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a b s t r a c t

In this paper, we focus on the experimental analysis on the performance in artificial neural networks with
the use of statistical tests on the classification task. Particularly, we have studied whether the sample of
results from multiple trials obtained by conventional artificial neural networks and support vector
machines checks the necessary conditions for being analyzed through parametrical tests. The study is
conducted by considering three possibilities on classification experiments: random variation in the selec-
tion of test data, the selection of training data and internal randomness in the learning algorithm.

The results obtained state that the fulfillment of these conditions are problem-dependent and indefi-
nite, which justifies the need of using non-parametric statistics in the experimental analysis.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The report of results in artificial neural networks (ANNs) and
support vector machines (SVMs) is usually given by means of sim-
ple and well-known statistical measures, such as mean and stan-
dard deviations. However, when comparing them on different
cases of a certain problem, an aggregated analysis by using only
these measures lacks of rigorousness and may hidden some infor-
mation in the results obtained. One solution to this problem is of-
fered by statistical validation of obtained results (Demšar, 2006).

Due to the increasing number of real-world applications and
frameworks for machine learning (ML), the development or modi-
fications of new algorithms is a relative easy task. In spite of this
fact, every development made must offer a certain advantage with
respect to previous proposals in the area of research of interest.
Establishing a good procedure of comparing groups of methods
by using empirical results is a necessary matter on a specify study.

When using ANNs or SVMs in ML for the classification problem
(Qiu, Tao, Tan, & Wu, 2007; Wu, Huang, & Meng, 2008), the main
intention is to propose a new algorithm which improves a certain
aspect over existing algorithm(s), such as effectiveness, efficiency
or interpretability. In classification, a number of data sets is se-
lected for testing, the algorithms are run over them and the quality
of the resulting models is evaluated by means of an appropriate
measure (commonly, the accuracy in test data). A final step, more
and more demanded in the scientific community and the topic that
we want to illustrate, is the use of appropriate statistical tests
ll rights reserved.
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depending on the properties of the sample of data obtained. Statis-
tics allows us to determine whether the results obtained are signif-
icantly different in the algorithms compared and whether the
conclusions remarked are supported by the experimentation car-
ried out.

Indeed, a low proportion of publications uses statistical tech-
niques to comparing the obtained results. Nevertheless, their pres-
ence is growing notoriously in terms of parametric tests (Sheskin,
2003). When we found statistical studies, they are based on the
mean and variance, by using tests such as paired t-test or ANOVA
(Alpaydin, 1999; Castillo-Valdivieso, Merelo, Prieto, Rojas, &
Romero, 2002; Gao, Madden, Chambers, & Lyons, 2005; Kim,
2008; Lam, 2004; Li, Shiue, & Huang, 2006; Zekic-Susac & Horvat,
2005). In few cases, non-parametric tests are used for comparing
ANNs (Groves et al., 1999; Pizarro, Guerrero, & Galindo, 2002) or
immune networks (García-Pedrajas & Fyfe, 2007). A study on the
distribution of performance in ANNs can be found in Lawrence,
Back, Tsoi, and Giles (1997), in which the authors give some guide-
lines on the presentation of results and convergence of the learning
algorithms of ANNs, supposing that the sample of results does not
follow a normal distribution.

In this paper, we will focus on the use of statistical techniques
for the analysis of ANNs and SVMs in classification tasks in order
to establish comparisons among the algorithms, instead of provid-
ing a piece of advice on presenting the results, studying the appro-
priate use of parametric and non-parametric tests (Sheskin, 2003;
Zar, 1999). In fact, we analyze the required conditions which allow
the usage of parametric tests for comparing ANNs and SVMs in
classification, depending on three main factors: the random varia-
tion in the selection of the test data, the selection of the training
data and the internal randomness in the learning algorithm. In
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general, we will show that the sample of results obtained is not
appropriate for parametric statistical analysis and, for this reason,
we will illustrate a case study on the multiple comparison with
non-parametric tests.

To achieve the mentioned goal, we will use some well-known
models of ANNs and SVMs applied to classification of data sets (Ro-
jas & Feldman, 1996; Yingwei, Sundararajan, & Saratchandran,
1997). Thus, the paper is organized as follows. In Section 2 we de-
scribe the ANN models used in the study together with the SVM
methods and we explain the experimental framework. Section 3
explores the needed conditions in order to correctly apply the
parametric test to analyze the obtained results. The presentation
of the case study involving some non-parametric tests is given in
Section 4. Finally, in Section 5, we point out the conclusions of
the paper.
2. Classification algorithms and experimentation framework

In this section, we will briefly describe the algorithms used in
this study (see Subsection 2.1). In Subsection 2.2, the experimental
framework is explained, including the data sets and types of vali-
dation chosen and the results obtained by the algorithms are pre-
sented through classic statistics metrics, such as mean and
standard deviation.

2.1. Artificial neural networks and support vector machines

The experimentation in this paper is conducted by using the fol-
lowing models of ANNs:

� Multi-layer perceptron (MLP) with back-propagation (Rojas &
Feldman, 1996): it is a classical model of ANN whose weights
are adjusted trough a back-propagation algorithm. This type of
network consists of multiple layers of computational units, usu-
ally interconnected in a feed-forward way. Each neuron in a
layer has directed connections to the neurons of the subsequent
layer. In many applications, the units of these networks apply a
sigmoid function as an activation function. The output values are
compared with the correct answer to compute the value of some
predefined error function. By various techniques, the error is
then fed back through the network. Using this information, the
algorithm adjusts the weights of each connection in order to
reduce the value of the error function by some small amount.
After repeating this process for a sufficiently large number of
training cycles, the network will usually converge to some state
in which the error of the computations is small. Typical prob-
lems of the back-propagation algorithm are the speed of conver-
gence and the possibility of ending up in a local minimum of the
error function. In our study, we have used the configuration of a
hidden layer of neurons with 25 perceptrons.

� Radial basis function network (RBFN) (Rojas & Feldman, 1996):
it is well-suited for function approximation and pattern recogni-
tion due to its simple topological structure and its ability to
reveal how learning proceeds in an explicit manner. A radial
basis function (RBF) is a function that has built into a distance
criterion with respect to a centre. Different basis functions like
thin-plate spline functions, multiquadratic functions, inverse
multiquadratic functions and gaussian functions have been
studied for the hidden layer neurons, but normally the selected
one is the gaussian function. Compared with other types of
ANNs, such as feed-forward networks, the RBFN requires less
computation time for learning and also has a more compact
topology. RBFs have been applied in the area of ANNs where
they may be used as a replacement for the sigmodial hidden
layer transfer characteristic in multi-layer perceptrons. The ori-
ginal RBF method has been traditionally used for strict multivar-
iate function interpolation (Powell, 1987) and for this fact, it
requires as many RBF neurons as data points. Broomhead and
Lowe (1988) removed this strict interpolation restriction and
provided a neural network architecture where the number of
RBF neurons can be far less than the data points. A RBFN mainly
consists of two layers, one hidden layer and one output layer.
The number of hidden layer neurons is configurable and fixable
by the user a priori. In our study, we have fixed the number of
neurons at 50.

� RBFN Decremental (Yingwei et al., 1997): in the classical
approach described above, the number of hidden units is fixed
a priori based on the properties of input data. A significant con-
tribution that overcomes these drawbacks was made through
the development of an algorithm that adds hidden units to the
network based on the novelty of the new data. One drawback
of this approach is that once a hidden unit is created, it can never
be removed. The authors have proposed an algorithm that
adopts the basic idea of growing, and augments it with a pruning
strategy. The pruning strategy removes those hidden neurons
which consistently make little contribution to the network out-
put. Pruning becomes imperative for the identification of non-
linear systems with changing dynamics, because failing to
prune the network in such cases will result in numerous inactive
hidden neurons, being present as the dynamics which caused
that their creation initially becomes nonexistent. If inactive hid-
den units can be detected and removed while learning proceeds,
a more well-suited network topology can be constructed. Also,
when the neural networks are employed for control, the prob-
lem of over-parametrization should be avoided. In our study,
we provide this model with 20 initial neurons, a percentage of
0.1 under the average of the weights used to decide whether a
neuron must be removed or not, and a learning factor a = 0.3
of the least mean square (LMS) algorithm for adjusting weights.

� RBFN incremental: this approach builds a RBFN composed of one
hidden layer and one output layer. This topography is similar to
non-incremental RBFN’s one, but we do not know the number of
neurons of the hidden layer. This idea is similar to RBFN Decre-
mental, but in this model we will not set any limit to the hidden
layer’s neurons number.The network begins with no hidden
units, and while observations are received, the network grows
by using some of them as new RBFs. Two criteria must be met
for an observation (x, y) to add a new hidden unit to the
network:
– The euclidean distance between x and its closest RBF must be

greater than d.
– The error between the output of the net and y must be

greater than d.
When a new hidden neuron is added to the network, the centre
is set to x, the radius is set to the distance between x and its
closest RBF with an overlap, and the weight is set to the error
between the output of the net and y. If any of these two criteria
are not met. the LMS algorithm (used to adjust the weights) is
applied to a random RBF. The growing process of the net stops
when no RBF unit is added and all instances from the data set
are processed.This method tries to find the correct number of
neurons for a given data set, without an initial limitation like
as in the RBFN model (which has its neurons number fixed)
and the RBFN Decremental model (which also has a maximum
number of neurons fixed a priori). However, if d is too low, we
can find that our network overfits the training data. The model
that we have used is set with a = 0.3 (see description of this
parameter above), d = 0.5, which is the minimum distance
allowed to introduce a new RBF, and � = 0.1, which is the min-
imum error allowed to introduce a new RBF. If the latter both
values are lower, the probability to add a RBF grows.



Table 1
Data Sets used in the experimentation.

Data set # Instances # Attributes # Classes

Breast 682 10 2
Cleveland 303 13 5
Crx 689 16 2
Glass 214 9 7
Iris 150 4 3
Pima 768 8 2
Wine 178 13 3
Wisconsin 699 10 2

Bupa 345 7 2
Lymphography 148 18 4
Monks 432 6 2
Page-blocks 5476 10 5
Pen-based 10992 16 10
Ringnorm 7400 20 2
Satimage 6435 36 7
Splice 3190 60 3

1 http://www.cs.toronto.edu/delve/.
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� C-SVM (also C-support vector classification or C-SVC) (Cortes &
Vapnik, 1995; Fan, Chen, & Lin, 2005): SVM (support vector
machine) is a useful technique for data classification. Given
training vectors xi 2 Rn, i = 1, . . . ,l in two cases, and a vector y 2 Rl

such that yi 2 1, � 1, C-SVC solves the following primal problem:

min
w;b;n

1
2

wtwþ C
Xl

i¼1

ni

subject to

yiðwt/ðxiÞ þ bÞP 1� ni;

ni P 0; i ¼ 1; . . . ; l:

Its dual is

min
a

1
2
aT Qa� eTa

subject to

yTa ¼ 0
0 6 ai 6 C; i ¼ 1; ::; l;

where e is the vector of all ones, C > 0 is the upper bound, Q is an l
by l positive semidefinite matrix, Qij � yi yjK(xi,xj), and K(xi,xj) � /
(xi)T/(xj) is the kernel. Here, training vectors xi are mapped to a
higher (maybe infinite) dimensional space by the function /.
The decision function is

sgn
Xl

i¼1

yiaiKðxi; xÞ þ b

 !
:

For multi-class classification, the ‘‘one-against-one” approach is
used, in which k(k � 1)/2 classifiers are constructed and each
one trains data from two different classes.In classification, we
use a voting strategy: each binary classification is considered
to be a voting where votes can be cast for all data points x – in
the end point is designated to be in a class with maximum num-
ber of votes. The parameters used by the method comprises a
RBF Kernel, C = 1000, � = 0.001, degree = 10, c = 1, coef0 = 1 and
no shrinking.

� m-SVM (NU-SVM) (Fan et al., 2005; Schölkopf, Smola, William-
son, & Bartlett, 2000): the m-support vector classification uses
a new parameter m which controls the number of support vec-
tors and training errors. The parameter m 2 (0,1] is an upper
bound on the fraction of training errors and a lower bound of
the fraction of support vectors. Given training vectors
xi 2 Rn,i = 1, . . . ,l in two cases, and a vector y 2 Rl such that
yi 2 1, � 1, the primal form considered is

min
w;b;n;q

1
2

wtwþ mq
Xl

i¼1

ni

subject to

yiðwt/ðxiÞ þ bÞP q� ni;

ni P 0; i ¼ 1; . . . ; l;q P 0:

The dual is

min
a

1
2
aT Qa

subject to

yTa ¼ 0; eTa P m
0 6 ai 6 1=l; i ¼ 1; ::; l;

where Qij � yiyjK(xi,xj). The decision function is

sgn
Xl

i¼1

yiaiKðxi; xÞ þ b

 !
:

It has been shown that eTa P m can be replaced by eT a = m, so we
can solve a scaled version of the dual primal form. In the end, the
two margins obtained are the same as those of C-SVC. The
parameters used by the method comprises a RBF Kernel,
m = 0.01, q = 1, � = 0.001, degree = 10, c = 1, coef0 = 1 and no
shrinking.

� Learning vector quantization (LVQ) (Bezdek & Kuncheva, 2001):
The LVQ family comprises a large spectrum of competitive
learning schemes. One of the basic designs that can be used
for prototype generation is the LVQ1 algorithm. An initial set
of labeled prototypes is picked by first specifying nP P c. Then
np elements are randomly selected from X (the data set) to be
the initial prototypes, so each class is represented by at least
one prototype. LVQ1 has three additional parameters specified
by the user: the learning rate ak 2 (0,1), a constant g 2 (0,1),
and the terminal number of iterations T. The standard competi-
tive learning update equation is then used to alter the prototype
set. If the closed prototype for input xk is the vector vi,old,

v i;new ¼ v i;old þ akðxk � v i;oldÞ when lðv i;old ¼ lðxkÞÞ

or

v i;new ¼ v i;old þ akðxk � v i;oldÞ when lðv i;old–lðxkÞÞ:

First equation rewards the winning prototype for getting the cor-
rect label by letting it migrate towards the input vector, while
second equation punishes the winning prototype for not labeling
the current input correctly by repelling it away from the input
vector. In our experiments, the learning rate was updated after
each presentation of a new vector using the formula ak+1 = gak,
k = 1, . . . ,n � 1; and was restored to the initial, user specified va-
lue of a1 at the end of each pass through X. Before each new pass
through LVQ1, X is randomly permuted to avoid dependence of
the extracted prototypes on the order of inputs. LVQ1 terminates
when either (i) there are no misclassifications in a whole pass
through X (and hence, the extracted prototypes are a consistent
reference set); or (ii) the prespecified terminal number of itera-
tions is reached. In our experimentation, we have used a maxi-
mum number of iterations of 100 over X, np = 20, a = 0.3 and
g = 0.8.

2.2. Experimentation framework

We have selected a group of data sets taken from the UCI repos-
itory (Newman, Hettich, Blake, & Merz, 1998) and DELVE1 project.

http://www.cs.toronto.edu/delve/


Table 2
Results obtained for the model used in HOV.

Algorithm MLP RBFN RBFN Decremental RBFN Inc. LVQ C-SVM NU-SVM

Data set Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Breast 68.51 3.05 70.10 3.27 63.27 6.11 62.25 3.11 66.09 4.69 65.82 0.00 63.29 0.00
Bupa 61.65 4.59 62.14 3.61 59.98 4.22 66.17 3.25 51.99 4.40 77.67 0.00 46.60 0.00
Cleveland 51.93 3.73 31.86 5.70 34.70 6.76 34.98 6.29 47.07 4.99 57.95 0.00 57.95 0.00
Crx 85.41 1.10 71.90 2.49 46.05 8.59 65.57 3.25 78.71 4.12 83.33 0.00 81.77 0.00
Glass 52.18 9.23 26.25 6.57 43.29 14.67 59.96 7.46 45.77 5.97 76.79 0.00 60.71 0.00
Iris 82.05 6.53 94.23 4.63 90.65 11.57 95.72 2.46 91.25 2.98 97.67 0.00 100.00 0.00
Lymphography 37.14 5.62 32.43 0.00 37.73 5.96 31.03 4.89 34.33 4.05 40.54 0.00 40.54 0.00
Monks 77.64 4.43 81.06 3.69 97.48 2.02 99.98 0.11 67.22 3.71 99.19 0.00 99.19 0.00
Page-blocks 88.99 2.12 89.52 1.89 86.09 8.43 89.86 2.14 86.93 3.58 96.16 0.00 84.69 0.00
Penbased 51.64 4.67 44.71 3.37 27.02 5.84 86.16 1.87 69.99 4.22 99.58 0.00 99.67 0.00
Pima 70.03 2.09 71.32 3.68 69.04 3.61 61.75 2.93 66.35 3.63 74.56 0.00 32.02 0.00
Ringnorm 76.27 1.07 95.33 0.86 95.20 1.50 97.14 0.13 58.57 2.86 96.44 0.00 96.66 0.00
Satimage 62.35 10.37 61.56 3.07 45.12 7.38 77.00 2.06 71.03 5.53 90.97 0.00 58.57 0.00
Splice 47.99 24.60 58.35 3.87 32.52 17.16 84.33 0.38 55.85 3.71 60.21 0.00 60.31 0.00
Wine 95.50 2.08 69.12 3.46 71.65 3.90 75.31 5.46 92.85 3.11 94.23 0.00 94.23 0.00
Wisconsin 95.51 0.37 96.35 0.32 96.34 0.75 96.13 0.64 95.94 1.61 95.00 0.00 95.00 0.00

Table 3
Results obtained for the models used in 10FCV.

Algorithm MLP RBFN RBFN Decremental RBFN Inc. LVQ C-SVM NU-SVM

Data set Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Breast 68.81 8.80 72.08 4.57 69.22 11.58 65.08 9.20 63.61 5.90 66.83 4.83 64.27 7.11
Bupa 61.56 8.37 63.55 6.87 63.01 8.88 62.09 7.57 54.33 3.45 70.09 8.81 42.12 6.14
Cleveland 53.51 7.41 30.34 10.19 34.86 11.66 34.07 8.80 49.13 4.20 54.59 4.24 53.85 3.77
Crx 83.86 10.65 67.41 7.73 46.83 5.87 63.59 5.61 79.08 3.38 80.39 4.91 74.15 7.64
Glass 50.19 10.14 27.08 7.46 40.37 11.82 55.04 11.17 49.47 4.87 71.61 10.48 56.77 9.78
Iris 77.87 9.47 92.13 7.09 91.20 6.38 94.53 4.40 91.20 4.32 94.67 4.04 84.00 21.34
Lymphography 34.26 11.83 31.10 1.67 36.74 9.65 34.14 12.69 35.90 4.40 42.65 6.64 42.56 6.00
Monks 75.05 13.25 88.33 6.91 97.40 2.90 100.00 0.00 66.13 3.60 99.77 0.69 99.77 0.69
Page-blocks 89.17 2.64 88.32 3.27 88.34 3.59 90.07 3.66 84.59 3.25 96.67 0.62 87.83 6.21
Penbased 50.62 5.95 45.42 3.76 30.63 5.04 86.93 4.24 69.36 4.88 99.55 0.24 99.60 0.18
Pima 73.06 4.80 72.25 5.60 72.01 4.23 65.68 5.97 64.79 5.50 73.71 5.53 42.31 14.02
Ringnorm 75.63 1.57 96.00 1.11 95.41 2.74 97.36 0.85 59.04 3.09 96.81 0.49 96.20 0.54
Satimage 62.09 10.12 64.10 2.89 43.49 9.42 77.04 2.79 70.91 6.39 90.64 1.27 72.79 3.53
Splice 50.33 24.63 61.39 2.85 27.87 10.88 83.29 1.45 55.37 3.07 61.79 1.55 61.79 1.55
Wine 97.42 3.42 66.09 7.57 65.52 9.11 73.99 7.72 89.81 4.63 96.67 5.14 96.67 5.14
Wisconsin 96.48 3.23 97.03 2.54 96.92 2.45 96.31 2.28 94.84 2.30 95.61 2.39 95.61 2.39

Table 4
Results obtained for the models used in 5 � 2CV.

Algorithm MLP RBFN RBFN Decremental RBFN Inc. LVQ C-SVM NU-SVM

Data Set Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Breast 69.81 2.36 71.30 1.26 69.54 5.98 65.12 4.82 64.22 6.17 68.18 1.34 54.86 18.23
Bupa 50.23 4.92 30.40 6.33 38.17 7.18 35.07 4.81 55.68 4.27 69.49 2.10 41.99 3.41
Cleveland 50.23 4.92 30.40 6.33 38.17 7.18 35.07 4.81 50.65 6.33 51.41 3.20 50.87 2.95
Crx 85.49 1.37 67.22 2.56 48.77 7.73 63.31 2.85 77.37 5.16 78.07 1.25 77.52 2.71
Glass 49.76 4.10 24.93 6.43 37.74 11.21 50.11 5.37 52.34 5.19 67.10 1.62 49.91 7.35
Iris 78.27 7.45 90.59 4.21 83.36 8.39 93.09 2.98 91.04 3.42 94.13 1.37 95.20 3.02
Lymphography 78.27 7.45 90.59 4.21 83.36 8.39 93.09 2.98 37.05 5.68 39.19 4.88 38.65 4.62
Monks 71.99 1.85 70.83 1.85 71.17 1.70 65.66 4.33 66.96 4.61 95.95 0.99 95.29 1.25
Page-blocks 88.87 2.52 89.25 2.33 82.82 18.27 89.23 2.95 85.12 4.98 96.63 0.18 79.34 10.76
Penbased 50.24 5.40 43.79 3.86 25.95 5.25 84.53 2.01 70.06 4.52 99.50 0.01 99.55 0.03
Pima 71.99 1.85 70.83 1.85 71.17 1.70 65.66 4.33 66.59 3.68 70.68 2.15 44.06 10.66
Ringnorm 95.84 1.08 96.92 0.62 96.75 0.65 96.21 0.62 58.26 3.52 96.21 0.43 95.92 0.46
Satimage 62.43 9.53 63.64 2.61 44.57 10.20 75.91 1.64 72.59 5.02 89.75 0.39 72.71 3.82
Splice 58.92 22.58 48.95 5.89 45.23 21.42 80.92 0.48 54.64 3.63 59.68 1.00 59.68 1.00
Wine 49.76 4.10 24.93 6.43 37.74 11.21 50.11 5.37 90.54 3.88 97.53 1.32 97.75 1.02
Wisconsin 95.84 1.08 96.92 0.62 96.75 0.65 96.21 0.62 94.69 2.18 94.79 0.53 94.91 0.62
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Altogether, we have used 16 data sets to carry out the study. In Table
1, we summarize the properties of these data sets. The 8 first data
sets will be used to perform the study of the initial conditions (in
Section 3) in order to not enlarge the size of the tables of results.
The complete set of data will be used in the non-parametric statisti-
cal analysis (see Section 4).



7802 J. Luengo et al. / Expert Systems with Applications 36 (2009) 7798–7808
Making use of these data sets, different types of validation have
been carried out depending on the possibility that we want to
study in classification problems:

� The internal randomness of the learning algorithms only sup-
poses to control the initial random seeds on an unique partition
train-test. In order to perform this study, we use the hold-out
validation (HOV), which consists of partitioning the data set into
2 subsets, one used for training and the other for test. We have
used hold-out at 70–30%, in order to give more examples for
learning the model.

� The random variation in the selection of the test data, which can
be controlled by using different subsets of examples with no
overlapping among themselves. The 10-fold cross-validation
(10FCV) can be used to check this possibility, due to the each
test subset contains examples which cannot belong to other
subset.

� The selection of the training set, in the same way as above, con-
trols the examples that belong to the training set. The best way
to check this property and to not be against a good convergence
of learning algorithms, is to use the 5 � 2 cross-validation
(5 � 2CV) (Dietterich, 1998). This validation is conducted
through 5 repetitions of a 2FCV, which obtains 5 train and 5 test
subsets at 50%. In the training subsets, the overlapping of exam-
ples exists, but it is less notably than in the 10FCV.

In any case, we have run a number of trials enough to achieve a
sample of results with a size of 50 elements. Thus, we have re-
peated the experiments for 10FCV and 5 � 2CV 5 times, and 50
times for HOV.

Tables 1–4 show the average results and standard deviations of
test accuracy obtained for all the models used in this study.
3. Study on the initial conditions for parametric tests using
artificial neural networks

In this section, we will analyze the conditions that must be sat-
isfied in the use of parametric tests by using the data sets and
methods previously defined. First, we introduce the three condi-
tions. Then, we present the analysis of the normality and hetero-
scedasticity tests, and finally we show some cases study of the
normality property.
3.1. Conditions for the use of parametric tests

In Sheskin (2003), the distinction done between parametric and
non-parametric tests is based on the level of measure represented
by the data that will be analyzed. In this way, a parametric test
uses data with real values belonging to a range.

The latter does not involve that when we always dispose of this
type of data, we should use a parametric test. It is possible that one
or more initial assumptions for the use of parametric tests are not
fulfilled, making that a statistical analysis loses credibility.

In order to use the parametric tests, is necessary to check the
following conditions (Sheskin, 2003; Zar, 1999):

� Independence: in statistics, two events are independent when
the fact that one occurs does not modify the probability of the
other one occurring.

� Normality: an observation is normal when its behaviour follows
a normal or Gaussian distribution with a certain value of mean l
and variance r. A normality test applied over a sample can indi-
cate the presence or absence of this condition in the observed
data. We will use three normality tests:
– Kolmogorov–Smirnov: it compares the accumulated distribu-
tion of observed data with the accumulated distribution
expected for a Gaussian distribution, obtaining the p-value
based on both discrepancies. Therefore, it is a quality of fit
procedure that can be used to test the hypothesis of normal-
ity in the population distribution. However, this method per-
forms poorly because it possess very low power.

– Shapiro–Wilk: it analyzes the observed data for computing
the level of symmetry and kurtosis (shape of the curve) in
order to compute the difference with respect to a Gaussian
distribution afterwards, obtaining the p-value from the sum
of the squares of these discrepancies. The power of this test
has been shown to be excellent. However, the performance
of this test is adversely affected in the common situation
where there is tied data.

– D’Agostino–Pearson: it first computes the skewness and kur-
tosis to quantify how far from Gaussian the distribution is
in terms of asymmetry and shape. It then calculates how
far each of these values differs from the values expected with
a Gaussian distribution, and computed a single p-value form
the sum of these discrepancies. The performance of this test
is not as good as that of Shapiro–Wilk’s procedure, but it is
not affected by tied data.
� Heteroscedasticity: this property indicates the existence of a vio-
lation of the hypothesis of equality of variances. Levene’s test is
used for checking if k samples present or not this homogeneity
of variances (homoscedasticity). When observed data does not
fulfill the normality condition, it is more reliable the result of
using this test than Bartlett’s test (Zar, 1999), which is another
test that checks the same property.

With respect to the independence condition, Demšar (2006)
suggests that independency is not truly verified in 10FCV and
5 � 2CV (a portion of samples is used either for training and testing
in different partitions). Hold-out partitions can be safely take as
independent, since training and tests partitions do not overlap.
Furthermore, the independence of the events in terms of getting
results is obvious, given that they are independent runs of the algo-
rithm with randomly generated initial seeds. In the following, we
show a normality analysis by using Kolmogorov–Smirnov’s, Shap-
iro–Wilk’s and D’Agostino–Pearson’s tests, together with a hetero-
scedasticity analysis by using Levene’s test.

3.2. Normality test over the group of data sets and algorithms

We apply the normality test of Kolmogorov–Smirnov by consid-
ering a level of confidence of a = 0.05 (we employ SPSS statistical
software package). Tables 5, 8 and 11 show the results in HOV,
10FCV and 5 � 2CV, respectively, where the symbol ‘*’ indicates
that the normality is not satisfied and the value in brackets is the
p-value needed for rejecting the normality hypothesis. Tables 6, 9
and 12 show the results by applying the test of normality of Shap-
iro–Wilk. Finally, Tables 7, 10 and 13 show the results of the appli-
cation of D’Agostino–Pearson’s test. As we have indicated above,
this study is performed by using the first group of data sets in Table
1. The algorithms C-SVM and NU-SVM are not included in this
study due to the fact that they are non-probabilistic methods, thus
the sample of results obtained do not depend on their randomness,
but on the partitions used.

As we can observe in the run of the three tests, we can declare
that the conditions needed for the application of parametric tests
are not fulfilled in some cases. The normality condition is not al-
ways satisfied although the size of the sample of results would
be enough (50 in this case). A main factor that influences this con-
dition seems to be the nature of the problem, since there exist
some problems in which it is never satisfied, such as in the iris



Table 10
Test of Normality of D’Agostino–Pearson for 10FCV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.21) (.70) *(.00) (.51) *(.03) (.06) *(.03) *(.00)
RBFN (.63) (.20) (.61) (.60) *(.00) (.27) *(.00) *(.03)
RBFN Decremental (.06) (.56) *(.00) (.63) (.15) (.10) *(.00) *(.39)
RBFN Inc. (.36) (.65) (.90) (.11) (.38) *(.04) (.53) (.07)
LVQ (.78) *(.00) *(.02) (1.00) (.18) (.23) *(.00) *(.00)

Table 5
Test of normality of Kolmogorov–Smirnov for HOV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP *(.00) *(.01) (.20) (.10) *(.00) *(.00) *(.00) *(.00)
RBFN *(.00) (.18) (.07) *(.00) *(.00) (.20) *(.01) *(.00)
RBFN Decremental *(.00) (.20) *(.00) (.20) *(.00) (.16) *(.00) *(.00)
RBFN Inc. *(.04) (.20) (.20) *(.01) *(.00) *(.03) (.20) *(.00)
LVQ (.11) (.20) *(.04) *(.00) *(.04) *(.01) (.07) *(.00)

Table 6
Test of Normality of Shapiro–Wilk for HOV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP *(.01) (.29) (.05) (.15) *(.00) (.14) *(.00) *(.00)
RBFN *(.00) (.25) (.11) *(.00) *(.00) (.68) (.05) *(.00)
RBFN Decremental *(.00) (.85) *(.00) (.06) *(.00) (.15) *(.01) *(.00)
RBFN Inc. *(.03) (.06) (.45) (.09) *(.00) (.10) (.90) *(.02)
LVQ (.13) (.43) (.05) *(.00) (.05) *(.00) (.07) *(.00)

Table 7
Test of Normality of D’Agostino–Pearson for HOV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.17) (.65) (.06) (.14) *(.00) (.35) *(.01) (.12)
RBFN *(.00) (.18) (.38) *(.02) *(.00) (.59) *(.01) (.26)
RBFN Decremental *(.00) (.88) *(.00) (.10) *(.00) (.43) (.40) *(.00)
RBFN Inc. (.24) (.06) (.50) (.09) (.09) (.10) (.94) (.98)
LVQ (.31) (.59) (.11) *(.00) (.21) *(.00) (.05) *(.00)

Table 8
Test of normality of Kolmogorov–Smirnov for 10FCV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.20) (.17) *(.00) *(.03) *(.00) *(.01) *(.00) *(.00)
RBFN *(.02) *(.01) (.20) (.20) *(.00) (.20) *(.00) *(.00)
RBFN Decremental (.20) (.20) *(.00) (.20) *(.00) (.18) *(.00) *(.00)
RBFN Inc. (.10) (.20) (.20) (.20) *(.00) (.06) *(.03) *(.00)
LVQ (.20) (.08) (.20) (.20) (.20) (.20) *(.00) *(.00)

Table 9
Test of Normality of Shapiro–Wilk for 10FCV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.38) (.71) *(.00) (.21) *(.00) *(.00) *(.00) *(.00)
RBFN (.09) (.05) (.56) (.57) *(.00) (.19) *(.00) *(.00)
RBFN Decremental (.06) (.48) *(.00) (.50) *(.00) (.26) *(.00) *(.00)
RBFN Inc. (.20) (.13) (.51) (.57) *(.00) *(.01) (.06) *(.01)
LVQ (.73) *(.00) (.08) (.63) *(.03) *(.02) *(.00) *(.00)

Table 11
Test of Normality of Kolmogorov–Smirnov for 5 � 2CV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.18) (.20) (.20) *(.04) (.20) (.20) *(.04) (.20)
RBFN (.20) (.20) (.09) *(.00) (.20) (.20) *(.00) *(.01)
RBFN Decremental *(.00) (.05) *(.00) *(.00) *(.00) (.20) *(.00) *(.01)
RBFN Inc. *(.01) (.20) (.20) (.20) *(.01) (.20) (.20) *(.04)
LVQ (.20) *(.04) (.05) (.07) *(.03) (.05) *(.00) (.07)
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Table 12
Test of Normality of Shapiro–Wilk for 5 � 2CV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.59) (.72) (.12) (.22) (.19) (.20) (.22) (.08)
RBFN (.08) (.59) *(.04) *(.00) (.07) (.14) *(.01) *(.00)
RBFN Decremental *(.00) *(.03) *(.00) *(.01) *(.00) (.73) *(.01) (.21)
RBFN Inc. *(.02) (.43) (.35) (.86) (.13) (.16) (.87) (.42)
LVQ (.27) (.11) *(.03) (.12) *(.05) (.53) *(.01) *(.00)

Table 13
Test of Normality of D’Agostino–Pearson for 5 � 2CV.

Breast Cleveland Crx Glass Iris Pima Wine Wisconsin

MLP (.92) (.60) *(.03) (.53) (.11) (.46) (.53) (.14)
RBFN (.90) (.63) *(.22) *(.02) (.03) (.06) (.11) *(.02)
RBFN Decremental *(.00) *(.17) *(.00) (.11) *(.00) (.82) *(.02) (.25)
RBFN Inc. *(.02) (.34) (.34) (.90) (.56) (.18) (.90) (.66)
LVQ (.42) (.09) (.11) (.65) (.30) (.76) *(.03) *(.00)
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and wisconsin problems in HOV and 10FCV, and the general trend
is not predictable. D’Agostino–Pearson’s test is the most suitable
test in these situations, where it is frequent that the sample of
results would contain some ties. Note that in 5 � 2CV the number
of rejections is usually lower than in HOV or 10FCV, so this
validation obtains good-fitted sample of results to the Gaussian
distribution.

In relation to the heteroscedasticity study, Table 14 shows the
results by applying Levene’s test, where the symbol ‘*’ indicates
that the variances of the distributions of the different algorithms
for a certain data set are not homogeneous (we reject the null
hypothesis).

The homoscedasticity property is even more difficult to be ful-
filled, since the variances associated to each problem also depend
on the algorithm’s results, that is, the capacity of the algorithms
for offering similar results with random seed variations. This fact
implies that an analysis of performance of ANN methods
Table 14
Test of Heteroscedasticity of Levene (based on means).

Breast Cleveland Crx Gla

HOV *(.00) *(.00) *(.00) *(.0
10FCV *(.00) *(.00) *(.00) *(.0
5 � 2CV *(.00) *(.01) *(.00) *(.0

Fig. 1. Results of RBFN Decremental over crx da
performed through parametric statistical treatment could mean
erroneous conclusions.

3.3. Case studies of the normality property

In the following, we present a case study done for a given sam-
ple of results. From the Figs. 1–4, different examples of graphical
representations of histograms and Q–Q graphics are shown. A
histogram represents a statistical variable by using bars, so that
the area of each bar is proportional to the frequency of the repre-
sented values. A Q–Q graphic represents a confrontation between
the quartiles from data observed and those from the normal
distribution.

In Fig. 1 we observe a typical case of absolute lack of normality.
In Fig. 2, the normality condition is not rejected by the D’Agostino–
Pearson test, which is the best-suitable test for normality
condition. In this case, Shapiro–Wilk test is unable to detect the
ss Iris Pima Wine Wisconsin

0) *(.00) *(.00) *(.00) *(.00)
0) *(.00) (.20) *(.00) *(.01)
0) *(.00) *(.00) *(.00) *(.00)

ta set in HOV: histogram and Q–Q graphic.



Fig. 2. Results of RBFN incremental over breast data set in HOV: histogram and Q–Q graphic.

Fig. 3. Results of MLP BackProp over glass data set in 10FCV: histogram and Q–Q graphic.

Fig. 4. Results of MLP BackProp over breast data set in 5 � 2CV: histogram and Q–Q graphic.
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normality of the distribution due to, as we can observe in the Q–Q
graphic of the Fig. 2, there are few points around the line, so this
implies that the distribution contains many ties.

Fig. 3 represents a case in which a normality test rejects the null
hypothesis whereas the other tests cannot do it. Kolmogorov–
Smirnov’s test rejects the normality hypothesis but Shapiro–Wilk
and D’Agostino–Pearson do no reject it. Note that the histogram
of the Fig. 3 seems to adopt an approximate Gaussian shape, except
for the bar in the centre of the graphic; given that the Shapiro–
Wilk’s and D’Agostino–Pearson tests are usually more powerful



Table 15
Results for Friedman and Iman–Davenport tests.

Method Friedman Value Value of v2 Iman–Davenport Value FF Value

HOV 21.609 12.592 4.357 2.201
10FCV 24.188 12.592 5.052 2.201
5 � 2CV 13.333 12.592 2.419 2.201
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than the Kolmogorov–Smirnov’s (Zar, 1999), it is a case in which
Kolmogorov–Smirnov’s test obtains a false negative error.

Finally, in Fig. 4 we show an example in which the normality
hypothesis is not rejected by the three tests used.

4. On the use of rank-based non-parametric tests: a short
experimental study

In this section, we briefly introduce non-parametric tests used
and we present an experimental study using the seven algorithms
described. Non-parametric tests can use the mean values obtained
for each data set, so they can treat with probabilistic and non-prob-
abilistic methods without any restriction. We will use a simple
multiple comparison procedure to show a case study of comparing
simultaneously more than two methods through non-parametric
tests.

4.1. Rank-based non-parametric tests

A non-parametric test is such that uses nominal data, ordinal
data or ranked data. However, this does not mean that other data
types cannot be used. It could be interesting to transform real data
from an interval into ranked data by means of their order, so non-
parametric tests can be applied on data which is typically used by
parametric tests (when conditions for parametric tests application
are not verified). Usually, a non-parametric test is less restrictive
than parametric one, but less robust than a parametric test applied
over data which verifies all needed conditions.

Next, we show the basis of each non-parametric tests used in
this study:

� Friedman test (Sheskin, 2003), which is a non-parametric test
equivalent of the repeated-measures ANOVA. Under the null
hypothesis, it states that all the algorithms are equivalent, so a
rejection of this hypothesis implies the existence of differences
among the performance of all the algorithms studied. After this,
a post-hoc test could be used in order to find whether the con-
trol or proposed algorithm presents statistical differences with
regards to the remain of methods into the comparison. One of
them is the Bonferroni–Dunn test.Friedman test way of working
is described as follows: It ranks the algorithms for each data set
separately, the best performing algorithm getting the rank of 1,
the second best rank 2, and so on. In case of ties average ranks
are assigned.Let rj

i be the rank of the jth of k algorithms on the
ith of N data sets. The Friedman test compares the average ranks
of algorithms, Rj ¼ 1

N

P
ir

j
i. Under the null hypothesis, which

states that all the algorithms are equivalent and so their ranks
Rj should be equal, the Friedman statistic:

v2
F ¼

12N
kðkþ 1Þ

X
jR2

j �
kðkþ 1Þ2

4

" #
ð1Þ

is distributed according to v2
F with k � 1 degrees of freedom,

when N and k are big enough (as a rule of a thumb, N > 10 and
k > 5).
� Iman and Davenport test (Iman & Davenport, 1980), which is a

non-parametric test, derived from the Friedman test, less con-
servative than the Friedman statistic:

FF ¼
ðN � 1Þv2

F

NðK � 1Þ � v2
F

ð2Þ

which is distributed according to the F-distribution with k � 1
and (k � 1)(N � 1) degrees of freedom. Statistical tables for criti-
cal values can be found at (Sheskin, 2003; Zar, 1999).
� Bonferroni–Dunn is a post-hoc test that can be used after Fried-

man or Iman–Davenport tests when they reject the null hypoth-
esis. It is similar to Dunnet’s test for ANOVA. This method
assumes that the performance of two classifiers is significantly
different if the corresponding average ranks differ by at least
the critical difference:

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6N

r,
ð3Þ

qa value is the critical value Q0 for a multiple non-parametrical
comparison with a control (see Table B.16 in Zar (1999)).
� Holm’s test (Holm, 1979): it is a multiple comparison procedure

that can work with a control algorithm and compares it with the
remaining methods. The test statistics for comparing the ith and
jth method using this procedure is

z ¼ ðRi � RjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6Nds

s,

The z value is used to find the corresponding probability from the
table of normal distribution, which is then compared with an
appropriate level of confidence a. In Bonferroni–Dunn compari-
son, this a value is always a/(k � 1), but Holm’s test adjusts the
value for a in order to compensate for multiple compari-
son.Holm’s test is a step-up procedure that sequentially tests
the hypotheses ordered by their significance. We will denote
the ordered p-values by p1,p2, . . . , so that p1 6 p2 6 . . . 6 pk�1.
Holm’s test compares each pi with a/(k � i), starting from the
most significant p value. If p1 is below a/(k � 1), the correspond-
ing hypothesis is rejected and we allow to compare p2 with a/
(k � 2). If the second hypothesis is rejected, the test proceeds
with the third, and so on. As soon as a certain null hypothesis can-
not be rejected, all the remain hypotheses are retained as well.
� Hochberg’s procedure (Hochberg, 1988): it is a step-up proce-

dure that works in the opposite direction to Holm’s method,
comparing the largest p-value with a, the next largest with a/2
and so forth until it encounters a hypothesis that it can reject.
All hypotheses with smaller p-values are then rejected as well.

The post-hoc procedures described above allow us to know
whether or not a hypothesis of comparison of means could be re-
jected at a specified level of significance a. However, it is very
interesting to compute the p-value associated to each comparison,
which represents the lowest level of significance of a hypothesis
that results in a rejection. In this manner, we can know whether
two algorithms are significantly different and also a metric of
how different they are.

In the following, we will describe the method for computing
these exact p-values for each test procedure, which are called ‘‘ad-
justed p-values” (Wright, 1992).

� The adjusted p-value for Bonferroni–Dunn’s test (also known as
the Bonferroni correction) is calculated by pBonf = (k � 1)pi.

� The adjusted p-value for Holm’s procedure is computed by
pHolm = (k � i)pi. Once computed all of them for all hypotheses,
it is not possible to find an adjusted p-value for the hypothesis
i lower than for the hypothesis j, j < i. In this case, the adjusted
p-value for hypothesis i is set equal to the associated to the
hypothesis j.



Fig. 5. Bonferroni–Dunn graphic for all validations.

Table 16
Adjusted p-values in HOV (C-SVM is the control).

i Algorithm Unadjusted p pBonf pHolm pHoch

1 RBFN Decremental 2.505 � 10�5 1.503 � 10�4 1.503 � 10�4 1.503 � 10�4

2 LVQ 9.191 � 10�4 0.00551 0.0046 0.0046
3 RBFN 0.00475 0.02853 0.01902 0.01902
4 MLP 0.01578 0.09466 0.04733 0.04733
5 NU-SVM 0.07181 0.43088 0.14363 0.07851
6 RBFN Inc. 0.07851 0.47108 0.14363 0.07851

Table 17
Adjusted p-values in 10FCV (C-SVM is the control).

i Algorithm Unadjusted p pBonf pHolm pHoch

1 LVQ 1.443 � 10�5 8.663 � 10�5 8.663 � 10�5 8.663 � 10�5

2 RBFN Decremental 1.2 � 10�4 7.201 � 10�4 6.001 � 10�4 6.001 � 10�4

3 RBFN 0.00106 0.00638 0.00425 0.00425
4 MLP 0.00418 0.02509 0.01255 0.01255
5 NU-SVM 0.01119 0.06713 0.02238 0.02238
6 RBFN Inc. 0.04078 0.24466 0.04078 0.04078

Table 18
Adjusted p-values in 5 � 2CV (C-SVM is the control).

i Algorithm Unadjusted p pBonf pHolm pHoch

1 RBFN Decremental 0.00128 0.00737 0.00737 0.00737
2 LVQ 0.00367 0.02203 0.01836 0.01836
3 RBFN 0.00995 0.05968 0.03978 0.03978
4 MLP 0.03691 0.22149 0.11074 0.07181
5 RBFN Inc. 0.04498 0.26986 0.11074 0.07181
6 NU-SVM 0.07181 0.43088 0.11074 0.07181
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� The adjusted p-value for Hochberg’s method is computed with
the same formula as Holm’s, and the same restriction is applied
in the process, but in the opposite sense, that is, it is not possible
to find an adjusted p-value for the hypothesis i lower than for
the hypothesis j, j > i.

4.2. Experimental study: results and analysis

In Table 15 we show the results of applying the tests of Fried-
man and Iman–Davenport in order to detect whether differences
in the results exist. In bold appears the highest value of the com-
pared ones, and if it is the corresponding statistical (column named
‘‘Friedman value” or ‘‘Iman–Davenport value”), then the null
hypothesis is rejected. In case contrary, the null hypothesis is not
rejected, so the results are not significantly different. Both test
are applied with a level of confidence a = 0.05.

In our case, both Friedman’s and Iman–Davenport’s tests indi-
cate that significant differences in the results are found in the three
validations used in this study. Due to these results, a post-hoc sta-
tistical analysis is required. In this snalysis, we choose the best per-
forming method, C-SVM, as the control method for being
compared with the rest of algorithms.

In Fig. 5, we illustrate the application of Bonferroni–Dunn’s test.
This graphic represents a bar chart, whose bars have a height pro-
portional to the average rank obtained for each algorithm by fol-
lowing the procedure of Friedman. In each type of validation
used, if we sum the value of ranking of the lowest bar (which is
associated with the best algorithm, the control algorithm) to the
Critical Difference (CD) value, we obtain a horizontal line (denoted
as ‘‘Threshold”), which is displayed along the graphic. Those bars
that exceed this line are the associated ones with the algorithms
whose performance is significantly worse than the control algo-
rithm (associated with the lowest bar).

As we can see in Fig. 5, three threshold lines are drawn corre-
sponding to each type of validation. Bonferroni–Dunn’s test indi-
cates us that

� In HOV, the method C-SVM used as control is statistically better
than RBFN, RBFN Dec. and LVQ.

� In 10FCV, the control method improves MLP, RBFN, RBFN Dec.
and LVQ significantly.

� Bonferroni–Dunn’s test indicates that, in 5 � 2CV, C-SVM out-
performs RBFN Dec. and LVQ.

We will apply more powerful procedures, such as Holm’s and
Hochbergs’s, for comparing the control algorithm with the rest of
algorithms. Tables 16–18 show all the adjusted p-values for each
comparison which involves the control algorithm. The p-value is
indicated in each comparison and we stress in bold the algorithms
which are worse than the control, considering a level of signifi-
cance a = 0.05.

Tables 16–18 indicate us that:

� In HOV, the method C-SVM used as control is statistically better
than RBFN, RBFN Dec., MLP and LVQ.

� In 10FCV, the control method outperforms all the remaining
methods.

� Holm’s and Hochberg’s tests indicate that, in 5 � 2CV, C-SVM
outperforms RBFN Dec., RBFN and LVQ.
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Holm’s and Hochberg’s tests find more significant differences
than Bonferroni–Dunn’s and their use is as correct as using the lat-
ter. However, they are more difficult to conduct and understand.
Note that, in this case study, we have considered a level of
significance a = 0.05 and we have used 16 data sets for analyzing
7 algorithms. These three factors are very important in the non-
parametric statistical analysis since they have much influence in
the computation of the rankings and in the search of the critical
values in the statistical tables.

5. Conclusions

The present work studies the use of statistical techniques for
analyzing Artificial Neural Networks in classification problems
and a further analysis of parametric and non-parametric tests.

The need of using non-parametric tests for results’ analysis in
classification with ANNs is very clear, since initial conditions re-
quired for obtaining safe conclusions from parametric tests are
not met.

On the use of non-parametric tests, we have shown an example
of performing a multiple comparison among several algorithms. In
this study, we have employed the tests of Friedman, Iman–Daven-
port, Bonferroni–Dunn, Holm and Hochberg and we recommend
them as a good set of testing algorithms.
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