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This work is related to the KEEL? (Knowledge Extraction based
on Evolutionary Learning) tool, an open source software that
supports data management and a designer of experiments. KEEL
pays special attention to the implementation of evolutionary learn-
ing and soft computing based techniques for Data Mining prob-
lems including regression, classification, clustering, pattern min-
ing and so on.

The aim of this paper is to present three new aspects of KEEL:
KEEL-dataset, a data set repository which includes the data set
partitions in the KEEL format and shows some results of algo-
rithms in these data sets; some guidelines for including new algo-
rithms in KEEL, helping the researchers to make their methods
easily accessible to other authors and to compare the results of
many approaches already included within the KEEL software;
and a module of statistical procedures developed in order to pro-
vide to the researcher a suitable tool to contrast the results ob-
tained in any experimental study. A case of study is given to
illustrate a complete case of application within this experimental
analysis framework.
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1 INTRODUCTION

Data Mining (DM) is the process for automatic discovery of high level knowl-
edge by obtaining information from real world, large and complex data sets
[26], and is the core step of a broader process, called Knowledge Discovery
from Databases (KDD). In addition to the DM step, the KDD process includes
application of several preprocessing methods aimed at faciliting application
of DM algorithms and postprocessing methods for refining and improving
the discovered knowledge. This idea of automatically discovering knowl-
edge from databases present a very attractive and challenging task, both for
academia and industry.

Evolutionary Algorithms (EAs) [14] are optimization algorithms based on
natural evolution and genetic processes. They are currently considered to be
one of the most successful search techniques for complex problems in Ar-
tificial Intelligence. The main motivation for applying EAs to knowledge
extraction tasks is that they are robust and adaptive search methods that per-
form a global search in place of candidate solutions (for instance, rules or
other forms of knowledge representation). They have proven to be an im-
portant technique both for learning and knowledge extraction, making them a
promising technique in DM [8, 16, 22, 24, 35, 46].

In the last few years, many DM software tools have been developed. Al-
though a lot of them are commercially distributed (some of the leading com-
mercial software are mining suites such as SPSS Clementine† , Oracle Data
Mining‡ and KnowledgeSTUDIO ¶ ), only a few are available as open source
software such as Weka [45] or Java-ML [1] (we recommend visiting the KD-
nuggets software directory§ and The-Data-Mine site|| ). Open source tools
can play an important role as is pointed out in [39].

KEEL (Knowledge Extraction based on Evolutionary Learning) [5] is a
open source Java software tool which empowers the user to assess the be-
havior of evolutionary learning and Soft Computing based techniques for dif-
ferent kinds of DM problems: regression, classification, clustering, pattern

† http://www.spss.com/clementine
‡ http://www.oracle.com/technology/products/bi/odm
¶ http://www.angoss.com/products/studio/index.php
§ http://www.kdnuggets.com/software
|| http://the-data-mine.com/bin/view/Software
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mining and so on. This tool can offer several advantages:

• It reduces programming work. It includes a library with evolutionary
learning algorithms based on different paradigms (Pittsburgh, Michi-
gan and IRL) and simplifies the integration of evolutionary learning al-
gorithms with different pre-processing techniques. It can alleviate the
work of programming and enable researchers to focus on the analysis
of their new learning models in comparison with the existing ones.

• It extends the range of possible users applying evolutionary learning
algorithms. An extensive library of EAs together with easy-to-use
software considerably reduce the level of knowledge and experience
required by researchers in evolutionary computation. As a result re-
searchers with less knowledge, when using this tool, would be able to
successfully apply these algorithms to their problems.

• Due to the use of a strict object-oriented approach for the library and
software tool, these can be used on any machine with Java. As a result,
any researcher can use KEEL on his or hers machine, independently of
the operating system.

In [5] we can find a description in detail of KEEL. In this paper, our aim
is to present three new aspects of KEEL:

• KEEL-dataset, a data set repository that includes the data set partitions
in the KEEL format and shows some results of algorithms in these data
sets. This repository can free researchers from merely “technical work”
and make the comparison of their models with the existing ones easier.

• KEEL has been developed with the idea of being easily extended with
new algorithms. For this reason, we introduce some basic guidelines
that the developer may take into account for managing the specific con-
straints of the KEEL tool. Moreover, a source code template have been
made available to manage all the restrictions of the KEEL software, in-
cluding the input and output functions, the parsing of the parameters,
and the class structure. We will describe in detail this template showing
a simple algorithm, the “Steady-State Genetic Algorithm for Extracting
Fuzzy Classification Rules From Data” (SGERD) procedure. [33].

• A module of statistical procedures developed in order to provide to
the researcher a suitable tool to contrast the results obtained in any ex-
perimental study performed inside the KEEL environment. We will de-
scribe this module and show a case of study using some non-parametric
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statistical tests for the multiple comparison of the performance of seve-
ral genetic rule learning methods for classification.

This paper is arranged as follows. Section 2 presents an introduction to the
KEEL software tool, including a short description of its structure and design
of experiments. Section 3 describes KEEL-dataset and its main characteris-
tics. In Section 4 we show how to implement or to import an algorithm into
the KEEL software tool and an example of codification using the KEEL tem-
plate. Section 5 presents the module of statistical procedures and shows a
case of study to illustrate a complete case of application. In Section 6 some
concluding remarks are made. Finally, we include two appendices with a
description of the methods and non-parametric tests used in our case of study.

2 KEEL DESCRIPTION

KEEL is a software tool to assess EAs for DM problems including regression,
classification, clustering, pattern mining and so on. The version of KEEL
presently available consists of the following function blocks (see Fig. 1):

FIGURE 1: Screenshot of the main window of KEEL software tool

• Data Management: This part is made up of a set of tools that can be
used to export and import data in other formats to or from the KEEL
format, data edition and visualization, to apply partitioning to data and
so on.

• Design of Experiments: The aim of this part is the design of the de-
sired experimentation over the selected data sets and the provision of

4



many options in different areas: type of validation, type of learning
(classification, regression, unsupervised learning) and so on. Once the
experiment has been generated, the user may execute it in batch mode.

• Educational Experiments: With a similar structure to the previous part,
this allows for the design of experiments that can be run step-by-step
in order to display the learning process of a certain model by using the
software tool for educational purposes.

This structure makes KEEL software useful for different types of user,
who expect to find different functionalities in a piece of DM software. Here
is a brief description of the main features of KEEL:

• It presents a large collection of EAs for predicting models, pre-processing
(evolutionary feature and instance selection) and post-processing (evo-
lutionary tuning of fuzzy rules). It also contains some state-of-the-art
methods for different areas of DM such as decision trees, fuzzy rule
based systems or interval rule-based learning.

• It includes data pre-processing algorithms proposed in specialized liter-
ature: data transformation, discretization, instance selection and feature
selection.

• It has a statistical library to analyze results of algorthms. It comprises
a set of statistical tests for analyzing the suitability of the results and
performing parametric and non-parametric comparisons between the
algorithms.

• Some algorithms have been developed using Java Class Library for
Evolutionary Computation (JCLEC) [43].

• It provides a user-friendly interface, oriented to the analysis of algo-
rithms.

• The software is aimed at creating experiments containing multiple data
sets and algorithms connected among themselves to obtain an expected
results. Experiments are independently script-generated from the user
interface for an off-line run in the same or other machines.

• KEEL also allows the creation of experiments in on-line mode, aiming
to provide an educational support in order to learn the operation of the
algorithm included.
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For more information about the main features of the KEEL tool, such as
the Data Management, the Design of Experiments function block, or the On-
Line Module for Computer-Based Education, please refer to [5].

3 KEEL-DATASET

In this section we present the KEEL-dataset repository. It can be accessed
through the main KEEL webpage? . The KEEL-dataset repository is devoted
to the data sets in KEEL format which can be used with the software and
provides:

• A detailed categorization of the considered data sets and a description
of their characteristics. Tables for the data sets in each category have
been also created.

• A descriptions of the papers which have used the partitions of data sets
available in the KEEL-dataset repository. These descriptions include
results tables, the algorithms used and additional material.

KEEL-dataset contains two main sections according to the previous two
points. In the first part, the data sets of the repository are presented. They
have been organized in several categories and sub-categories arranging them
in tables. Each data set has a dedicated webpage in which its characteristics
are presented. These webpages also provide the complete data set and the
partitions ready to download.

On the other hand, the experimental studies section is a novel approach in
this type of repositories. It provides a series of webpages for each experimen-
tal study with the data sets used and their results in different formats as well,
ready to perform a direct comparison. A direct access to the paper’s PDF for
all the experimental studied included in this webpage is also provided.

In Figure 2 the main webpage is depicted in which the two mentioned main
sections appear.

In the rest of this section we will describe the two main sections of the
KEEL-dataset repository webpage.

3.1 Data sets webpages
The categories of the data sets have been derived from the topics addressed
in the experimental studies. Some of them are usually found in the litera-
ture, like supervised (classification) data sets, unsupervised and regression

? http://keel.es/datasets.php
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FIGURE 2: KEEL-dataset webpage (http://keel.es/datasets.php)

problems. On the other hand, new categories which have not been tackled
or separated yet are also present. The categories in which the data sets are
divided are the following:

• Classification problems. This category includes all the supervised data
sets. All these data sets contains one or more attributes which label the
instances, mapping them into different classes. We distinguish three
subcategories of classification data sets:

– Standard data sets.

– Imbalanced data sets [6, 28, 41]. Imbalanced data sets are stan-
dard classification data sets where the class distribution is highly
skewed among the classes.

– Multi instance data sets [12]. Multi-Instance data sets represents
problems where there is a many-to-one relationship between fea-
ture vectors and its output attribute.

– Data sets with missing values. These include the classification
data sets which contain missing values.

• Regression problems. These are data sets with a real valued output
attribute, and the objective is to approximate this output value the better
using the input attributes.
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• Unsupervised (Clustering and Associations) problems. Unsupervised
data sets represents a set of data whose examples have been not labeled.

• Low quality data [37]. In this category the data sets which contains
imprecise values in their inputs attributes are included, caused by noise
or restrictions in the measurements. Therefore this low quality data
sets can contain a mixture of crisp and fuzzy values. This is a unique
category.

In Figure 3 the webpage for the classification standard data sets is shown
as an illustrative example of a particular category webpage. These webpages

FIGURE 3: Fraction of Keel-dataset standard data sets’ webpage

are structured in two main sections:

• First, the structure of the header of this type of Keel data set file is
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pointed out. This description contains the tags used to identify the dif-
ferent attributes, the name of the data set and to indicate the begin of
the data.

• The second part is a relation of the different data sets contained in the
webpage. This relation is presented in a table. The table shows the
characteristics of all the data sets: the name of the data set, number
of attributes (with the number of real, integer and nominal attributes in
parenthesis respectively), number of examples and number of classes
(if applicable). Moreover the possibility of download the entire data set
or different kind of partitions in Keel format in a ZIP file is presented.
A header file is also available with particular information of the data
set.

The tables can be also sorted by the different data set’s characteristics columns,
like the number of attributes or examples.

Clicking on the name of the data set in the table will open the specific
webpage for such data set. This webpage is composed by tables which gather
all information available of the data set.

• The first table will always contain the general information of the data
set: name, number of attributes, number of instances, number of classes,
presence of missing values, etc.

• The second table contains the relation of attributes of the data set. For
each attribute, the domain of the values is given. If it is a numerical
attribute, the minimum and maximum values of the domain are pre-
sented. In the case of nominal attributes, the complete set of values is
shown. The class attribute (if applicable) is stressed with a different
color.

Additional information of the data set is also included, indicating its origin,
applications and nature. In a second part of the webpage, the complete data
set and a number of partitions can be downloaded in Keel format.

3.2 Experimental study webpages
This section contains the links to the different experimental studies for the
respective data set categories. For each category, a new webpage has been
built. See Figure 4 for the webpage devoted to the experimental studies with
standard classification data sets. These webpages contains published journal
publications which use the correspondent kind of data sets in the repository.
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FIGURE 4: Keel-dataset experimental studies with standard classification
data sets webpage

The papers are grouped by the publication year. Each paper can contain up to
four links:

• The first link is the PDF file of the paper.

• The second link is the Bibtex reference of the paper.

• At the bottom on the left link Data sets, algorithms and experimental
results is always present. It references to the particular Keel-dataset
webpage for such paper.

• At the bottom on the right link Website associated to this paper is only
present for some papers which have a particular and external webpage
related with them.

The particular Keel-dataset for the paper presents the relevant information
of the publication. The abstract of the paper, an outline and the details of the
experimental study are included. These details consist of the names of the
algorithms analyzed, the list of data sets used and the results obtained. Both
data sets used and the complete results of the paper are available to download
in separated ZIP files. Moreover, the results are detailed and listed in CSV

10



and XLS (Excel) formatted files. In the Figure 5 an example of the webpage
for a specific publication with all these fields is shown.

FIGURE 5: Keel-dataset example of an experimental study dedicated web-
page
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4 INTEGRATION OF NEW ALGORITHMS INTO THE KEEL TOOL

In this section the main features that any researcher must take into account to
integrate a new algorithm into the KEEL software tool are described. Next,
a simple codification example is provided in order to clarify the integration
process.

4.1 Introduction to the KEEL codification features
This section is devoted to describing in detail how to implement or to import
an algorithm into the KEEL software tool. The KEEL philosophy tries to
include the fewest possible constraints for the developer, in order to ease the
inclusion of new algorithms within this tool. Thus, it is not necessary to
follow the guidelines of any design pattern or framework in the development
of a new method. In fact, each algorithm has its source code in a single folder
and does not depends on a specific structure of classes, making the integration
of new methods straightforward.

We enumerate the list of details to take into account before codifying a
method for the KEEL software, which is also detailed at the KEEL Reference
Manual (http://www.keel.es/documents/KeelReferenceManualV1.
0.pdf).

• The programming language used is Java.

• In KEEL, every method uses a configuration file to extract the values of
the parameters which will be employed during its execution. Although
it is generated automatically by the KEEL GUI (by using the infor-
mation contained in the corresponding method description file, and the
values of the parameters specified by the user), it is important to fully
describe its structure because any KEEL method must be able to read
it completely, in order to get the values of its parameters specified in
each execution.

Each configuration file has the following structure:

– algorithm: Name of the method.

– inputData: A list with the input data files of the method.

– outputData: A list with the output data files of the method.

– parameters: A list of parameters of the method, containing the
name of each parameter and its value (one line is employed for
each one).
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Next we show a valid example of a Method Configuration file (data
files lists are not fully shown):

algorithm = Genetic Algorithm

inputData = ‘‘../datasets/iris/iris.dat’’ ...

outputData = ‘‘../results/iris/result0.tra’’ ...

Seed = 12345678

Number of Generations = 1000

Crossover Probability = 0.9

Mutation Probability = 0.1

...

A complete description of the parameters file can be found in Section
3 of the KEEL Manual.

• The input data-sets follow a specific format that extends the “arff” files
by completing the header with more metadata information about the
attributes of the problem. Next, the list of examples is included, which
is given in rows with the attribute values separated by commas.

For more information about the input data-sets files please refer to Sec-
tion 4 of the KEEL Manual. Furthermore, in order to ease the data
management, we have developed an API data-set, the main features of
which are described in Section 7 of the Manual.

• The output format consists of a header, which follows the same scheme
as the input data, and two columns with the output values for each
example separated by a whitespace. The first value corresponds to the
expected output, and the second one to the predicted value. All methods
must generate two output files: one for training and another one for test.

For more information about the obligatory output files please refer to
Section 5 of the KEEL Manual.

Although the list of constraints is short, the KEEL development team have
created a simple template that manages all these features. Our KEEL template
includes four classes:

1. Main: This class contains the main instructions for launching the al-
gorithm. It reads the parameters from the file and builds the “algorithm
object”.
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public class Main {

private parseParameters parameters;

private void execute(String confFile) {
parameters = new parseParameters();
parameters.parseConfigurationFile(confFile);
Algorithm method = new Algorithm(parameters);
method.execute();

}

public static void main(String args[]) {
Main program = new Main();
System.out.println("Executing Algorithm.");
program.execute(args[0]);

}
}

2. ParseParameters: This class manages all the parameters, from the in-
put and output files, to every single parameter stored in the parameters
file.

public class parseParameters {

private String algorithmName;
private String trainingFile, validationFile, testFile;
private ArrayList <String> inputFiles;
private String outputTrFile, outputTstFile;
private ArrayList <String> outputFiles;
private ArrayList <String> parameters;

public parseParameters() {
inputFiles = new ArrayList<String>();
outputFiles = new ArrayList<String>();
parameters = new ArrayList<String>();

}

public void parseConfigurationFile(String fileName) {
StringTokenizer line;
String file = Files.readFile(fileName);

line = new StringTokenizer(file, "\n\r");
readName(line);
readInputFiles(line);
readOutputFiles(line);
readAllParameters(line);

};

...
}

3. myDataset: This class is an interface between the classes of the API
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data-set and the algorithm. It contains the basic options related to data
access.

public class myDataset {

private double[][] X;
private double[] outputReal;
private String[] output;

private int nData;
private int nVars;
private int nInputs;

private InstanceSet IS;

public myDataset() {
IS = new InstanceSet();

}

public double[] getExample(int pos) {
return X[pos];

}

public void readClassificationSet(String datasetFile,
boolean train) throws IOException {

try {
IS.readSet(datasetFile, train);
nData = IS.getNumInstances();
nInputs = Attributes.getInputNumAttributes();
nVars = nInputs + Attributes.getOutputNumAttributes();

...

}
}

4. Algorithm: This class is devoted to storing the main variables of the
algorithm and to naming the different procedures for the learning stage.
It also contains the functions for writing the obligatory output files.

public class Algorithm {

myDataset train, val, test;
String outputTr, outputTst;
private boolean somethingWrong = false;

public Algorithm(parseParameters parameters) {

train = new myDataset();
val = new myDataset();
test = new myDataset();
try {
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System.out.println("\nReading the training set: " +
parameters.getTrainingInputFile());

train.readClassificationSet(parameters.getTrainingInputFile(),
true);

System.out.println("\nReading the validation set: " +
parameters.getValidationInputFile());

val.readClassificationSet(parameters.getValidationInputFile(),
false);

System.out.println("\nReading the test set: " +
parameters.getTestInputFile());

test.readClassificationSet(parameters.getTestInputFile(),
false);

} catch (IOException e) {
System.err.println("There was a problem while reading

the input data-sets: " + e);
somethingWrong = true;

}

outputTr = parameters.getTrainingOutputFile();

...
}

}

The template can be downloaded following the link http://www.keel.
es/software/KEEL_template.zip, which additionally supplies the
user with the whole API data-set together with the classes for managing files
and the random number generator.

Most of the functions of the classes presented above are self-explanatory
and fully documented to help the developer understand their use. Neverthe-
less, in the next section we will explain in detail how to encode a simple
algorithm within the KEEL software tool.

4.2 Encoding example using the “Steady-State Genetic Algorithm for
Extracting Fuzzy Classification Rules From Data” method

Including new algorithms in the KEEL software tool is very simple using the
source code template presented in the previous section. We will show how
this template enables the programming within KEEL to be straightforward,
since the user does not need to pay attention to the specific KEEL constraints
because they are completely covered by the functions implemented in the
template. To illustrate this, we have selected one classical and simple method,
the SGERD procedure [33].

Neither the Main nor the ParseParameters classes need to be modified, and
we just need to focus our attention on the Algorithm class and the inclusion of
two new functions in myDataset. We enumerate below the steps for adapting
this class to this specific algorithm:
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1. First of all, we must store all the parameters values within the construc-
tor of the algorithm. Each parameter is selected with the getParameter
function using its corresponding position in the parameter file, whereas
the optional output files are obtained using the function getOutputFile.
Furthermore, the constructor must check the capabilities of the algo-
rithm, related to the data-set features, that is, whether it has missing
values, real or nominal attributes, and so on. These operations are
shown in the following source code, in which the operations that are
added to the template are stressed in boldface:

public SGERD(parseParameters parameters) {

train = new myDataset();
val = new myDataset();
test = new myDataset();
try {
System.out.println("\nReading the training set: " +

parameters.getTrainingInputFile());
train.readClassificationSet(parameters.getTrainingInputFile(),

true);
train.computeOverlapping();
System.out.println("\nReading the validation set: " +

parameters.getValidationInputFile());
val.readClassificationSet(parameters.getValidationInputFile(),

false);
System.out.println("\nReading the test set: " +

parameters.getTestInputFile());
test.readClassificationSet(parameters.getTestInputFile(),

false);
}
catch (IOException e) {
System.err.println("There was a problem while reading the input

data-sets: " + e);
somethingWrong = true;

}

somethingWrong = somethingWrong || train.hasMissingAttributes();

outputTr = parameters.getTrainingOutputFile();
outputTst = parameters.getTestOutputFile();

fileDB = parameters.getOutputFile(0);
fileRB = parameters.getOutputFile(1);

long seed = Long.parseLong(parameters.getParameter(0));

Q = Integer.parseInt(parameters.getParameter(1));
if ((Q < 1) || (Q > (14*train.getnInputs())))

Q = Math.min((14*train.getnInputs()) /
(2*train.getnClasses()), 20);

typeEvaluation = Integer.parseInt(parameters.getParameter(2));
K = 5;
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Randomize.setSeed(seed);
}

2. Next, we execute the main process of the algorithm (procedure execute).
The initial step is to abort the program if we have found a problem dur-
ing the building phase of the algorithm (constructor). If everything
is alright, we perform the algorithm’s operations. In the case of the
SGERD method we must first build the Data Base (DB) and then gen-
erate an initial Rule Base (RB). Next, the GA is executed in order to
find the best rules in the system. When this process is complete, we
perform the final output operations. This process is shown below in its
entirety (again the new inserted code is stressed in boldface):

public void execute() {
if (somethingWrong) {

System.err.println("An error was found, the data-set has MV.");
System.err.println("Please remove the examples with missing"+

"data or apply a MV preprocessing.");
System.err.println("Aborting the program");

}
else {

dataBase = new DataBase(K, train.getnInputs(),
train.getRanges(), train.varNames());

ruleBase = new RuleBase(dataBase, train, typeEvaluation);
ruleBase.initialization();

Population pobl = new Population(ruleBase, Q, train,
dataBase.numLabels());

pobl.Generation();

dataBase.saveFile(fileDB);
ruleBase = pobl.bestRB();
ruleBase.saveFile(fileRB);

doOutput(val, outputTr);
doOutput(test, outputTst);

System.out.println("Algorithm Finished");
}

}

3. We write in an output file the DB and the RB to save the generated
fuzzy model, and then we continue with the classification step for both
the validation and test files. The doOutput procedure simply iterates
all examples and returns the predicted class as a string value (in regres-
sion problems it will return a double value). This prediction is carried
out in the classificationOutput function, which only runs the
Fuzzy Reasoning Method of the generated RB (noted in boldface):
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private void doOutput(myDataset dataset, String filename) {
String output = new String("");
output = dataset.copyHeader();
for(int i = 0; i < dataset.getnData(); i++) {
output += dataset.getOutputAsString(i) + " " +

classificationOutput(dataset.getExample(i)) + "\n";
}
Files.writeFile(filename, output);

}

private String classificationOutput(double[] example) {
String output = new String("?");

int clas = ruleBase.FRM(example);

if (clas >= 0) {
output = train.getOutputValue(clas);

}
return output;

}

4. Finally, we show the new functions that are implemented in the my-
Dataset class in order to obtain some necessary information from the
training data during the rule learning stage. We must point out that the
remaining functions of this class remain unaltered.

public void computeOverlapping() {
int i;

classOverlapping = new double[nClasses];

outliers = new int[nClasses];
nExamplesClass = new int[nClasses];

for (i = 0; i < nClasses; i++) {
outliers[i] = nExamplesClass[i] = 0;

}

KNN knn = new KNN(IS, 5);
knn.ejecutar(outliers, nExamplesClass);

for (i = 0; i < nClasses; i++) {
if (nExamplesClass[i] > 0) {

classOverlapping[i] = (1.0 - (outliers[i] /
nExamplesClass[i]));

}
else {

classOverlapping[i] = 1.0;
}

}
}

public double getOverlapping(int nClass) {
return (classOverlapping[nClass]);

}
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Once the algorithm has been implemented, it can be executed directly on
a terminal with the parameters file as an argument. Nevertheless, when in-
cluded within the KEEL software, the user can create a complete experiment
with automatically generated scripts for a batch-mode execution. Further-
more, we must clarify that the “validation file” is used when an instance-
selection preprocessing step is performed, and contains the original training
set data; hence, the training and validation files match up in the remaining
cases.

Finally, we should point out that the complete source code for the SGERD
method (together with the needed classes for the fuzzy rule generation step)
can be downloaded at http://www.keel.es/software/SGERD_source.
zip.

5 STATISTICAL TOOLS AND EXPERIMENTAL STUDY

One of the important features of the KEEL software tool is the availability of
a complete package of statistical procedures, developed with the aim of pro-
viding to the researcher a suitable tool to contrast the results obtained in any
experimental study performed inside the KEEL environment. This section is
devoted to present them (Section 5.1), and to show a complete case of appli-
cation (Section 5.2) within the framework of an experimental comparison of
several genetic rule learning methods for classification.

5.1 KEEL Statistical Tests
Nowadays, the use of statistical tests to improve the evaluation process of
the performance of a new method has become a widespread technique in the
field of Data Mining [10, 19, 20]. Usually, they are employed inside the
framework of any experimental analysis to decide when an algorithm is better
than other one. This task, which may not be trivial, has become necessary to
confirm when a new proposed method offers a significant improvement over
the existing methods for a given problem.

There exist two kinds of test: parametric and non-parametric, depending
of the concrete type of data employed. As a general rule, a non-parametric
test is less restrictive than a parametric one, although it is less robust than a
parametric when data are well conditioned.

Parametric tests have been commonly used in the analysis of experiments
in DM. For example, a common way to test whether the difference between
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the results of two algorithms is non-random is to compute a paired t-test,
which checks whether the average difference in their performance over the
data sets is significantly different from zero. When comparing a set of multi-
ple algorithms, the common statistical method for testing the differences be-
tween more than two related sample means is the repeated-measures ANOVA
(or within-subjects ANOVA) [15]. Unfortunately, parametric tests are based
on assumptions which are most probably violated when analyzing the perfor-
mance of computational intelligence and data mining algorithms [21, 18, 32].
These assumpitions are known as independence, normality and homoscedas-
ticity.

Nonparametric tests can be employed in the analysis of experiments, pro-
viding to the researcher a practical tool to use when the previous assumptions
can not be satisfied. Although they are originally designed for dealing with
nominal or ordinal data, it is possible to conduct ranking based transforma-
tions to adjust the input data to the test requirements. Several nonparemetric
methods for pairwise and multiple comparison are available to contrast ad-
equately the results obtained in any Computational Intelligence experiment.
A wide description about the topic with examples, cases of studies, biblio-
graphic recommendations can be found in the SCI2S thematic public website
on Statistical Inference in Computational Intelligence and Data Mining # .

KEEL is one of the fewest Data Mining software tools that provides to the
researcher a complete set of statistical procedures for pairwise and multiple
comparisons. Inside the KEEL environment, several parametric and non-
parametric procedures have been coded, which should help to contrast the
results obtained in any experiment performed with the software tool. These
tests follow the same methodology that the rest of elements of KEEL, making
easy both its employment and its integration inside a complete experimental
study.

Table 1 shows the procedures existing in the KEEL statistical package. For
each test, a reference and a brief description is given (an extended description
can be found in the Statistical Inference in Computational Intelligence and
Data Mining website and in the KEEL website ?? ).

5.2 Case of study
In this section, we present a case study as an example of the functionality
and process of creating an experiment with the KEEL software tool. This
experimental study is focused on the comparison between the new algorithm

# http://sci2s.ugr.es/sicidm/
?? http://www.keel.es
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Procedure Ref. Description
5x2cv-f test [11] Approximate f statistical test for 5x2 cross validation
T test [9] Statistical test based on the Student’s t distribution
F test [25] Statistical test based on the Snedecor’s F distribution
Shapiro-Wilk test [40] Variance test for normality
Mann-Whitney U test [27] U statistical test of difference of means
Wilcoxon test [44] Nonparametric pairwise statistical test
Friedman test [17] Nonparametric multiple comparisons statistical test
Iman-Davenport test [31] Derivation from the Friedman’s statistic (less conservative)
Bonferroni-Dunn test [38] Post-Hoc procedure similar to Dunnet’s test for ANOVA
Holm test [30] Post-Hoc sequential procedure (most significant first)
Hochberg test [29] Post-Hoc sequential procedure (less significant first)
Nemenyi test [34] Comparison with all possible pairs
Hommel test [7] Comparison with all possible pairs (less conservative)

TABLE 1: Statistical procedures available in KEEL

Method Ref. Description
Ant-Miner [36] An Ant Colony System based using a heuristic function based

in the entropy measure for each attribute-value
CORE [42] A coevolutionary method which employs as fitness measure a

combination of the true positive rate and the false positive rate
HIDER [2, 4] A method which iteratively creates rules that cover

randomly selected examples of the training set
SGERD [33] A steady-state GA which generates a prespecified number

of rules per class following a GCCL approach
TARGET [23] A GA where each chromosome represents a complete decision tree.

TABLE 2: Algorithms tested in the experimental study

imported (SGERD) and several evolutionary rule-based algorithms, and em-
ploys a set of supervised classification domains available in KEEL-dataset.
Several statistical procedures available in the KEEL software tool will be em-
ployed to contrast the results obtained.

Algorithms and classification problems
Five representative evolutionary rule learning methods have been selected to
carry out the experimental study: Ant-Miner, CO-Evolutionary Rule Extrac-
tor (CORE), HIerarchical DEcision Rules (HIDER), Steady-State Genetic
Algorithm for Extracting Fuzzy Classification Rules From Data (SGERD)
and Tree Analysis with Randomly Generated and Evolved Trees (TARGET)
methodology. Table 2 shows their references and gives a brief description of
each one. This description is extended in the Appendix A.

On the other hand, we have used 24 well-known classification data sets
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Name #Ats #Ins #Cla Name #Ats #Ins #Cla
Haberman 3 306 2 Wisconsin 9 699 2
Iris 4 150 3 Tic-tac-toe 9 958 2
Balance 4 625 3 Wine 13 178 3
New Thyroid 5 215 3 Cleveland 13 303 5
Mammographic 5 961 2 Housevotes 16 435 2
Bupa 6 345 2 Lymphography 18 148 4
Monk-2 6 432 2 Vehicle 18 846 4
Car 6 1728 4 Bands 19 539 2
Ecoli 7 336 8 German 20 1000 2
Led-7 7 500 10 Automobile 25 205 6
Pima 8 768 2 Dermatology 34 366 6
Glass 9 214 7 Sonar 60 208 2

TABLE 3: Data sets employed in the experimental study

(they are publicly available on the KEEL-dataset repository web page †† ,
including general information about them, partitions and so on) in order to
check the performance of these methods. Table 3 shows their main char-
acteristics where #Ats is the number of attributes, #Ins is the number of
instances and #Cla is the number of Classes. For each data set the number
of examples, attributes and classes of the problem described are shown. We
have employed a ten fold cross-validation (10-fcv) procedure as a validation
scheme to perform the experiments.

Setting up the Experiment under KEEL software
To do this experiment in KEEL, first of all we click the Experiment option
in the main menu of the KEEL software tool, define the experiment as a
Classification problem and use a 10-fold cross validation procedure to analyze
the results. Next, the first step of the experiment graph setup is to choose the
data sets to be used in Table 3. The partitions in KEEL are static, allowing
that further experiments carried out will give up being dependent on particular
data partitions.

The graph in Figure 6 represents the flow of data and results from the
algorithms and statistical techniques. A node can represent an initial data flow
(group of data sets), a pre-process/post-process algorithm, a learning method,
test or a visualization of results module. They can be distinguished easily by
the color of the node. All their parameters can be adjusted by clicking twice
on the node. Notice that KEEL incorporates the option of configuring the
number of runs for each probabilistic algorithm, including this option in the

†† http://www.keel.es/datasets.php
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configuration dialog of each node (3 in this case study). Table 4 shows the
parameter’s values selected for the algorithms employed in this experiment
(they have been taken from their respective papers following the indications
given by the authors).

Algorithm Parameters
Ant-Miner Number of ants: 3000, Maximum uncovered samples: 10, Maximum samples by rule: 10

Maximum iterations without converge: 10
CORE Population size: 100, Co-population size: 50, Generation limit: 100

Number of co-populations: 15, Crossover rate: 1.0
Mutation probability: 0.1, Regeneration probability: 0.5

HIDER Population size: 100, Number of generations: 100, Mutation probability: 0.5
Cross percent: 80, Extreme mutation probability: 0.05, Prune examples factor: 0.05
Penalty factor: 1, Error coefficient: 1

SGERD Number of Q rules per class: Computed heuristically, Rule evaluation criteria = 2
TARGET Probability of splitting a node: 0.5, Number of total generations for the GA: 100

Number of trees generated by crossover: 30, Number of trees generated by mutation: 10
Number of trees generated by clonation: 5, Number of trees generated by immigration: 5

TABLE 4: Parameter’ values employed in the experimental study

The methods present in the graph are connected by directed edges, which
represent a relationship between them (data or results interchange). When the
data is interchanged, the flow includes pairs of train-test data sets. Thus, the
graph in this specific example describes a flow of data from the 24 data sets to
the nodes of the five learning methods used (Clas-AntMiner, Clas-SGERD,
Clas-Target, Clas-Hider and Clas-CORE).

After the models are trained, the instances of the data set are classified.
These results are the inputs for the visualization and test modules. The mod-
ule Vis-Clas-Tabular receives these results as input and generates output files
with several performance metrics computed from them, such as confusion
matrices for each method, accuracy and error percentages for each method,
fold and class, and a final summary of results. Figure 6 also shows another
type of results flow, the node Stat-Clas-Friedman which represents the statis-
tical comparison, results are collected and a statistical analysis over multiple
data sets is performed by following the indications given in [18].

Once the graph is defined, we can set up the associated experiment and
save it as a zip file for an off-line run. Thus, the experiment is set up as a set
of XML scripts and a JAR program for running it. Within the results directory,
there will be directories used for housing the results of each method during the
run. For example, the files allocated in the directory associated to an interval
learning algorithm will contain the knowledge or rule base. In the case of a
visualization procedure, its directory will house the results files. The results
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FIGURE 6: Graphical representation of the experiment in KEEL

obtained by the analyzed methods are shown in the next section, together with
the statistical analysis.

Results and Analysis
This subsection describes and discusses the results obtained from the previous
experiment configuration. Tables 5 and 6 show the results obtained in train-
ing and test stages, respectively. For each data set, the average and standard
deviations in accuracy obtained by the module Vis-Clas-Tabular are shown,
with the best results stressed in boldface.

Focusing on the test results, the average accuracy obtained by Hider is
the highest one. However, this estimator does not reflect whether or not the
differences among the methods are significant. For this reason, we have car-
ried out an statistical analysis based on multiple comparison procedures (see
Appendix B for a full description), by including a node called Stat-Clas-
Friedman in the KEEL experiment. Here, we include the information pro-
vided by this statistical module:

• Table 7 shows the obtained average rankings across all data sets fol-
lowing the Friedman procedure for each method. They will be useful
to calculate the p-value and to detect significant differences between
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Ant Miner CORE HIDER SGERD TARGET
Data set Mean SD Mean SD Mean SD Mean SD Mean SD
Haberman 79.55 1.80 76.32 1.01 76.58 1.21 74.29 0.81 74.57 1.01
Iris 97.26 0.74 95.48 1.42 97.48 0.36 97.33 0.36 93.50 2.42
Balance 73.65 3.38 68.64 2.57 75.86 0.40 76.96 2.27 77.29 1.57
New Thyroid 99.17 0.58 92.66 1.19 95.97 0.83 90.23 0.87 88.05 2.19
Mammographic 81.03 1.13 79.04 0.65 83.60 0.75 74.40 1.43 79.91 0.65
Bupa 80.38 3.25 61.93 0.89 73.37 2.70 59.13 0.68 68.86 0.89
Monk-2 97.22 0.30 87.72 7.90 97.22 0.30 80.56 0.45 97.98 7.90
Car 77.95 1.82 79.22 1.29 70.02 0.02 67.19 0.08 77.82 0.29
Ecoli 87.90 1.27 67.03 3.69 88.59 1.77 73.02 0.86 66.22 4.69
Led7Digit 59.42 1.37 28.76 2.55 77.64 0.42 40.22 5.88 34.24 3.55
Pima 71.86 2.84 72.66 2.62 77.82 1.16 73.71 0.40 73.42 2.62
Glass 81.48 6.59 54.26 1.90 90.09 1.64 53.84 2.96 45.07 0.90
Wisconsin 92.58 1.65 94.71 0.64 97.30 0.31 93.00 0.85 96.13 0.64
Tic-tac-toe 69.62 2.21 69.46 1.20 69.94 0.53 69.94 0.53 69.96 2.20
Wine 99.69 0.58 99.06 0.42 97.19 0.98 91.76 1.31 85.19 1.58
Cleveland 60.25 1.35 56.30 1.97 82.04 1.75 46.62 2.23 55.79 2.97
Housevotes 94.28 1.84 96.98 0.43 96.98 0.43 96.98 0.43 96.98 0.43
Lymphography 77.11 5.07 65.99 5.43 83.70 2.52 77.48 3.55 75.84 4.43
Vehicle 59.52 3.37 36.49 3.52 84.21 1.71 51.47 1.19 51.64 2.52
Bands 67.61 3.21 66.71 2.01 87.13 2.15 63.84 0.74 71.14 2.01
German 71.14 1.19 70.60 0.63 73.54 0.58 67.07 0.81 70.00 1.37
Automobile 69.03 8.21 31.42 7.12 96.58 0.64 52.56 1.67 45.66 6.12
Dermatology 86.18 5.69 31.01 0.19 94.91 1.40 72.69 1.04 66.24 1.81
Sonar 74.68 0.79 53.37 0.18 98.29 0.40 75.69 1.47 76.87 1.18
Average 79.52 2.51 68.16 2.14 86.09 1.04 71.76 1.37 72.43 2.33

TABLE 5: Average results and standard deviations of training accuracy ob-
tained

the two methods.

• Table 8 depicts the results obtained from the use of the Friedman and
Iman-Davenport test. Both, the statistics and p-values are shown. As
we can see, a level of significance α = 0.10 is needed in order to
consider that differences among the methods exist. Note also that the
p-value obtained by the Iman-Davenport test is lower than that obtained
by Friedman, this is always true.

• Finally, in Table 9 the adjusted p-values are shown considering the best
method (Hider) as control and using the three post-hoc procedures ex-
plained above. The following analysis can be made:

– The procedure of Holm verifies that Hider is the best method with
α = 0.10, but it only outperforms CORE considering α = 0.05.

– The procedure of Hochberg checks the supremacy of Hider with
α = 0.05. In this case study, we can see that the Hochberg
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Ant Miner CORE HIDER SGERD TARGET
Data set Mean SD Mean SD Mean SD Mean SD Mean SD
Haberman 72.55 5.27 72.87 4.16 75.15 4.45 74.16 2.48 71.50 2.52
Iris 96.00 3.27 92.67 4.67 96.67 3.33 96.67 3.33 92.93 4.33
Balance 70.24 6.21 70.08 7.11 69.60 3.77 75.19 6.27 75.62 7.27
New Thyroid 90.76 6.85 90.76 5.00 90.28 7.30 88.44 6.83 86.79 5.83
Mammographic 81.48 7.38 77.33 3.55 82.30 6.50 74.11 5.11 79.65 2.11
Bupa 57.25 7.71 61.97 4.77 65.83 10.04 57.89 3.41 65.97 1.41
Monk-2 97.27 2.65 88.32 8.60 97.27 2.65 80.65 4.15 96.79 5.15
Car 77.26 2.59 79.40 3.04 70.02 0.16 67.19 0.70 77.71 2.70
Ecoli 58.58 9.13 64.58 4.28 75.88 6.33 72.08 7.29 65.49 4.29
Led7Digit 55.32 4.13 27.40 4.00 68.20 3.28 40.00 6.75 32.64 6.75
Pima 66.28 4.26 73.06 6.03 73.18 6.19 73.71 3.61 73.02 6.61
Glass 53.74 12.92 45.74 9.36 64.35 12.20 48.33 5.37 44.11 5.37
Wisconsin 90.41 2.56 92.38 2.31 96.05 2.76 92.71 3.82 95.75 0.82
Tic-tac-toe 64.61 5.63 70.35 3.77 69.93 4.73 69.93 4.73 69.50 2.73
Wine 92.06 6.37 94.87 4.79 82.61 6.25 87.09 6.57 82.24 7.57
Cleveland 57.45 5.19 53.59 7.06 55.86 5.52 44.15 4.84 52.99 1.84
Housevotes 93.56 3.69 97.02 3.59 97.02 3.59 97.02 3.59 96.99 0.59
Lym 73.06 10.98 65.07 15.38 72.45 10.70 72.96 13.59 75.17 10.59
Vehicle 53.07 4.60 36.41 3.37 63.12 4.48 51.19 4.85 49.81 5.85
Bands 59.18 6.58 64.23 4.23 62.15 8.51 62.71 4.17 67.32 6.17
German 66.90 3.96 69.30 1.55 70.40 4.29 66.70 1.49 70.00 0.49
Automobile 53.74 7.79 32.91 6.10 62.59 13.84 50.67 10.27 42.82 13.27
Dermatology 81.16 7.78 31.03 1.78 87.45 3.26 69.52 4.25 66.15 4.25
Sonar 71.28 5.67 53.38 1.62 52.90 2.37 73.45 7.34 74.56 8.34
Average 72.22 5.97 66.86 5.01 75.05 5.69 70.27 5.20 71.06 4.87

TABLE 6: Average results and standard deviations of test accuracy obtained

method is the one with the highest power.

Algorithm Ranking
AntMiner 3.125
CORE 3.396
Hider 2.188
SGERD 3.125
Target 3.167

TABLE 7: Average Rankings of the algorithms by Friedman procedure

Friedman Value p-value Iman-Davenport Value p-value
8.408 0.0777 2.208 0.0742

TABLE 8: Results of the Friedman and Iman-Davenport Tests
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i Algorithm Unadjusted p pHolm pHoch

1 CORE 0.00811 0.032452 0.03245
2 Target 0.03193 0.09580 0.03998
3 AntMiner 0.03998 0.09580 0.03998
4 SGERD 0.03998 0.09580 0.03998

TABLE 9: Adjusted p-values. Hider is the control algorithm

6 CONCLUDING REMARKS

The objective of this paper was to present three new aspects of KEEL:

• KEEL-dataset, a data set repository that includes the data set partitions
in the KEEL format and shows some results obtained in these data sets.
This repository can free researchers from merely “technical work” and
make the comparison of their models with the existing ones easier.

• Some basic guidelines that the developer may take into account to fa-
cilitate the implementation and integration of new approaches within
the KEEL software tool. We have shown the simplicity of adding a
simple algorithm (SGERD in this case) into the KEEL software with
the aid of a Java template specifically designed for this purpose. In this
manner, the developer has only to focus on the inner functions of his or
hers algorithm itself and not on the specific requirements of the KEEL
tool.

• A module of statistical procedures which let researchers contrast the
results obtained in any experimental study using statistical tests. This
task, which may not be trivial, has become necessary to confirm when
a new proposed method offers a significant improvement over the ex-
isting methods for a given problem.

We have shown a case of study to illustrate the simplicity of designing a
experimental study with a statistical analysis into the KEEL software. In this
case, the results obtained have been contrasted through a statistical analysis
following the indications given in [18], concluding that the Hider method
is the best performing method when compared with the remaining methods
analyzed in this study.
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A ALGORITHMS ANALYZED

In the experimental study performed, five evolutionary rule learning methods
have been compared in order to test their performance over a wide range of
classification problems. A brief description of each one is shown as follows:

• Ant-Miner

Ant-Miner [36] is based on an ant colony system [13]. In this case,
the rule stands for the path that the ant must follow. Each ant starts
with an empty rule and the decision to add a new term depends on a
heuristic function and a pheromone value. The heuristic function is the
entropy measure for each attribute-value. There is also a prune step
that removes one by one a term of the rule while this process improves
the quality of that rule. Once the antecedent of the rule is totally built,
the system chooses as the consequent class the majority class of the
covered examples. The algorithm then selects the best ant/rule of the
current iteration and adds it to the rule-set. This process iterates until
all examples are covered (depending on the parameters of the user).
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• CORE

CO-Evolutionary Rule Extractor (CORE) [42] evolves a set of rules,
which are initialized randomly, using as fitness a combination of the
true positive rate and the false positive rate, together with a token com-
petition that reduces the size of the rule-set. It uses a specific regen-
eration operator that re-initializes those chromosomes that have a fit-
ness below the average. For nominal attributes it uses the one-point
crossover, whereas for the numerical attributes it applies a linear com-
bination of the parents.

• HIDER

HIerarchical DEcision Rules (HIDER) [2, 4] uses natural coding (de-
fined by the authors in [2]) to represent each rule. That is, each rule
is encoded as IF x1 = L1 ∧ . . . ∧ xn = Ln THEN ck,. For numerical
attributes, each Li is a label obtained by means of the natural cod-
ing representation, which is a tabular representation of the computed
cut-points of a specific discretization method designed for this method
[3]. Therefore it is directly translated into an interval-rule by taking the
lower and upper cut-points.

The EA initializes the population by randomly selecting some exam-
ples and creating rules that cover these examples. Then, the evolu-
tionary search is run during a specific number of generations, with the
guidance of the fitness function which considers both the accuracy and
the generalization of the rules. The best rule obtained is added to the
final rule set and the examples covered by the rule are removed from
the training data set. The process is repeated until there are less than
the number of maximum examples allowed by a threshold called the
“examples pruning factor”.

• SGERD

Steady-State Genetic Algorithm for Extracting Fuzzy Classification Rules
From Data (SGERD) [33] is a steady-state GA to generate a prespeci-
fied number of Q rules per class following a GCCL approach. In each
iteration, parents and their corresponding offspring compete to select
the best Q rules for each class. This method also simultaneously uses
multiple fuzzy partitions with different granularities and a don’t care
condition for fuzzy rule extraction.
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• TARGET

The Tree Analysis with Randomly Generated and Evolved Trees (TAR-
GET) methodology [23] is a novel approach that uses a GA to build
decision trees in which each chromosome represents a complete deci-
sion tree. The population is initialized randomly with a pre-specified
probability of adding a new condition (node) to the tree. To evaluate
the fitness of each chromosome, the authors use a measure based on
the correct classifications and the length of the chromosome (number
of conditions/nodes).

The genetic search uses specific operators for crossover and mutation.
In the case of crossover, a node swap or a subtree swap is applied. In
the case of mutation, there are four possibilities: split set mutation, split
rule mutation, node swap mutation and subtree swap mutation. It also
uses elitism (called cloning) and reinitialization (called transplantation)
to reach a good trade-off between convergence and diversity.

B STATISTICAL PROCEDURES EMPLOYED

When a new method is developed, and in our case is integrated with the KEEL
software, it could be interesting to compare it with previous proposals. Mak-
ing pairwise comparisons allows us to conduct this analysis, but the experi-
ment wise error cannot be previously fixed. Moreover, a pairwise comparison
is not influenced by any external factor, whereas in a multiple comparison,
the set of algorithms chosen can determine the results of the analysis.

Multiple Comparisons procedures are designed to allow us to fix the Fam-
ily Wise Error Rate (FWER) before performing the analysis and to take into
account all the influences that can exist within the set of results for each al-
gorithm.

In order to perform a multiple comparison, it is necessary to check whether
all the results obtained by the algorithms present any inequality. In the case of
finding some, we can then find out, by using a post-hoc test, what algorithms
partners average results are dissimilar. Next, we describe the non-parametric
tests used:

• The first one is the Friedman test [38], which is a non-parametric test
equivalent to the repeated-measures ANOVA. Under the null-hypothesis,
it states that all the algorithms are equivalent, so a rejection of this hy-
pothesis implies the existence of differences among the performance of
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all the algorithms studied. After this, a post-hoc test could be used in
order to find whether the control or proposed algorithm presents statis-
tical differences with regard to the remaining methods in the compar-
ison. The simplest of them is Bonferroni-Dunn’s test, but it is a very
conservative procedure and we can use more powerful tests that control
the FWER and reject more hypotheses than Bonferroni-Dunn’s test; for
example, Holm’s method [30].

Friedman’s test’s way of working is described as follows: It ranks the
algorithms for each data set separately, the best performing algorithm
is given the rank of 1, the second best rank 2, and so on. In the case of
a tie average ranks are assigned.

Let rj
i be the rank of the j-th of k algorithms on the i-th of Nds data

sets. The Friedman test compares the average ranks of algorithms,
Rj = 1

Nds

∑
i rj

i . Under the null-hypothesis, which states that all
the algorithms are equivalent and so their ranks Rj should be equal,
the Friedman statistic:

χ2
F =

12Nds

k(k + 1)

[∑
jR2

j −
k(k + 1)2

4

]
(1)

is distributed according to χ2
F with k − 1 degrees of freedom.

• The second one of them is the Iman and Davenport test [31], which is
a non-parametric test, derived from the Friedman test but, less conser-
vative than the Friedman statistic:

FF =
(Nds − 1)χ2

F

Nds(K − 1)− χ2
F

(2)

which is distributed according to the F-distribution with k−1 and (k−
1)(Nds − 1) degrees of freedom. Statistical tables for critical values
can be found at [38, 48].

• Holm’s test [30]: it is a multiple comparison procedure that can work
with a control algorithm (which is usually the best according to Fried-
man rankings computation) and compares it with the remaining meth-
ods. The test statistics for comparing the i-th and j-th method using
this procedure is:
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z = (Ri −Rj)/

√
k(k + 1)

6Nds
(3)

The z value is used to find the corresponding probability from the ta-
ble of normal distribution, which is then compared with an appropriate
level of confidence α. In the Bonferroni-Dunn comparison, this α value
is always α(k − 1), but Holm’s test adjusts the value for α in order to
compensate for multiple comparison and control the FWER.

Holm’s test is a step-up procedure that sequentially tests the hypotheses
ordered by their significance. We will denote the ordered p-values by
p1, p2, ..., so that p1 ≤ p2 ≤ ... ≤ pk−1. Holm’s test compares each pi

with α(k− i), starting from the most significant p value. If p1 is below
α/(k − 1), the corresponding hypothesis is rejected and we allow it to
compare p2 with α/(k−2). If the second hypothesis is rejected, the test
proceeds with the third, and so on. As soon as a certain null hypothesis
cannot be rejected, all the remaining hypotheses are retained as well.

• Hochberg’s procedure [29]: It is a step-up procedure that works in the
opposite direction to Holm’s method, comparing the largest p-value
with α, the next largest with α/2, the next with α/3 and so forth until
it encounters a hypothesis that it can reject. All hypotheses with smaller
p values are then rejected as well. Hochberg’s method is more powerful
than Holm’s when the hypotheses to test are independent (in this case
they are independent given that we are comparing a control algorithm
with the remaining algorithms).

The post-hoc procedures described above allow us to know whether or
not a hypothesis of comparison of means could be rejected at a specified
level of significance α. However, it is very interesting to compute the p-
value associated with each comparison, which represents the lowest level of
significance of a hypothesis that results in a rejection. In this manner, we can
find out whether two algorithms are significantly different and we can also
have a metric of how different they are.

Next, we will describe the method used for computing these exact p-values
for each test procedure, which are called “adjusted p-values” [47]:

• The adjusted p-value for the Holm procedure is computed by pHolm =
(k − i)pi. Once all of them are computed for all hypotheses, it is not
possible to find an adjusted p-value for the hypothesis i lower than for
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the hypothesis j, j < i. In this case, the adjusted p-value for hypothesis
i is set to the same value as the one associated to hypothesis j.

• The adjusted p-value for the Hochberg method is computed with the
same formula as in the Holm procedure, and the same restriction is
applied to the process, but in the opposite sense, that is, it is not pos-
sible to find an adjusted p-value for the hypothesis i lower than for the
hypothesis j, j > i.
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