kaya et al. [115] 2006 3 TSup. + TCon. + [Att. NoN. 2nd N
Alhajj et al. [116] 2008 2 TLI + | Tim. NoN. 2nd [e
Chen et al. [117] 2008 2 TL1I + TSui. NoN. I st I o
Thilgam et al. [118] 2008 2 TSup. + TCon. MOGA I st G
Casillas et al. [119] 2009 3 LErr. + |[DNF-FR + |[MAM-FR  NoN. 2nd [
Carmona et al. [120] = 2010 3 TSup. + TFECon. + TUnu. NMEEF-SD 2nd I

+Applied for Subgroup Discovery:

Con.=Confidence, Sup.=Support, Tim.=Time, Err.=Error, LI=#Large itemsets, L1I=#Large |-itemsets, Att.=#Attributes, Sui.=Suitability,
DNF-FR=#DNF-type Fuzzy Rules, MAM-FR=#Equivalent Mamdani-type Fuzzy Rules, Unu.=Unusualness, FCon.=Fuzzy confidence,
TMaximize, |[Minimize, NoN.=No name, N=Novel algorithm, I=Improved version, G=General use: TNSGA-II based, *PAES based,
oMOGA based. #SPEA based.

With respect to the multiobjective nature in this category, the aim of the optimization
process is not only to improve the general trade-off between the usual metrics of the
data mining for the whole set of rules, but also to obtain a large number of different
rules, each of them satisfying the objectives to different degrees.

* In most cases, the classical measures of data mining, support and confidence, are used as objectives
 The application of MOEASs to extract fuzzy association rules is quite recent, beginning in 2006

 Therefore, the majority of works exploit a 2nd-generation MOEA

Michela Fazzolari, Rafael Alcald, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.



MOEFSs for Fuzzy Association Rule Mining

An example on Subgroup Discovery

Fuzzy association Objectives MOEA

rule mining
Authors Ref. Year  #0bj.  Description Name Gen.  Type
Kaya et al. [115] 2006 3 TSup. + TCon. + [Att. NoN. 2nd N
Alhajj et al. [116] 2008 2 TLI + | Tim. NoN. 2nd [e
Chen et al. [117] 2008 2 TL1I + TSui. NoN. Ist I o
Thilgam et al. [118] 2008 2 TSup. + TCon. MOGA Ist G

3

‘asillas et al. [119] 2009 LErr. + |[DNF-FR + |[MAM-FR  NoN. 2nd I+

ECon

Con.=Confidence, Sup.=Support, Tim.=Time, Err.=Error, LI=#Large itemsets, L1I=#Large |-itemsets, Att.=#Attributes, Sui.=Suitability,
DNF-FR=#DNF-type Fuzzy Rules, MAM-FR=#Equivalent Mamdani-type Fuzzy Rules, Unu.=Unusualness, FCon.=Fuzzy confidence,
TMaximize, |Minimize, NoN.=No name, N=Novel algorithm, I=Improved version, G=General use: TNSGA-II based, *PAES based,
oMOGA based. #SPEA based.

In the following we will see a representatibe
example for Subgroup Discovery on Databases

Michela Fazzolari, Rafael Alcala, Yusuke Nojima, Hisao Ishibuchi, Francisco Herrera. A review on the application of Multi-
Objective Genetic Fuzzy Systems: current status and further directions. IEEE Transactions on Fuzzy Systems 21(1) (2013) 45-65.



MOEFSs for Subgroup Discovery

How does subgroup discovery work?

Subgroup discovery is a process to identify relations between a dependent
variable (target variable) and usually many explaining, independent variables.

For example, consider the subgroup described by

"smoker=true AND family history=positive”

for the target variable coronary heart disease=true.

Subgroup discovery does not necessarily focus on finding complete relations;
instead partial relations, i.e., (small) subgroups with "interesting” characteristics
can be sufficient.



MOEFSs for Subgroup Discovery

NMEEF-SD

* Non-dominated Multi-objective Evolutionary algorithm based
on Fuzzy rules extraction for Subgroup Discovery (NMEEF-
SD)

C. J. Carmona, P. Gonzalez, M. J. del Jesus, and F. Herrera,

‘NMEEF-SD: Non-dominated Multiobjective Evolutionary Algorithm for
Extracting Fuzzy Rules in Subgroup Discovery”,

IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 958-970, 2010




MOEFSs for Subgroup Discovery

NMEEF-SD

» Each candidate solution is codified according to the “Chromosome = Rule*
approach, where only the antecedent is represented

e NMEF-SD is able to work with crisp or fuzzy rules

e The fuzzy logic:
— Is used in continuous variables
— Linguistic labels are defined by means of the corresponding membership
functions
— Defines uniform partitions with triangular membership functions



MOEFSs for Subgroup Discovery

NMEEF-SD

 NMEEF-SD can extract canonical or DNF rules.

— For the canonical rules, only the antecedent is represented through a conjunction of
value-variable pairs.
X X X, X

1 1 1 1

IF X, = Value; AND X, = LL,2 THEN Class 2 —> 3 o o 2

— For the DNF rules extension, a fixed-length binary representation is used
IF X; = (Value; OR Value;) AND X; = LL;! THEN Class 2

X X X X

1 2 3 4
101000001 00000O0O0O



MOEFSs for Subgroup Discovery

NMEEF-SD

o This algorithm is based on NSGA-II approach.

» The quality measures selected as objectives:
— Support (Sup.N)
— Unusualness (WRA,,)

Operation diagram of NMEEF-SD

Non-dominated sorting

yes
Evolves the ing F
F, . - Pareto front? . CJic:mﬁlc"eg I .
Fz ( F1 ) sorting F2
| |
F, £

|
-F without repeated
U individuals

* New individuals
based on
R Fi coverage

I:’t+1




MOEFSs for Subgroup Discovery

NMEEF-SD

Biased initialisation

To create an initial population whose size is prefixed by an external
parameter.

« A part of the population (75%0) using only a maximum percentage of the
variables (25% of the rule) which form part of the rule.

* The rest of variables and rules of the population are randomly generated.

» This operator obtains a set of rules with a high generality.



MOEFSs for Subgroup Discovery

NMEEF-SD

Genetic operators

e The algorithm uses different operators:
— Tournament Selection
— Multi-point Crossover
— Biased Mutation

3 2 4 2
Two types of mutation (50%)

A
' N

0 2 4 2 1 2 4 2
Variable eliminated Value modified



MOEFSs for Subgroup Discovery

NMEEF-SD

Fast non-dominated sort

The algorithm joins two populations in only one:
— Initial population
— Offspring population

« The algorithm applies the fast non-dominated sort over the population
obtained previously.

* The individuals of the population are classified in fronts of dominance.

 The first front is the Pareto front.

« The algorithm obtains diversity with the operator of crowding distance.



MOEFSs for Subgroup Discovery

NM

EEF-SD

Re-Initialisation based on coverage

* When the algorithm obtains the fronts of dominance checks

the evolution of the Pareto front.

If the Pareto front evolves during more than five percent of the evolutive process

Ve

~

DOES NOT EVOLVE
1.

Eliminates the individuals
repeated in the Pareto front.

2. Replaces these individuals with

new individuals generated
based on coverage.

EVOLVES

1.

Introduce the fronts in the next
population.

If the front has more individuals
than can enter in the population,
the inviduals are introduced by
greater crowding distance.




MOEFSs for Subgroup Discovery

NMEEF-SD

Stop condition

e The evolutionary process ends when the number of evaluations is reached.

e The algorithm returns the rules in the Pareto front which reach a
predefined fuzzy confidence value threshold.

e The fuzzy confidence is defined In:

M.J. Del Jesus, P. Gonzalez, F. Herrera, M. Mesonero

Evolutionary fuzzy rule induction process for subgroup discovery: a case study in
Marketing

IEEE Transactions on Fuzzy Systems, Vol. 15 (4), 2007, pp. 578-592.




MOEFSs for Subgroup Discovery

NMEEF-SD

Experimentation

» Different data sets available in UCI repository has been carried out:

Australian, Balance, Echo and Vote.
http://www.ics.uci.edu/~mlearn/MLRepository.html

 Ten fold cross validation

e Algorithms compared:
— Evolutionary algorithms SDIGA and MESDIF.
— Classical methods CN2-SD and Apriori SD.

e Parameters for NMEF-SD:
— Population size: 25
— Maximum number of evaluations: 5000
— Crossover probability 0.60 and mutation probability 0.01



MOEFSs for Subgroup Discovery

NMEEF-SD

Experimentation

Datsbase | Agoritm | Rul | var | Cov | 6N | WRa, | SURN | Fone

NMEF-SD 3.58 2.92 0.454 23.178 0.171 0.783 0.930

MESDIF 10.00 3.52 0.311 7.594 0.060 0.577 0.807

Australian SDIGA 2.68 3.28 0.310 16.348 0.120 0.803 0.591

CN2-SD 30.50 458 0.400 15.350 0.055 0.649 0.830

AprioriSD 10.00 2.02 0.377 16.998 0.074 0.654 0.863

NMEF-SD 2.30 2.00 0.362 5.326 0.070 0.530 0.698

MESDIF 28.10 3.08 0.163 3.516 0.022 0.318 0.557

Balance SDIGA 7.40 2.39 0.291 5.331 0.049 0.487 0.664

CN2-SD 15.60 2.23 0.336 8.397 0.063 0.512 0.583

AprioriSD 10.00 1.20 0.333 5.444 0.058 0.480 0.649

NMEF-SD 3.62 2.35 0.428 1.293 0.043 0.628 0.757

MESDIF 19.74 3.30 0.164 0.877 0.017 0.355 0.591

Echo SDIGA 2.32 2.27 0.394 1.165 0.013 0.566 0.590

CN2-SD 17.30 3.23 0.400 1.181 0.019 0.490 0.667

AprioriSD 9.80 1.70 0.194 0.901 0.034 0.226 0.510

NMEF-SD 1.10 2.05 0.577 21.974 0.217 0.946 0.979

MESDIF 7.86 3.44 0.429 19.937 0.187 0.827 0.957

Vote SDIGA 3.06 3.19 0.422 18.243 0.180 0.802 0.891

CN2-SD 8.00 1.79 0.438 18.830 0.176 0.858 0.932

AprioriSD 10.00 1.44 0.428  17.060 0.147 0.800 0.930



MOEFSs for Subgroup Discovery

NMEEF-SD

Experimentation

 When analysing the results is important to take into account:
— The relation between Support and Confidence.

— Good results in the quality measures of Subgroup Discovery:
Unusualness and Significance.

— A good interpretability of the results.

 NMEF-SD obtains:

— The best results for the quality measures in the data sets selected.
— Better results in generality and precision than others.
— The subgroups are good, useful and representative.



Contents

1. Basics on MOEFSs
- Introduction to Genetic Fuzzy Systems (GFSs) and its main types
- Evolutionary Multiobjective Optimization: Basic concepts and framework

2. Types of MOEFSs by multiobjective nature and optimized components

3. MOEFSs designed for the Interpretability-Accuracy Tradeoff of Fuzzy

Systems: Two contradictory objectives
- Interpretability issues in fuzzy systems design
- Some example approaches

4. Other types of MOEFSs
- MOEFSs designed for multi-objective control problems
- MOEFSs designed for fuzzy association rule mining

5. New Research Directions in MOEFSs



Current and Future Research Directions

INn MOEFSs

1) Development of New MGFS Methods with Improved Algorithms

- Particular algorithms for multiobjective input selection
- Particular algorithms for multiobjective fuzzy partition learning

An example for learning granularities and selecting conditions can be found
in:
Exploiting the concept of virtual

M. Antonelli, P. Ducange, B. Lazzerini, and F. partitions with modified PAES
Marcelloni, ““Learning concurrently partition

granularities and rule bases of Mamdani fuzzy systems A X ; ¥
in a multi-objective evolutionary framework,” Int. J. ENEAENE [v' ERERENERESE 'a']"v"'[,]
Approx. Reason., vol. 50, n. 7, pp. 1066-1080, 2009. ¢ ¢ e

M. Antonelli, P. Ducange, B. Lazzerini, and F.
Marcelloni, “Multi-objective evolutionary learning of
granularity, membership function parameters and rules
of Mamdani fuzzy systems,”” Evolutionary Intelligence,
vol. 2, n. 1-2, pp. 21-37, 2009.




Current and Future Research Directions

In MOEFSs (2)

1) Development of New MGFS Methods with Improved Algorithms (2)

An example for learning granularities and for selecting variables can be found

In. Exploiting the embedded learning

of the DB with improved SPEA2

ce Gl:(Lla---aL‘N) (-'QZ{H]'.....HAI]
R. Alcala, M. J. Gacto, and F. Herrera, ““A Fast and

Scalable Multi-Objective Genetic Fuzzy System for o S——

Linguistic Fuzzy Modeling in High-Dimensional Regression [ Procees J = Process

Problems,”” IEEE Transactions on Fuzzy Systems 19:4 i Ad-hoc -

(2011) 666-681, doi: 10.1109/TFUZZ.2011.2131657 | Nedde
- RB

2) Performance evaluation of MOGFSs

* Visualization of Pareto-Optimal Fuzzy Systems
* How to compare MGFSs Evaluation indexes in the EMO framework
- A statistical Analysis is needed evaluate the exploration and exploitation

- Use of non-parametric statistical tests capabilities of the MOEA. But we are also
interested in generalization capabilities of

the FRBSs



Current and Future Research Directions

In MOEFSs (3)

2) Performance evaluation of MOGFSs
* How to compare MGFSs

A recent possibility to apply non-parametric statistical tests: 10

8¢t

b

R. Alcald, P. Ducange, F. Herrera, B. Lazzerini, and F. | Analyzing the averages on ';s.
Marcelloni, “A Multi-objective evolutionary approach | three representative points by AN &
to concurrently learn rule and data bases of linguistic | non-parametric statistical tests

L. . 2 i ;
fuzzy rule-based systems,” IEEE Trans. Fuzzy. Syst., for bi-objective problems L ¢ ¥
vol. 17, n. 5, pp. 1106-1122, 2009. (FIRST, MEDIAN, LAST) O e

x 10* € x10° 2
An extension for the case of more than two = 6 “‘3 A
objectives: yof %M:E&Qgﬁﬁ » ‘%Mﬁ :
08, 8% ° | el
M. J. Gacto, R. Alcala, and F. Herrera, “Integration 2. i &3& a8 -
of an index to preserve the semantic interpretability in o - u-f’a}fﬂ"-a o ’ il
the multi-objective evolutionary rule selection and , x10t i #
tuning of linguistic fuzzy systems,” IEEE Trans. 6 zﬁ% P wof o
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010. ; “&;;) ° sof &
IR - Ol T | TP O *
% ’ %E%Jﬂﬁw 30 ”IC‘ B
Projections on bi-objective planes.Then, representative f FT R | .+ L W
points can be obtained in the new non-dominated solutions : S 1 — o ) _ : ;E J




Current and Future Research Directions

in MOEFSs (4)

3) Reliable Interpretability Measures (Formulations of the Interpretability)

- We need well established and accepted measures
- Use of new ones for C3 (semantic-RB) as cointension or number of fired rules

The use of relative measures for C4 (semantic-DB) could be promising. First

proposal in:
M. J. Gacto, R. Alcala, and F. Herrera, “Integration Measuring the differences to a given
of an index to preserve the semantic interpretability in linguistic partition (obtained from
the multi-objective evolutionary rule selection and experts or automatically by using
tuning of linguistic fuzzy systems,” IEEE Trans. absolute measures): GM3M index
Fuzzy. Syst. vol. 18, n.3, pp. 515-531, 2010. based on three metrics
<>
TT L b T TT
displacement /’ \ | § //" aspect
; : . | : A
AN /
R A / \
a a bb ¢ ¢ IL a It It ¢ It ) a b_b ¢ ¢ a a bb ¢ ¢
Parameters tuning Variation intervals Parameters tuning Parameters tuning

Some recent approaches are also using this kind of measures:

M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni, “Learning knowledge bases of multi-
objective evolutionary fuzzy systems by simultaneously optimizing accuracy, complexity and
partition integrity, Soft Computing vol. 15, n.12, pp. 2335-2354, 2011.




Current and Future Research Directions

In MOEFSs (5)

4) Objective dimensionality

- New EMO algorithms
- Aggregation or selection of areasonable set of significant measures

5) Scalability issues
- High Dimensinality (handling the length of the rules)
- Large scale problems (using a reduced subset of examples)

® Some approaches dealing with large scale problems:

* M.A. de Vega, J.M Bardallo, FA. Marquez, A. Peregrin, “Parallel distributed two-level
evolutionary multiobjective methodology for granularity learning and membership functions  =»| Parallelization
tuning in linguistic fuzzy systems,” in Proc. of ISDA 2009, pp. 134-139.

» M. Cococcioni, B. Lazzerini, F. Marcelloni, “On reducing computational overhead in multi-

3 Fitness
objective genetic Takagi—Sugeno fuzzy systems,”” Appl. Soft Computing 11:1 (2011), 675-688.

estimation

» M. Antonelli, P. Ducange, F. Marcelloni, “Exploiting a coevolutionary approach to
concurrently select training instances and learn rule bases of Mamdani fuzzy dystems,” in =) Instar_me
Proc. of WCCI 2010, 1366-1372. Selection




Current and Future Research Directions

In MOEFSs (6)

5) Scalability issues (2)

m Some approaches dealing with high dimensional problems:

« H. Ishibuchi, and T. Yamamoto, ““Fuzzy rule selection by multi-objective genetic local search —> rlnrgici)rsr:zgniule

algorithms and rule evaluation measures in data mining,” Fuzzy Sets and Systems, vol. 141, lenght

pp. 59-88, 2004.

* M. Antonelli, P. Ducange, B. Lazzerini, F. Marcelloni, “Multi-objective Evolutionary Condition

Generation of Mamdani Fuzzy Rule-Based Systems based on Rule and Condition Selection,” \ selection

in Proc. of GEFS 2011. by specific
approach

®m An approach dealing with both high dimensional and large scale problems:

* R. Alcala, M. J. Gacto, F. Herrera, ““A Fast and Scalable Multi-Objective Genetic Fuzzy
System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems,”” IEEE
Trans. on Fuzzy Systems 19:4 (2011) 666-681.

\

Using a specific approach for variable selection and fitness
stimation by using a short subset of the examples




Current and Future Research Directions

in MOEFSs (7)

6) Automatic selection of the most suitable solution
- Determining those solutions with the best generalization ability
- Only training data can be took into account

WA recent approaCh on this tOplC: Outer CV : [ Test Data Traming Data

Inner CV @ [—__]Validation Data Traming Data

« Ishibuchi H, Nakashima Y, Nojima Y, Double cross-validation Outer CV L_Eiiin b
for performance evaluation of multi-objective genetic fuzzy I R
systems. In GEFS 2011, pp 31-38. wpE vz - Inner CV Loop
‘L o
L
Using a dOL_JbIe cross-validation vv_lth two cross-valldat_lon B,
loops. The inner loop uses the training data to determine G R
the complexity of the systems with the best validation - Inner CV Loop
measure, which is used to select the solutions used for the |
OUter |00p Onuter CV Bz | EEEEEETEE PR BT |
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