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Abstract The experimental analysis on the performance

of a proposed method is a crucial and necessary task to

carry out in a research. This paper is focused on the sta-

tistical analysis of the results in the field of genetics-based

machine Learning. It presents a study involving a set of

techniques which can be used for doing a rigorous com-

parison among algorithms, in terms of obtaining successful

classification models. Two accuracy measures for multi-

class problems have been employed: classification rate and

Cohen’s kappa. Furthermore, two interpretability measures

have been employed: size of the rule set and number of

antecedents. We have studied whether the samples of

results obtained by genetics-based classifiers, using the

performance measures cited above, check the necessary

conditions for being analysed by means of parametrical

tests. The results obtained state that the fulfillment of these

conditions are problem-dependent and indefinite, which

supports the use of non-parametric statistics in the experi-

mental analysis. In addition, non-parametric tests can be

satisfactorily employed for comparing generic classifiers

over various data-sets considering any performance

measure. According to these facts, we propose the use of

the most powerful non-parametric statistical tests to carry

out multiple comparisons. However, the statistical analysis

conducted on interpretability must be carefully considered.

Keywords Genetics-based machine learning �
Genetic algorithms � Statistical tests � Non-parametric

tests � Cohen’s kappa � Interpretability � Classification

1 Introduction

In general terms, the classification problem can be covered

by numerous techniques and algorithms, which belong to

different paradigms of machine learning (ML). The new

developed methods for ML must be analysed against pre-

vious approaches following a rigorous criterion, since in

any empirical comparison the results are dependent on the

choice of the cases for studying, the configuration of the

experimentation and the measurements of performance.

Nowadays, the statistical validation of published results is a

necessity in order to establish a certain conclusion on an

experimental analysis (Demšar 2006).

Evolutionary rule-based systems (Freitas 2002) is a kind

of Gen-etics-Based Machine Learning (GBML) that uses

sets of rules as knowledge representation (Grefenstette

1993). Many approaches have been proposed in GBMLs

based on offering some advantages with respect to other

existing ML techniques; such as the production of inter-

pretable models, no assumption of prior relationships

among attributes and the possibility of obtaining compact

and precise rule sets. Some examples of proposed GBMLs

are: GABIL (De Jong et al. 1993), SIA (Venturini 1993),

XCS (Wilson 1995), DOGMA and JoinGA (Hekanaho

1998), G-Net (Anglano and Botta 2002), UCS (Bernadó-
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Mansilla and Garrell 2003), GASSIST (Bacardit 2004),

OCEC (Jiao et al. 2006) and HIDER (Aguilar-Ruiz et al.

2000).

Recently, statistical analysis is highly demanded in any

research work and thus, we can find recent studies that

propose some methods for conducting comparisons

among various approaches (Demšar 2006; Markatou et al.

2005). Statistics allows us to determine whether the

obtained results are significant with respect to the choices

taken and whether the conclusions achieved are supported

by the experimentation that we have carried out. On the

other hand, the performance of classifiers is not only

given by their classification rate and there is a growing

interest in proposing or adapting new accuracy measures

(Ben-David 2007; Drummond and Holte 2006). Most of

the accuracy measures are proposed for two-class prob-

lems and their adaptation to multi-class problems is not

intuitive (Landgrebe and Duin 2008). Only two accuracy

measures have been used for multi-class problems with

successful results: the classical classification rate and the

Cohen’s kappa measure. The main difference between

them is the scoring of the true classifications rates.

Classification rate scores all the successes over all classes,

whereas Cohen’s kappa scores the successes indepen-

dently for each class and aggregates them. The second

way of scoring is less sensitive to randomness caused by

different number of examples in each class, which causes

a bias in the learner towards the obtention of data-

dependent models.

In GBMLs, the interpretability of the rule sets obtained

is very important, due to the fact that very large sets of

rules or very complex rules are rather lacking in interest.

The use of parametric statistical techniques over the

sample of results is only adequate when they fulfill three

necessary conditions: independency, normality and homo-

scedasticity (Sheskin 2006, Zar 1999). This paper shows

that these conditions are usually not verified when ana-

lysing GBML algorithms. Under these assumptions, a

statistical analysis conducted by means of parametric tests

may not be safe with respect to the achieved results and

hence, the conclusions about an experimental study could

be incorrect.

In this paper, we are interested in the study of the most

appropriate statistical techniques and performance mea-

sures for analysing the experimentation of GBML

algorithms. We mainly focus on five topics:

– To study the fulfillment of the necessary conditions for

a safe usage of parametric tests.

– To emphasize the existing differences between a

pairwise comparison statistical procedure and a multi-

ple comparison statistical procedure, pointing out the

advantages of using the second ones.

– To notice that the use of different performance

measures may yield different conclusions in the

statistical study, due to the fact that they have different

purposes in the evaluation of the algorithms.

– To show the generality for comparing GBML algorithm

with other ML approaches, in spite of the non-

stochasticity of the latter methods. For this purpose,

we will include the CN2 algorithm (Clark and Niblett

1989) when conducting the non-parametric statistical

analysis.

– Making an analysis based on interpretability is not

trivial. We give some concerns in this paper and we

justify why the available interpretability metrics have

to be treated with ‘‘a grain of salt’’.

In order to do that, the paper is organized as follows.

Section 2 presents the GBML algorithms used. The

description of the multi-class performance measures

together with the experimental framework and the results

obtained are given in Sect. 3. We introduce the statistical

analysis and we carry out the study of the necessary con-

ditions for a safe use of parametric tests in Sect. 4. Section

5 describes the procedures for doing pairwise comparisons

with non-parametric statistics. In the case of multiple

comparisons tests, we present and use them in Sect. 6. We

present the analysis based on interpretability and we give

our concerns in Sect. 7. Finally, the conclusions are sum-

marized in Sect. 8. An appendix is included containing an

extended description of the GBML methods used in our

study.

2 Genetics-based machine learning algorithms

for classification

In this paper we use GBML methods in order to perform

classification tasks. Specifically, we have chosen four

Genetics Interval Rule Based Algorithms, such as

Pittsburgh Genetics Interval Rule Learning Algorithm

(Pitts-GIRLA), XCS, Genetic Algorithm based Classifier

System (GASSIST-ADI) and Hierarchical Decision Rules

(HIDER). These algorithms are provided by the KEEL

software (Alcalá-Fdez et al. 2009), which includes updated

versions of these GBML methods.

In the following we will give a brief description of the

different approaches that we have employed in our work. A

wider explanation about the methods exposed here can be

found in the appendix of this work.

1. Pitts-GIRLA Algorithm.

The Pittsburgh Genetic Interval Rule Learning Algo-

rithm (Pitts-GIRLA) (Corcoran and Sen 1994) is a

GBML method which makes use of the Pittsburgh

approach in order to perform a classification task. The
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main structure of this algorithm is a generational

Genetic Algorithm (GA) in which, for each generation,

the steps of selection, crossover, mutation and replace-

ment are applied.

All chromosomes are initialized at random, with

values between the range of each variable. The

selection mechanism consists in choosing two individ-

uals at random among all the chromosomes of the

population.

The fitness of a particular chromosome is simply the

percentage of instances correctly classified by the

chromosome’s rule set (classification rate).

The best chromosome of the population is always

maintained as in the elitist scheme.

2. XCS Algorithm.

XCS (Wilson 1995) is a Learning Classifier System

(LCS) (Sigaud and Wilson 2007) that evolves online a

set of rules that describe the feature space accurately. It

inherits part of its behavior from ZCS (Wilson 1994),

and differs in several ways from more traditional LCSs.

Firstly, the classifier fitness is based on the payoff

prediction instead of the prediction itself. Secondly,

XCS has no message list. Finally, the GA is applied

over niches instead of the whole population. The set of

rules has a fixed maximum size N and it is initially built

by generalizing some of the input examples.

3. GASSIST Algorithm.

Genetic Algorithms based claSSIfier sySTem

(GASSIST) (Bacardit and Garrell 2007) is a Pittsburgh-

style LCS originally inspired in GABIL (De Jong et al.

1993) from where it has taken the semantically correct

crossover operator.

The core of the system consists of a GA which evolve

individuals formed by a set of production rules. The

individuals are evaluated according to the proportion of

correct classified training examples.

In GASSIST-ADI, the representation for real-valued

attributes is through Adaptive Discretization Intervals

Rule Representation (Bacardit and Garrell 2003, 2004).

4. HIDER Algorithm.

HIerarchical DEcision Rules (HIDER) (Aguilar-Ruiz

et al. 2000), produces a hierarchical set of rules, that is,

the rules are sequentially obtained and must be,

therefore, tried in order until one, whose conditions

are satisfied, is found.

In order to extract the rule-list, a real-coded GA is

employed in the search process. Two genes define the

lower and upper bounds of the rule attribute. One rule

is extracted in each iteration of the GA and all the

examples covered by that rule are deleted. A parameter

called ‘‘examples pruning factor’’ defines a percentage

of examples that can remain uncovered. Thus, the

termination criterion is reached when there are no

more examples to cover, depending on the ‘‘examples

pruning factor’’.

The GA main operators are defined in the following:

a. Crossover: Where the offspring takes values between

the upper and lower bounds of the parents.

b. Mutation: Where a small value is subtracted or added

in the case of lower and upper bound respectively.

c. Fitness Function: The fitness function considers a two-

objective optimization, trying to maximize the number

of correctly classified examples and to minimize the

number of errors.

3 Performance measures and experimental results

In this section, we describe the accuracy measures for

multi-class problems and the interpretability metrics used

in this paper. Regarding the first ones, in the specialized

literature we observe that most of them are designed for

binary-class problems (Sokolova et al. 2006). Well-known

accuracy measures for binary-class problems are: classifi-

cation rate, precision, sensitivity, specificity, G-mean

(Barandela et al. 2003), F-score, AUC (Huang and Ling

2005), Youden’s index c (Youden 1950) and Cohen’s

Kappa (Ben-David 2007).

Some of the two-class accuracy measures have been

adapted for multi-class problems. For example, in a recent

paper (Landgrebe and Duin 2008), the authors propose an

approximating multi-class ROC analysis, which is theo-

retically possible but its computation is still restrictive.

Only two measures are widely used because of their sim-

plicity and successful application when the number of

classes is large enough. We refer to classification rate and

Cohen’s kappa measures, which will be explained in Sect.

3.1. The two interpretability metrics will be described in

Sect. 3.2. Finally, Sect. 3.3 presents the experimental

framework of this paper and shows the average results

obtained for each GBML algorithm employed.

3.1 Accuracy measures for multi-class problems

The analysis of the four GBML approaches described

previously will be carried out by means of the following

accuracy measures:

– Classification rate: is the number of successful hits

relative to the total number of classifications. It is by far

the most commonly used metric for assessing the

performance of classifiers for years (Alpaydin 2004;

Lim et al. 2000; Witten and Frank 2005).

A study of statistical techniques and performance measures 961
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– Cohen’s kappa: is an alternative to classification rate, a

method, known for decades, that compensates for

random hits (Cohen 1960). Its original purpose was to

measure the degree of agreement or disagreement

between two people observing the same phenomenon.

Cohen’s kappa can be adapted to classification tasks

and it is recommended to be employed because it takes

random successes into consideration as a standard, in

the same way as the AUC measure (Ben-David 2007).

Also, it is used in some well-known software packages,

such as WEKA (Witten and Frank 2005), SAS, SPSS,

etc.

An easy way of computing Cohen’s kappa is to make

use of the resulting confusion matrix in a classification

task. Specifically, the Cohen’s kappa measure can be

obtained using the following expression:

kappa ¼ n
PC

i¼1 xii �
PC

i¼1 xi:x:i

n2 �
PC

i¼1 xi:x:i
; ð1Þ

where xii is the cell count in the main diagonal, n is the

number of examples, C is the number of class values, and

x.i, xi. are the columns and rows total counts, respectively.

Cohen’s kappa ranges from -1 (total disagreement)

through 0 (random classification) to 1 (perfect agreement).

Being a scalar, it is less expressive than ROC curves when

applied to binary-classification. However, for multi-class

problems, kappa is a very useful, yet simple, meter for

measuring the accuracy of the classifier while compensat-

ing for random successes.

The main difference between classification rate and

Cohen’s kappa is the scoring of the correct classifications.

Classification rate scores all the successes over all classes,

whereas Cohen’s kappa scores the successes independently

for each class and aggregates them. The second way of

scoring is less sensitive to randomness caused by different

number of examples in each class, which causes a bias in

the learner towards the obtention of data-dependent

models.

3.2 Interpretability measures

The analysis of the four GBML approaches described in

the paper will be carried out by means of two interpret-

ability measures:

– Size: it is a measure that considers the number of rules

which compose the model (see expression 2). Reducing

the size of the model increases the interpretability by

the user.

Size ¼ nR; ð2Þ

– Number of antecedents (ANT): Let Ri being a rule in the

form Cond ?Class, and Cond composed by

(Antecedent1 ^ Antecedent2 ^ . . . ^ Antecedentk), this

measure is defined as the following expression:

AntðRiÞ ¼ k: ð3Þ

The average number of antecedents in the rule is

described in the expression:

ANT ¼ 1

nR

XnR

i¼1

AntðRiÞ: ð4Þ

3.3 Experimental results

We have selected 14 data-sets from UCI repository

(Asuncion and Newman 2007). Table 1 summarizes the

properties of these data-sets. It shows, for each data-set, the

number of examples (#Ex.), the number of attributes

(#Atts.) and the number of classes (#C.). In the case of

presenting missing values (cleveland and wisconsin) we

have removed the instances with any missing value before

partitioning. We also add in the last columns some of the

Pitts-GIRLA parameters (number of rules #R and number

of generations #Gen) which we have made problem-

dependent in order to increase the performance of the

algorithm. The rest of the parameters are common for all

problems and they are shown in Table 2.

We have used tenfold cross validation (10 fcv) and we

have repeated 5 times the experiments using the GBML

algorithms with different random seeds. Thus, we have

obtained samples composed by 50 results in each of the

measures considered. CN2 is a deterministic algorithm and

has been run only once, obtaining 10 results per data-set.

Tables 3 and 4 show the results obtained for the GBML

approaches studied in this paper and for CN2 over all

Table 1 Data-sets summary descriptions and Pitts-GIRLA problem-

dependent parameters

Data-set Description Pitts-GIRLA

Data-set #Ex. #Atts. #C. #R #Gen

bupa (bup) 345 6 2 30 5,000

cleveland (cle) 297 13 5 40 5,000

ecoli (eco) 336 7 8 40 5,000

glass (gla) 214 9 7 20 10,000

haberman (hab) 306 3 2 10 5,000

iris (iri) 150 4 3 20 5,000

monk-2 (mon) 432 6 2 20 5,000

new-Thyroid (new) 215 5 3 20 10,000

pima (pim) 768 8 2 10 5,000

vehicle (veh) 846 18 4 20 10,000

vowel (vow) 988 13 11 20 10,000

wine (win) 178 13 3 20 10,000

wisconsin (wis) 683 9 2 50 5,000

yeast (yea) 1484 8 10 20 10,000
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data-sets, considering the classification rate and kappa

measures in test data, respectively. The column titled Mean

shows the average classification rate achieved and the

column titled SD shows the associated standard deviation.

We stress the best result for each data-set and the average

one in boldface.

Using the same data-sets and configuration of the

algorithms, Table 5 shows the results obtained for the

GBML approaches studied in this paper over all data-sets,

considering size and ANT measures. The column titled

Mean shows the average size/ANT achieved and the

column titled SD shows the associated standard deviation.

We also stress the best result for each data-set and the

average one in boldface.

4 Study on the initial conditions for parametric

tests using genetics-based machine learning

In this paper, we discuss on the use of statistical tech-

niques for the analysis of GBML methods. Firstly, we

distinguish between two types of analysis: single data-set

analysis and multiple data-set analysis. A single data-set

analysis is carried out when the results of two or more

algorithms are compared considering an unique problem

or data-set. A multiple data-set analysis is given when our

interest lies in comparing two or more approaches over

multiple problems or data-sets simultaneously, in the way

of obtaining generalizable conclusions on an experimental

study.

Table 2 Parameter

specification for the algorithms

employed in the

experimentation

Algorithm Parameters

Pitts-GIRLA Number of rules: ‘‘problem-dependent’’, Number of generations:

‘‘problem-dependent’’

Population size: 61 chromosomes, Crossover Probability: 0.7,

Mutation Probability: 0.5.

XCS Number of explores = 100,000, population size = 6,400,a = 0.1,

b = 0.2, d = 0.1, m = 10.0, hmna = 2, hdel = 50.0,hsub = 50.0,

e0 = 1, do Action Set Subsumption = false, fitness

reduction = 0.1, pI = 10.0, FI = 0.01, eI = 0.0, c = 0.25,

v = 0.8, l = 0.04, hGA = 50.0, doGASubsumption = true, type

of selection = RWS, type of mutation = free, type of

crossover = 2 point, P# = 0.33, r0 = 1.0, m0 = 0.1, l0 = 0.1,

doSpecify = false, nSpecify = 20.0 pSpecify = 0.5.

GASSIST-ADI Threshold in hierarchical selection = 0

Iteration of activation for rule deletion operator = 5

Iteration of activation for hierarchical selection = 24

Minimum number of rules before disabling the deletion operator = 12

Minimum number of rules before disabling the size penalty

operator = 4

Number of iterations = 750, initial number of rules = 20, population

size = 400

Crossover probability = 0.6, probability of individual mutation = 0.6

Probability of value 1 in initialization = 0.90, tournament size = 3

Possible size in micro-intervals of an attribute = {4, 5, 6, 7, 8, 10, 15,

20, 25}

Maximum number of intervals per attribute = 5, psplit = 0.05,

pmerge = 0.05

Probability of reinitialize begin = 0.03, probability of reinitialize

end = 0

Use MDL = true, iteration MDL = 25

Initial theory length ratio = 0.075, weight relaxation factor = 0.90

Class initialization method = cwinit, default class = auto

HIDER Population size = 100, number of generations = 100, mutation

probability = 0.5

Percentage of Crossing = 80, Extreme Mutation Probability =0.05,

Prune ExamplesFactor = 0.05, Penalty Factor = 1, Error Coefficient =

0.

CN2 Percentage of examples to cover = 95%

Star size = 5, Use disjunct selectors = No
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The Central Limit Theorem suggests that the sum of

many independent, identically distributed random variables

approaches a normal distribution (Sheskin 2006). This

theorem for classification performance is rarely held, it

depends on the case of the problem studied and the number

of runs of the algorithm. However, an excessive number of

runs (the effect size of the samples) affects negatively in

the statistical test due to the fact that it makes a statistical

score more sensitive to a little difference of results (which

would not be detected), by the simple fact of repeating

runs. Thus, our intention is to study the necessary condi-

tions for using parametric statistical tests on single data-set

analysis by means of the obtaining of large size result

samples by running the algorithms several times.

For doing so, we firstly introduce the necessary condi-

tions mentioned above. Then, we present the analysis of

these conditions, and finally we show some case studies of

the normality property.

Table 3 Average classification rate offered by the algorithms

Pitts-GIRLA XCS GASSIST-ADI HIDER CN2

Mean SD Mean SD Mean SD Mean SD Mean SD

bup 0.5922 0.0641 0.6568 0.0764 0.6306 0.0932 0.6186 0.0986 0.5715 0.0740

cle 0.5583 0.0376 0.5650 0.0540 0.5613 0.0693 0.5545 0.0723 0.5412 0.0457

eco 0.7367 0.0850 0.8105 0.0680 0.7985 0.0703 0.8422 0.0597 0.8101 0.0618

gla 0.6247 0.1104 0.7181 0.1279 0.6472 0.1035 0.6962 0.1331 0.6998 0.0963

hab 0.6997 0.1245 0.7284 0.0484 0.7121 0.0676 0.7485 0.0449 0.7349 0.0444

iri 0.9493 0.0514 0.9493 0.0477 0.9653 0.0409 0.9640 0.0409 0.9400 0.0492

mon 0.6236 0.1165 0.6728 0.0238 0.6673 0.0407 0.6719 0.0206 0.6719 0.0215

new 0.9140 0.0499 0.9449 0.0545 0.9269 0.0511 0.9382 0.0660 0.9446 0.0472

pim 0.6485 0.1161 0.7520 0.0581 0.7425 0.0437 0.7473 0.0497 0.7122 0.0393

veh 0.4594 0.1095 0.7359 0.0446 0.6783 0.0421 0.6593 0.0502 0.6191 0.0839

vow 0.2467 0.0548 0.5438 0.0682 0.4020 0.0356 0.7248 0.0482 0.6212 0.0632

win 0.7039 0.2199 0.9584 0.0477 0.9056 0.0744 0.9476 0.0792 0.9268 0.0648

wis 0.7655 0.2269 0.9666 0.0189 0.9564 0.0247 0.9653 0.0236 0.9517 0.0218

yea 0.3723 0.0877 0.4960 0.0598 0.5442 0.0327 0.5781 0.0376 0.5560 0.0362

AVG 0.6353 0.1039 0.7499 0.0570 0.7242 0.0564 0.7625 0.0611 0.7358 0.1529

Table 4 Average kappa offered by the algorithms

Pitts-GIRLA XCS GASSIST-ADI HIDER CN2

Mean SD Mean SD Mean SD Mean SD Mean SD

bup 0.0916 0.1472 0.2619 0.1837 0.2382 0.1842 0.1793 0.1939 0.0444 0.1580

cle 0.1710 0.1192 0.2995 0.0949 0.2750 0.0948 0.2387 0.1182 0.1617 0.0586

eco 0.6260 0.1099 0.7345 0.0964 0.7158 0.1000 0.7761 0.0827 0.7317 0.0892

gla 0.4663 0.1490 0.6089 0.1731 0.5019 0.1416 0.5665 0.1899 0.5765 0.1284

hab 0.0605 0.1156 0.0943 0.1431 0.1272 0.1921 0.1469 0.1719 0.1826 0.1900

iri 0.9240 0.0771 0.9240 0.0716 0.9480 0.0614 0.9460 0.0613 0.9100 0.0738

mon 0.0067 0.0354 0.0107 0.0536 0.0460 0.1161 0.1095 0.1697 0.0000 0.0000

new 0.8171 0.1013 0.8762 0.1327 0.8424 0.1077 0.8644 0.1363 0.8742 0.1063

pim 0.1260 0.2047 0.4321 0.1404 0.4131 0.1103 0.3794 0.1334 0.2476 0.1182

veh 0.2802 0.1470 0.6479 0.0593 0.5714 0.0558 0.5450 0.0669 0.4897 0.1130

vow 0.1726 0.0602 0.4982 0.0751 0.3422 0.0391 0.6969 0.0530 0.5833 0.0695

win 0.5125 0.3822 0.9371 0.0716 0.8560 0.1135 0.9201 0.1171 0.8870 0.1000

wis 0.5465 0.3683 0.9271 0.0411 0.9040 0.0542 0.9222 0.0532 0.8909 0.0501

yea 0.1640 0.1226 0.3279 0.0837 0.3983 0.0453 0.4481 0.0505 0.4137 0.0483

AVG 0.3546 0.1528 0.5415 0.1014 0.5128 0.1011 0.5528 0.1141 0.4995 0.0931
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4.1 Conditions for a safe use of parametric tests

In (Sheskin 2006), the distinction done between parametric

and non-parametric tests is based on the level of measure

represented by the data that will be analysed. In this way, a

parametric test uses data with real values belonging to a

range.

The latter does not involve that when we always dispose

of this type of data, we should use a parametric test. It is

possible that one or more initial assumptions for the use of

parametric tests may be not fulfilled, making that a statis-

tical analysis loses credibility.

In order to use the parametric tests, it is necessary to

check the following conditions (Sheskin 2006; Zar 1999):

– Independence: In statistics, two events are independent

when the fact that one occurs does not modify the

probability of the other one occurring.

– Normality: An observation is normal when its behav-

iour follows a normal or Gauss distribution with a

certain value of mean l and variance r2. A normality

test applied over a sample can indicate the presence or

absence of this condition in the observed data. A well-

known example of normality test is the Kolmogorov-

Smirnov test, which possess a very low power. In this

study, we will use more powerful normality tests:

– Shapiro-Wilk (SW): It analyses the observed data

for computing the level of symmetry and kurtosis

(shape of the curve) in order to compute the

difference with respect to a Gaussian distribution

afterwards, obtaining the p value from the sum of

the squares of these discrepancies. The power of

this test has been shown to be excellent; however,

its performance is adversely affected in the com-

mon situation where there is tied data.

– D’Agostino-Pearson (DP): It first computes the

skewness and kurtosis to quantify how far from

Gaussian the distribution is in terms of asymmetry

and shape. Then, it calculates how far differs each

one of these values from the expected value with a

Gaussian distribution, and computes a single p

value from the sum of these discrepancies. The

performance of this test is not as good as that of

SW’s procedure, but it is not as affected by tied

data.

– Heteroscedasticity: This property indicates the exis-

tence of a violation of the hypothesis of equality of

variances. A Levene test is used for checking whether

or not k samples present this homogeneity of variances

(homoscedasticity). When the observed data does not

fulfill the normality condition, it is more reliable the

result of using this test than Bartlett test (Zar 1999),

which is another test that checks the same property.

With respect to the independence condition, Demšar

suggests in (Demšar 2006) that independency is not truly

verified in 10 fcv (a portion of samples is used either

for training and testing in different partitions). In the

Table 5 Average of interpretability measures of GBML algorithms

Data-set Size ANT

Pitts-GIRLA XCS GASSIST-ADI HIDER Pitts-GIRLA XCS GASSIST-ADI HIDER

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

bup 30.00 0.00 2400.62 198.03 16.84 6.20 5.56 1.05 2.96 0.16 2.31 0.28 3.53 0.46 5.29 0.36

cle 40.00 0.00 4594.96 109.62 10.76 4.54 22.30 2.28 6.09 0.27 4.15 0.17 3.28 0.92 5.75 0.24

eco 40.00 0.00 2321.02 147.56 6.32 1.45 8.66 1.10 3.52 0.24 2.06 0.17 1.69 0.40 5.39 0.39

gla 20.00 0.00 3254.32 155.87 8.52 2.51 22.38 2.43 3.96 0.32 2.86 0.23 2.30 0.64 8.44 0.20

hab 10.00 0.00 1181.52 360.75 7.92 3.25 2.26 0.66 1.53 0.23 1.31 0.25 1.81 0.48 1.93 0.25

iri 20.00 0.00 547.08 105.77 4.08 0.27 3.00 0.00 1.91 0.19 1.19 0.14 0.91 0.21 2.26 0.41

mon 20.00 0.00 283.78 95.72 5.50 0.61 6.26 4.15 2.73 0.23 1.23 0.12 1.27 0.95 3.12 0.99

new 20.00 0.00 1037.00 133.42 5.42 1.01 3.34 0.52 2.17 0.21 1.57 0.16 1.52 0.29 4.35 0.41

pim 10.00 0.00 3576.62 150.34 15.34 4.61 8.84 2.00 3.04 0.42 3.17 0.16 3.50 0.63 7.20 0.38

veh 20.00 0.00 5211.18 56.17 11.68 3.92 46.86 4.59 7.77 0.42 5.14 0.14 3.19 0.65 17.36 0.16

vow 20.00 0.00 4284.34 141.49 11.92 4.44 114.50 4.55 5.60 0.43 2.04 0.08 2.15 0.54 9.93 0.11

win 20.00 0.00 4098.70 347.37 4.30 0.54 27.50 2.53 5.75 0.41 2.83 0.18 1.74 0.35 12.79 0.11

wis 50.00 0.00 708.90 78.20 5.92 1.35 2.12 0.33 4.46 0.23 2.11 0.14 3.19 0.72 3.46 0.59

yea 20.00 0.00 3608.44 221.66 8.38 2.17 46.12 8.27 3.67 0.31 2.29 0.21 2.37 0.48 6.07 0.12

AVG 24.29 0.00 2650.61 164.43 8.78 2.70 22.84 2.46 3.94 0.29 2.45 0.17 2.32 0.55 6.67 0.34
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following, we show a normality analysis by using SW and

DP tests, together with a heteroscedasticity analysis by

using a Levene test.

4.2 Analysis of the conditions for a safe

use of parametric tests

We apply the two tests of normality (SW and DP)

presented above by considering a level of significance

a = 0.05 (we have employed the statistical software

package SPSS). Tables 6 and 7 show the results in

classification rate and kappa measures, respectively.

Tables 8 and 9 show the results in size and ANT measures,

respectively. The symbol ‘‘*’’ indicates that the normality

condition is not satisfied and the value in brackets is the p

value needed for rejecting the normality hypothesis.

As we can observe in the run of the two tests of

normality, we can declare that the conditions needed for

the application of parametric tests are not fulfilled in

some cases. The normality condition is not always satis-

fied although the size of the sample of results would be

large enough (50 in this case). A main factor that influ-

ences this condition seems to be the nature of the

problem, since there exist some problems in which it is

never satisfied, such as in wine and wisconsin problems in

both classification rate and kappa measures, and the

general trend is not predictable. In addition, the results

offered by Pitts-GIRLA are very distant to a normal

shape. The measure which yields less rejections of the

normality condition is ANT.

In relation to the heteroscedasticity study, Table 10

shows the results by applying a Levene test, where the

symbol ‘‘*’’ indicates that the variances of the distributions

of the different algorithms for a certain function are not

homogeneous (the null hypothesis is rejected).

The homoscedasticity property is even more difficult to

be fulfilled, since the variances associated to each problem

also depend on the algorithm’s results, that is, the capacity

of the algorithms for offering similar results with random

seeds variations. This fact also influences that an analysis

of performance of GBML algorithms carried out through

parametric statistical treatment could lead to erroneous

conclusions.

4.3 Case studies of the normality property

We present two case studies of the normality property

considering the sample of results obtained by an GBML

method on a data-set. Figs. 1 and 2 show different exam-

ples of graphical representations of histograms and Q-Q

graphics. A histogram represents a statistical variable by

using bars, so that the area of each bar is proportional to

the frequency of the represented values. A Q-Q graphicT
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represents a confrontation between the quartiles from data

observed and those from the normal distribution.

In Fig. 1 we observe a typical case of absolute lack of

normality. Figure 2 illustrates an example in which the

normality hypothesis is accepted as well by the two tests

used.

5 Non-parametric tests for comparing two

algorithms in multiple data-set analysis

As we introduced previously, the obtention of results in a

single data-set analysis when using GBML algorithms is a

relatively easy task, due to the fact that new results can be

Table 7 Normality condition in Cohen’s kappa

bup cle eco gla hab iri mon new pim veh vow win wis yea

Shapiro-Wilk

Pitts-GIRLA * (0.00) * (0.02) * (0.00) (0.79) * (0.00) * (0.00) * (0.00) * (0.04) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)

XCS (0.65) (0.11) (0.37) * (0.00) * (0.01) * (0.00) * (0.00) * (0.00) * (0.04) (0.17) (0.30) * (0.00) * (0.00) (0.51)

GASSIST (0.30) * (0.03) (0.47) (0.32) (0.77) * (0.00) * (0.00) * (0.01) * (0.01) (0.98) (0.32) * (0.00) (0.07) (0.14)

HIDER (0.61) (0.42) (0.21) * (0.00) * (0.01) * (0.00) * (0.00) * (0.00) * (0.01) (0.23) (0.56) * (0.00) * (0.00) (0.20)

D’Agostino-Pearson

Pitts-GIRLA * (0.00) (0.49) * (0.00) (0.58) * (0.00) (0.11) * (0.00) (0.80) * (0.00) * (0.01) * (0.01) * (0.00) * (0.00) * (0.00)

XCS (0.54) (0.41) (0.72) (0.06) * (0.03) (0.06) * (0.00) * (0.00) (0.27) (0.32) (0.40) * (0.01) * (0.04) (0.35)

GASSIST (0.16) (0.10) (0.90) (0.21) (0.96) (0.09) * (0.00) (0.66) * (0.01) (0.95) (0.95) (0.18) (0.39) (0.19)

HIDER (0.33) (0.45) (0.43) (0.05) (0.21) * (0.00) * (0.00) * (0.02) * (0.00) (0.41) (0.38) * (0.00) * (0.01) (0.20)

Table 8 Normality condition in size

bup cle eco gla hab iri mon new pim veh vow win wis yea

Shapiro-Wilk

Pitts-GIRLA * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)

XCS (0.91) (0.53) (0.86) (0.89) * (0.00) (0.75) (0.26) (0.74) * (0.00) (0.42) (0.46) * (0.00) (0.56) (0.59)

GASSIST * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.01) (0.16) * (0.00) * (0.00) * (0.00) (0.13)

HIDER * (0.00) (0.16) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.04) (0.46) (0.84) (0.21) * (0.00) (0.10)

D’Agostino-Pearson

Pitts-GIRLA * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)

XCS (0.67) (0.17) (0.86) (0.84) * (0.00) (0.76) (0.27) (0.47) * (0.00) (0.38) (0.22) * (0.00) (0.52) (0.76)

GASSIST * (0.01) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) (0.68) (0.54) * (0.03) (0.43) * (0.04) * (0.00) * (0.00) (0.21)

HIDER (0.86) (0.61) (0.47) * (0.00) (0.23) * (0.00) (0.10) * (0.01) (0.98) (0.47) (0.80) (0.37) * (0.00) (0.21)

Table 9 Normality condition in ANT

bup cle eco gla hab iri mon new pim veh vow win wis yea

Shapiro-Wilk

Pitts-GIRLA (0.83) (0.13) (0.10) (0.50) (0.26) (0.27) * (0.00) (0.12) (0.20) (0.51) (0.96) (0.32) * (0.03) (0.39)

XCS (0.15) (0.67) (0.18) (0.10) (0.55) (0.64) (0.86) (0.23) (0.73) (0.67) (0.43) (0.46) (0.68) (0.17)

GASSIST (0.85) * (0.04) * (0.01) * (0.00) (0.19) * (0.00) * (0.00) * (0.01) * (0.00) (0.27) * (0.00) (0.09) (0.58) (0.38)

HIDER * (0.01) (0.22) * (0.00) * (0.01) * (0.00) * (0.01) * (0.00) * (0.04) * (0.01) (0.26) (0.05) (0.74) * (0.00) (0.70)

D’Agostino-Pearson

Pitts-GIRLA (0.73) (0.05) * (0.04) (0.63) (0.84) (0.39) (0.07) (0.38) (0.41) (0.88) (0.84) (0.39) * (0.00) (0.33)

XCS * (0.03) (0.57) (0.20) (0.23) (0.26) (0.67) (0.89) (0.34) (0.46) (0.50) (0.67) (0.56) (0.61) (0.18)

GASSIST (0.88) * (0.00) * (0.00) * (0.00) (0.13) * (0.00) * (0.00) * (0.01) * (0.01) (0.05) * (0.00) (0.69) (0.57) (0.72)

HIDER * (0.00) (0.18) * (0.00) * (0.00) (0.76) * (0.00) (0.09) (0.61) * (0.00) (0.69) (0.18) (0.63) (0.27) (0.72)
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yielded in new runs of the algorithms. In spite of this fact, a

sample of 50 results does not always verified the necessary

conditions for applying parametric tests, as we could see in

the previous section.

On the other hand, other ML approaches are not sto-

chastic and it is not possible to obtain a larger sample of

results. This fact makes difficult the comparison between

GBML methods and deterministic ML algorithms, given

that the sample of results could not be large enough or there

is a necessity for using procedures which can operate with

samples of different size.

The authors are usually familiarized with parametric

and non-parametric tests for pairwise comparisons.

GBML approaches have been compared through para-

metric tests by means of paired t tests (Aguilar-Ruiz et al.

2000; Anglano and Botta 2002; Bernadó-Mansilla and Ho

2005; Guan and Zhu 2005). In some cases, the t test is

accompanied with the non-para-metric Wilcoxon test

applied over multiple data-sets (Bernadó-Mansilla and

Garrell 2003; Tulai and Oppacher 2004). The use of these

types of tests is correct when we are interested in finding

the differences between two methods, but they must not

be used when we are interested in comparisons that

include several methods. In the case of repeating pairwise

comparisons, there is an associated error that grows

agreeing with the number of comparisons done, called the

family-wise error rate (FWER), defined as the probability

of at least one error in the family of hypotheses. For

solving this problem, some authors use the Bonferroni

correction for applying paired t-test in their works (Tan

et al. 2006; Bacardit 2004).

Our interest lies in presenting a methodology for ana-

lysing the results offered by the algorithms in a certain

study of GBML, by using non-parametric tests in a mul-

tiple data-set analysis. Furthermore, we want to remark the

possibility of comparison with other deterministic ML

algorithms. Non-parametric tests could be applied to small

sample of data and their effectiveness have been proved in

gla
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Table 10 Heteroscedasticity condition by using a Levene test

bup cle eco gla hab iri mon new pim veh vow win wis yea

Classification rate (0.16) * (0.00) (0.77) (0.26) * (0.01) (0.53) * (0.00) (0.36) (0.05) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)

Cohen’s kappa (0.53) * (0.02) (0.66) (0.17) * (0.02) (0.53) * (0.00) (0.36) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)

Size * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)

ANT * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00) * (0.00)
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complex experiments. They are preferable to an adjustment

of data with transformations or to a discarding of certain

extreme observations (outliers) (Koch 1970).

This section is devoted to describing a non-parametric

statistical procedure for performing pairwise comparisons

between two algorithms, which is the Wilcoxon sign-

ed-rank test, Section 5.1; and to show the operation of this

test in the presented case study, Section 5.2.

5.1 Wilcoxon signed-ranks test

This is the analogous of the paired t-test in non-parame-

tric statistical procedures; therefore, it is a pairwise test

that aims to detect significant differences between two

sample means, that is, the behavior of two algorithms.

Let di be the difference between the performance scores

of the two classifiers on ith out of Nds data-sets. The

differences are ranked according to their absolute values;

average ranks are assigned in case of ties. Let R? be the

sum of ranks for the data-sets on which the first algo-

rithm outperformed the second, and R- the sum of ranks

for the opposite. Ranks of di = 0 are split evenly among

the sums; if there is an odd number of them, one is

ignored:

Rþ ¼
X

di [ 0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ

R� ¼
X

di\0

rankðdiÞ þ
1

2

X

di¼0

rankðdiÞ

Let T be the smaller of the sums, T = min(R?, R-). If T

is less than or equal to the value of the distribution of

Wilcoxon for Nds degrees of freedom (Zar 1999, Table

B.12), the null hypothesis of equality of means is rejected.

Wilcoxon signed ranks test is more sensible than the

t-test. It assumes commensurability of differences, but only

qualitatively: greater differences still count more, which is

probably desired, but the absolute magnitudes are ignored.

From the statistical point of view, the test is safer since it

does not assume normal distributions. Also, the outliers

(exceptionally good/bad performances on a few data-sets)

have less effect on the Wilcoxon than on the t test. The

Wilcoxon test assumes continuous differences di, therefore

they should not be rounded to one or two decimals, since

this would decrease the power of the test due to a high

number of ties.

When the assumptions of the paired t-test are met,

Wilcoxon signed-ranks test is less powerful than the

pai-red t test. On the other hand, when the assumptions are

violated, the Wilcoxon test can be even more powerful than

the t test. This allows us to apply it over the means obtained

by the algorithms in each data-set, without any assumptions

about the sample of results obtained.

5.2 A case study in GBML: performing pairwise

comparisons

In the following, we will perform the statistical analysis by

means of pairwise comparisons by using the results of

performance measures obtained by the algorithms descri-

bed in Sect. 2.

In order to compare the results between two algorithms

and to stipulate which one is the best, we can perform a

Wilcoxon signed-rank test for detecting differences in both

means. This statement must be enclosed by a probability of

error, that is the complement of the probability of reporting

that two systems are the same, called the p value (Zar

1999). The computation of the p value in the Wilcoxon

distribution could be carried out by computing a normal

approximation (Sheskin 2006). This test is well known and

it is usually included in standard statistics packages (such

as SPSS, R, SAS, etc.).

Table 11 Wilcoxon test applied over the all possible comparisons

between the five algorithms in classification rate

Comparison Classification rate

R? R- p value

Pitts-GIRLA-XCS 0.5 104.5 0.001

Pitts-GIRLA-GASSIST-ADI 0 105 0.001

Pitts-GIRLA-HIDER 1 104 0.001

Pitts-GIRLA-CN2 6 99 0.004

XCS-GASSIST-ADI 89 16 0.022

XCS-HIDER 53 52 0.975

XCS-CN2 78 27 0.109

GASSIST-ADI-HIDER 20 85 0.041

GASSIST-ADI-CN2 52 53 0.975

HIDER-CN2 100 5 0.003

Table 12 Wilcoxon test applied over the all possible comparisons

between the five algorithms in kappa

Comparison Cohen’s kappa

R? R- p value

Pitts-GIRLA-XCS 0.5 104.5 0.001

Pitts-GIRLA-GASSIST-ADI 0 105 0.001

Pitts-GIRLA-HIDER 0 105 0.001

Pitts-GIRLA-CN2 10 95 0.008

XCS-GASSIST-ADI 74 31 0.177

XCS-HIDER 51 54 0.925

XCS-CN2 78 27 0.109

GASSIST-ADI-HIDER 28 77 0.124

GASSIST-ADI-CN2 60 45 0.638

HIDER-CN2 96 9 0.006
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Tables 11 and 12 show the results obtained in all

possible comparisons among the five algorithms considered

in the study, in classification rate and kappa respectively.

We stress in bold the winner algorithm in each row when

the p value associated is below 0.05.

The comparisons performed in this study are inde-

pendent, so they never have to be considered in a whole.

If we try to extract from the previous tables a conclusion

which involves more than one comparison, we are losing

control on the FWER. For instance, the statement:

‘‘HIDER algorithm obtains a classification rate better

than Pitts-GIRLA and GASSIST-ADI algorithms with a p

value lower than 0.05’’ is incorrect, since we do not

prove the control of the FWER. The HIDER algorithm

really outperforms Pitts-GIRLA and GASSIST-ADI

algorithms considering classification rate in independent

comparisons.

The true statistical signification for combining pairwise

comparisons is given by expression 5:

p ¼ PðReject H0jH0 trueÞ
¼ 1� PðAccept H0jH0 trueÞ
¼ 1� PðAccept Ak ¼ Ai; i ¼ 1; . . .; k � 1jH0 trueÞ

¼ 1�
Yk�1

i¼1
PðAccept Ak ¼ AijH0 trueÞ

¼ 1�
Yk�1

i¼1
½1� PðReject Ak ¼ AijH0 trueÞ�

¼ 1�
Yk�1

i¼1
ð1� pHi

Þ

ð5Þ

Wilcoxon test suggests the following information:

– Regarding classification rate, the best algorithms are

XCS and HIDER. In the comparison between them,

XCS obtains the most favourable ranking, but its

difference with respect to HIDER is rather small, so

they are statistically equal in classification rate. Nev-

ertheless, HIDER independently outperforms CN2,

whereas XCS does not.

– Regarding kappa, the best algorithms are XCS, HIDER

and GASSIST-ADI. The null hypothesis of equality of

means is rejected when Pitts-GIRLA takes part in a

comparison. In their comparison, HIDER obtains the

best ranking and it outperforms CN2 algorithm (XCS

and GASSIST-ADI do not).

6 Non-parametric tests for multiple comparisons

among more than two algorithms

When a new GBML algorithm proposal is developed, it

could be interesting to compare it with previous approa-

ches. Making pairwise comparisons allows us to conduct

this analysis, but the experiment wise error can not be

previously controlled. Furthermore, a pairwise comparison

is not influenced by any external factor, whereas in a

multiple comparison, the set of algorithms chosen can

determine the results of the analysis.

Multiple comparison procedures are designed for

allowing us to fix the FWER before performing the anal-

ysis and for taking into account all the influences that can

exist within the set of results for each algorithm. Following

the same structure as in the previous section, the basic and

advanced non-parametrical tests for multiple comparisons

are described in Sect. 6.1 and their application on the case

study is conducted in Sect. 6.2.

6.1 Friedman test and post-hoc tests

In order to perform a multiple comparison, it is necessary

to check whether all the results obtained by the algorithms

present any inequality. In the case of finding it, then we can

know, by using a post-hoc test, what algorithms partners’

average results are dissimilar. In the following, we describe

the non-parametric tests used.

– The first one is the Friedman test (Sheskin 2006), which

is a non-parametric test equivalent to the repeated-

measures ANOVA. Under the null-hypothesis, it states

that all the algorithms are equivalent, so a rejection of this

hypothesis implies the existence of differences among

the performance of all the algorithms studied. After this,

a post-hoc test could be used in order to find whether the

control or proposed algorithm presents statistical differ-

ences with regards to the remaining methods in the

comparison. The simplest of them is the Bonferroni-

Dunn test, but it is a very conservative procedure and we

can use more powerful tests that control the FWER and

reject more hypothesis than the Bonferroni-Dunn test;

for example the Holm method (Holm 1979).

The working mode of the Friedman test is described as

follows: It ranks the algorithms for each data-set

separately, the best performing algorithm getting the

rank of 1, the second best rank 2, and so on. In case of ties

average ranks are assigned.

Let rj
i be the rank of the jth of k algorithms on the ith of

Nds data-sets. The Friedman test compares the average

ranks of algorithms, Rj ¼ 1
Nds

P
i rj

i . Under the null-

hypothesis, which states that all the algorithms are

equivalent and so their ranks Rj should be equal, the

Friedman statistic:

v2
F ¼

12Nds

kðk þ 1Þ
X

jR2
j �

kðk þ 1Þ2

4

" #

is distributed according to vF
2 with k - 1 degrees of

freedom, when Nds and k are big enough.

– The second one of them is Iman and Davenport test

(Iman and Davenport 1980), which is a non-parametric
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test, derived from the Friedman test, less conservative

than the Friedman statistic:

FF ¼
ðNds � 1Þv2

F

NdsðK � 1Þ � v2
F

which is distributed according to the F-distribution

with k - 1 and (k - 1)(Nds - 1) degrees of freedom.

Statistical tables for critical values can be found at

(Sheskin 2006; Zar 1999).

– Bonferroni–Dunn test: if the null hypothesis is rejected

in any of the previous tests, we can continue with

Bonferroni–Dunn procedure. It is similar to Dunnet test

for ANOVA and it is used when we want to compare a

control algorithm opposite to the remainder. The

quality of two algorithms is significantly different if

the corresponding average of rankings is at least as

great as its critical difference (CD).

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6N

r

:

The value of qa is the critical value for a multiple non-

parametric comparison with a control (Zar 1999, Table

B.16).

– Holm test (Holm 1979): it is a multiple comparison

procedure that can work with a control algorithm and

compares it with the remaining methods. The test

statistics for comparing the i-th and j-th method using

this procedure is:

z ¼ ðRi � RjÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk þ 1Þ

6Nds

s

The z value is used to find the corresponding probability

from the table of normal distribution, which is then

compared with an appropriate level of confidence a. In

Bonferroni-Dunn comparison, this a value is always

a/(k-1), but the Holm test adjusts the value for a in

order to compensate for multiple comparison and con-

trol the FWER.

The Holm test is a step-up procedure that sequentially

tests the hypotheses ordered by their significance. We

will denote the ordered p values by p1, p2,…, so that

p1 B p2 B _ B pk-1. The Holm test compares each pi

with a/(k - i), starting from the most significant p

value. If p1 is below a/(k - 1), the corresponding

hypothesis is rejected and we allow to compare p2 with

a/(k - 2). If the second hypothesis is rejected, the test

proceeds with the third, and so on. As soon as a certain

null hypothesis cannot be rejected, all the remain

hypotheses are retained as well.

– Hochberg procedure (Hochberg 1988): It is a step-up

procedure that works in the opposite direction to the

Holm method, comparing the largest p value with a, the

next largest with a/2 and so forth until it encounters a

hypothesis that it can reject. All hypotheses with

smaller p values are then rejected as well.

The post-hoc procedures described above allow us to

know whether or not a hypothesis of comparison of means

could be rejected at a specified level of significance a.

However, it is very interesting to compute the p value

associated to each comparison, which represents the lowest

level of significance of a hypothesis that results in a

rejection. In this manner, we can know whether two

algorithms are significantly different and we can also have

a metric of how different they are.

Next, we will describe the method used for computing

these exact p values for each test procedure, which are

called ‘‘adjusted p values’’ (Wright 1992).

– The adjusted p value for the Bonferroni–Dunn test (also

known as the Bonferroni correction) is calculated by

pBonf = (k - 1)pi.

– The adjusted p value for the Holm procedure is

computed by pHolm = (k - i)pi. Once computed all of

them for all hypotheses, it is not possible to find an

adjusted p value for the hypothesis i lower than for the

hypothesis j, j \ i. In this case, the adjusted p value for

hypothesis i is set to the same value as the one

associated to hypothesis j.

– The adjusted p value for the Hochberg method is

computed with the same formula as in the Holm

procedure, and the same restriction is applied in the

process, but in the opposite sense, that is, it is not

possible to find an adjusted p value for the hypothesis i

lower than for the hypothesis j, j [ i.

6.2 A case study in GBML: performing multiple

comparisons

This section presents the study of applying multiple com-

parisons procedures to the results of the case study

Table 13 Results of the Friedman and Iman–Davenport tests (a = 0.05)

Friedman Value Value in v2 p value Iman–Davenport Value Value in FF p value

Classification rate 28.957 9.487 \0.0001 13.920 2.55 \0.0001

Cohen’s kappa 26.729 9.487 \0.0001 11.871 2.55 \0.0001
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described above. We will use the results obtained in the

evaluation of the performance measures considered and we

will define the control algorithm as the best performing

algorithm (which obtains the lowest value of ranking,

computed through a Friedman test).

First of all, we have to test whether significant differ-

ences exist among all the mean values. Table 13 shows the

result of applying a Friedman and Iman–Davenport tests.

The table shows the Friedman and Iman–Davenport values,

vF
2 and FF, respectively, and it relates them with the

corresponding critical values for each distribution by using

a level of significance a = 0.05. The p value obtained is

also reported for each test. Given that the statistics of

Friedman and Iman–Davenport are clearly greater than

their associated critical values, there are significant

differences among the observed results with a level of

significance a B 0.05. According to these results, a post-

hoc statistical analysis is needed in the two cases.

Then, we will employ a Bonferroni-Dunn test to detect

significant differences for the control algorithm in each

measure. It obtains the values CD = 1.493 and CD = 1.34

for a = 0.05 and a = 0.10 respectively in the two mea-

sures considered. Figures 3 and 4 summarize the ranking

obtained by the Friedman test and draw the threshold of the

critical difference of Bonferroni–Dunn’ procedure, with the

two levels of significance mentioned above. They display a

graphical representation composed by bars whose height is

proportional to the average ranking obtained for each

algorithm in each measure studied. If we choose the

smallest of them (which corresponds to the best algorithm),

and we sum its height with the critical difference obtained

by the Bonferroni method (CD value), we represent a cut

line that goes through all the graphic. Those bars which are

higher than this cut line belong to the algorithms whose

performance is significantly worse than that of the control

algorithm.

We will apply more powerful procedures, such as Holm

and Hochbergs ones, for comparing the control algorithm

with the rest of algorithms. Table 14 shows all the adjusted

p values for each comparison which involves the control

algorithm. The p value is indicated in each comparison and

we stress in bold the algorithms which are worse than the

control, considering a level of significance a = 0.05.

Note that the results offered by the two most powerful

procedures, the Holm and Hochberg methods, are the same

in this case study. In practice, a Hochberg method is more

powerful than the Holm one, but this difference is rather

small (Shaffer 1995). In any case, the results here do not

coincide exactly with the results obtained with the use of a

Wilcoxon test in Sect. 5.2:

Fig. 3 Bonferroni–Dunn graphic for classification rate

Fig. 4 Bonferroni–Dunn graphic for kappa

Table 14 Adjusted p values for the comparison of the control algorithm in each measure with the remaining algorithms (Holm and Hochberg

tests)

i Algorithm Unadjusted p pBonf pHolm pHoch

Classification rate (XCS is the control)

1 Pitts-GIRLA 1.745 9 10-6 6.980 9 10-6 6.980 9 10-6 6.980 9 10-6

2 CN2 0.01428 0.05711 0.04283 0.04283

3 GASSIST-ADI 0.02702 0.10810 0.05405 0.05405

4 HIDER 0.67571 1.00000 0.67571 0.67571

Cohen’s kappa (XCS is the control)

1 Pitts-GIRLA 5.576 9 10-6 2.230 9 10-5 2.230 9 10-5 2.230 9 10-5

2 CN2 0.01977 0.07908 0.05931 0.05931

3 GASSIST-ADI 0.13517 0.54067 0.27033 0.27033

4 HIDER 0.76509 1.00000 0.76509 0.76509
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– In classification rate, the difference between XCS and

HIDER is higher in Holm and Hochberg tests than in

the Wilcoxon one. Anyway, no testing procedure is

able to distinguish one of them as the best.

– In Cohen’s kappa, according to the Holm and Hochberg

procedures, the difference between XCS and HIDER is

also higher than according to the Wilcoxon test.

After conducting the multiple comparison analysis, we

can observe that:

– By using the classification rate measure, XCS is

significantly better than Pitts-GIRLA and CN2, but it

behaves equally to GASSIST-ADI and HIDER.

– Considering the kappa measure, only Pitts-GIRLA

obtains the worst results with respect to the remaining

algorithms. The other four GBML algorithms do not

differ significantly.

– HIDER loses performance when we evaluate the results

with kappa, whereas GASSIST-ADI achieves a better

kappa rate (Figs. 3 and 4). The latter seems to be more

robust against randomness yielded by the data.

In relation to the sample size (number of data-sets when

performing a Wilcoxon or Friedman tests in multiple data-

set analysis), there are two main aspects to be determined.

Firstly, the minimum sample considered acceptable for

each test needs to be stipulated. There is no established

agreement about this specification. In our case, the use of a

sample as large as possible is preferable, because the power

of the statistical tests (defined as the probability that the

test will reject a false null hypothesis) will increase. Fur-

thermore, in a multiple data-set analysis, the increase of the

sample size depends on the availability of new data-sets.

Secondly, we have to study how the results are expected to

vary if there was a larger sample size available. In all

statistical tests used for comparing two or more samples,

the increasing of the sample size benefits the power of the

test. As a rule of thumb, the number of data-sets should be

greater than 2 k, where k is the number of methods to be

compared.

7 Analysing interpretability of models

The interpretability of the rule sets obtained will be eval-

uated by means of the two measures described in Sect. 3.2,

size and ANT. We will aggregate these two measures in

one, which will represent the complexity of the rule set. It

measures the average complexity of the rule set taking into

account the number of rules and the average number of

antecedents per rule:

complexity ¼ size � ANT :

By using the data contained in Sect. 3.3 at Table 5, we

can conduct a statistical study of the complexity of the rule

Fig. 5 Bonferroni–Dunn graphic measuring interpretability

Table 15 Adjusted p values for the comparison of complexity of rules (Holm and Hochberg tests)

Interpretability (GASSIST-ADI is the control)

i Algorithm Unadjusted p pBonf pHolm pHoch

1 XCS 2.657 9 10-8 7.972 9 10-8 7.972 9 10-8 7.972 9 10-8

2 Pitts-GIRLA 0.01283 0.03848 0.02565 0.02565

3 HIDER 0.05704 0.17112 0.05704 0.05704

Table 16 Examples of rules in iris data-set

Algorithm Example of rule

Pitts-GIRLA IF sepalLength = Don’t Care AND sepalWidth = Don’t Care AND petalLength = [4.947674287707237,5.965516026050438]

AND petalWidth = Don’t Care THEN Class = Iris-virginica.

XCS (normalized) IF sepalLength = [0.0,1.0] AND sepalWidth = [0.0, 1.0] AND petalLength = [0.3641094725703955, 1.0] AND

petalWidth = [0.0, 1.0] THEN Class = Iris-setosa

GASSIST-

ADI

IF petalLength = [1.0,5.071428571428571] ANDpetalWidth = [0.5363636363636364,1.6272727272727274] THEN

Class = Iris-versicolor

HIDER IF sepalLength = (..., 6.65] AND petalLength = (..., 6.7] AND petalWidth = (..., 0.75] THEN Class = iris-setosa

A study of statistical techniques and performance measures 973

123



sets obtained in a multiple data-sets analysis. In this study,

only multiple comparison procedures will be used.

Figure 5 shows a Bonferroni-Dunn graphic which

compares the complexity of the rule set and Table 15

displays the adjusted p values for all the multiple com-

parison procedures considered in this study.

As we can see, the two most powerful statistical pro-

cedures (Holm and Hochberg ones) are able to distinguish

the GASSIST-ADI algorithm as the one whose rule sets are

the most interpretable with a p = 0.05704 (a level of sig-

nificance a = 0.10 is required).

However, we have to be cautious with respect to the

concept of interpretability. GBML algorithms can pro-

duce different types of rules or different ways for

reading or interpreting the rules. For example, the four

algorithms used in this paper produce rule sets with

different properties. In Table 16 we show an example of

rule for each algorithm, considering the iris data-set in

the examples):

– Pitts-GIRLA yields a set of conjunctive rules, with

possibility of ‘‘don’t care’’ values, allowing that the

number of antecedents may change in different rules.

The classification of a new example implies searching

those rules whose antecedent is compatible with it and

to determine the class agreeing with the maximal

number of rules of the same consequent. If no rules

have been found, the example is not classified.

– XCS also uses conjunctive rules, with a generality

index in each attribute. If the generality index covers

the complete domain of a certain attribute, then it

obtains a ‘‘don’t care’’ value. In order to classify a new

example, the rules that have a positive match with it are

chosen and each one of them votes according to their

fitness and consequent.

– GASSIST-ADI uses CNF type rules, where disjunc-

tions can coexist with conjunctions. The matching

process is done by means of decision lists, in which the

rules are evaluated from the top of the list to the

bottom, until the antecedent matches the example to be

classified. There always is a default rule, so no

examples remain unclassified.

– HIDER yields hierarchical rules similar to decision lists

in the matching process. Some rules may be included

within parent rules and the rules are only formed by

conjunctions. The rules allow to define open extremes

of real intervals and the rule set usually tends to cover

all the space of solutions.

Given the differences among the four algorithms,

taking into consideration the characteristics of the rules

and the matching techniques, the comparison of inter-

pretability measures must be cautiously taken. Although

the results indicate that GASSIST-ADI may produce the

most interpretable rule sets, its type of rule could be

considered less understandable than the ones yielded by

Pitts-GIRLA algorithm. Furthermore, it uses decision

lists, so a certain rule (except the first in the list)

depends on previous rules. On the other hand, a concept

could not be learned because it is being considered in

the default rule. With regard to HIDER, although both

use the same matching technique, the latter can use open

intervals in the rules.

The choice of the most interpretable type of rule or rule

set is a relative task because it may depend on the use-

fulness and purpose of the model. This question is out of

the scope of the paper, but we want to point out that a

statistical analysis of the interpretability of rule sets could

be valid when the circumstances permit so.

8 Conclusions

In this paper we have studied the use of statistical tech-

niques in the analysis of the behaviour of GBML

algorithms in classification problems, analysing the use of

parametric and non-parametric statistical tests.

We have raised the necessity of applying non-parame-

tric tests in the use of GBML algorithms in classification,

due to the fact that the initial conditions that guarantee the

reliability of the parametric tests are not satisfied in a single

data-set analysis.

Non-parametric tests can be used in multiple data-set

analysis and allow the comparison between GBML meth-

ods and deterministic algorithms. We have shown how to

use a Friedman, Iman–Davenport, Bonferroni–Dunn,

Holm, Hochberg, and Wilcoxon tests; which on the whole,

are a good tool for the analysis of algorithms’ performance.

We have employed these procedures to carry out a com-

parison in a case study composed by an experimentation

that involves several data-sets and 4 well-known GBML

algorithms.

We have checked that different statistical results are

obtained when we consider different accuracy measures,

such as classification rate and Cohen’s kappa. In inter-

pretability analysis, the results cannot predict what is the

algorithm which yields the easiest models, due to the fact

that the rule sets are different in structure and there are

many ways of representing knowledge.

As main conclusion on the use of non-parametric sta-

tistical methods for analysing results, we have

emphasized the use of the most appropriate test depending

on the circumstances and type of comparison. Specifi-

cally, we have recommended the use of the Holm and

Hochberg procedures since they are the most powerful

statistical techniques for multiple comparisons.
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A genetic algorithms in classification

Here we will give a wider description of all the methods

employed in our work, regarding their main components,

structure and operation of each one of them.

For more details about the methods explained here,

please refer to the corresponding references.

Pitts-GIRLA algorithm. The Pittsburgh genetic interval

rule learning algorithm (Pitts-GIRLA) (Corcoran and

Sen 1994) is a GBML method which makes use of the

Pittsburgh approach in order to perform a classification

task. Two real variables indicate the minimum and maxi-

mum value of the attribute, where a ‘‘don’t care’’ condition

may occur if the maximum value is lower than the mini-

mum value.

This algorithm employs three different operators:

modified simple (one point) crossover, creep mutation and

simple random mutation.

XCS algorithm. XCS (Wilson 1995) is a LCS that

evolves online a set of rules that describe the feature space

accurately. In the following we will present in detail the

different components of this algorithm:

1. Interaction with the environment: In keeping with

the typical LCS model, the environment provides as

input to the system a series of sensory situations

r(t) [ {0,1}L, where L is the number of bits in each

situation. In response the system executes actions

a(t) [ {a1,…,an} upon the environment. Each action

results in a scalar reward q(t).

2. A classifier in XCS: XCS keeps a population of

classifiers which represent its knowledge about the

problem. Each classifier is a condition-action-predic-

tion rule having the following parts: the condition

C [ {0,1,#}L, the action A [ {a1,…,an} and the pre-

diction p. Furthermore, each classifier keeps certain

additional parameters such as the prediction error e, the

fitness F, the experience exp, the time stamp ts, the

action set size as and the numerosity.

3. The different sets: There are four different sets that

need to be considered in XCS: the population [P], the

match set [M], the action set [A] and the previous

action set [A-1].

The result of this algorithm is that the knowledge is

represented by a set of rules or classifiers with a certain

fitness. When classifying unseen examples, each rule that

matches the input votes according its prediction and fitness.

The most voted class is chosen to be the output.

GASSIST algorithm. Genetic Algorithms based claSSI-

fier sySTem (GASSIST) (Bacardit and Garrell 2007) is a

Pittsburgh style classifier system based on GABIL (De

Jong et al. 1993) from where it has taken the semantically

correct crossover operator. The main features of this

classifier system are presented as follows:

1. General operators and policies

– Matching strategy The matching process follows a

‘‘if ... then ... else if ... then ...’’ structure, usually

called decision lists (Rivest 1987).

– Mutation operators When an individual is selected

for mutation a random gene is chosen inside its

chromosome to be mutated.

2. Control of the individuals length: This control is

achieved using two different operators:

– Rule deletion: This operator deletes the rules of the

individuals that do not match any training example.

– Selection bias using the individual size: Tourna-

ment selection is used, where the criterion of the

tournament is given by an operator called ‘‘hier-

archical selection’’, defined as follows:

– If |accuracya–accuracyb| \ threshold then:

• If lengtha \ lengthb then a is better than b.

• If lengtha [ lengthb then b is better than a.

• If lengtha = lengthb then we will use the

general case.

– Otherwise, we use the general case: we select

the individual with higher fitness.

3. Knowledge representations

– Rule Representations for symbolic or discrete

attributes: It uses the GABIL (De Jong et al.

1993) representation for this kind of attributes.

– Rule Representations for real-valued attributes For

GASSIST-ADI, the representation is based on the

Adaptive Discretization Intervals rule representa-

tion (Bacardit and Garrell 2003; Bacardit 2004).

HIDER algorithm. HIerarchical DEcision Rules

(HIDER) (Aguilar-Ruiz et al. 2000), produces a hierar-

chical set of rules, which may be viewed as a Decision List.

In order to extract the rule-list a real-coded GA is

employed in the search process. The elements of this

procedure are described below.
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1. Coding: Each rule is represented by an individual

(chromosome), where two genes define the lower and

upper bounds of the rule attribute.

2. Algorithm: The algorithm is a typical sequential

covering GA. It chooses the best individual of the

evolutionary process, transforming it into a rule which

is used to eliminate data from the training file

(Venturini 1993).

Initially, the set of rules R is empty, but in each

iteration a rule is included in R. In each iteration, the

training file is reduced, eliminating those examples

that have been covered by the description of the rule r,

independently of its class.

The GA main operators are defined in the following:

(a) Initialization: First, an example is randomly selected

from the training file for each individual of the

population. Afterwards, an interval to which the

example belongs is obtained.

(b) Crossover: The crossover works as follows: let [li
j, ui

j]

and [li
k, ui

k] be the intervals of two parents, j and k, for

the same attribute i. From these parents one child is

generated by selecting values that satisfy the expres-

sion: l [ [min(li
j, li

k), max(li
j, li

k)] and u [ [min(ui
j,

ui
k),max(ui

j, ui
k)].

(c) Mutation: a small value is subtracted or added,

depending on whether it is the lower or the upper

boundary, respectively.

(d) Fitness function: The fitness function f considers a

two-objective optimization, trying to maximize the

number of correctly classified examples and to

minimize the number of errors.
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Alcalá-Fdez J, Sánchez L, Garcı́a S, del Jesus MJ, Ventura S, Garrell

JM, Otero J, Romero C, Bacardit J, Rivas VM, Fernández JC,

Herrera F (2009) KEEL: a software tool to assess evolutionary

algorithms to data mining problems. Soft Comput 13(3):307–318

Alpaydin E (2004) Introduction to machine learning, vol 452. MIT

Press, Cambridge

Anglano C, Botta M (2002) NOW G-Net: learning classification

programs on networks of workstations. IEEE Trans Evol Comput

6(13):463–480

Asuncion A, Newman DJ (2007) UCI Machine Learning Repository.

University of California, School of Information and Computer

Science, Irvine, CA. http://www.ics.uci.edu/*mlearn/ML

Repository.htm

Bacardit J (2004) Pittsburgh genetic-based machine learning in the

data mining era: representations, generalization and run-time,

Dept. Comput. Sci., University Ramon Llull, Barcelona, Spain

Bacardit J, Garrell JM (2003) Evolving multiple discretizations with

adaptive intervals for a pittsburgh rule-based learning classifier

system. In: Proceedings of the genetic and evolutionary compu-

tation conference (GECCO’03), vol 2724. LNCS, Germany,

pp 1818–1831

Bacardit J, Garrell JM (2004) Analysis and improvements of the

adaptive discretization intervals knowledge representation. In:

Proceedings of the genetic and evolutionary computation

conference (GECCO’04), vol 3103. LNCS, Germany, pp 726–

738

Bacardit J, Garrell JM (2007) Bloat control and generalization

pressure using the minimum description length principle for

Pittsburgh approach learning classifier system. In: Kovacs T,
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