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Abstract

Various prototype reduction schemes have been reported in the literature. Foremost among these are the prototypes for
nearest neighbor (PNN), the vector quantization (VQ), and the support vector machines (SVM) methods. In this paper, we
shall show that these schemes can be enhanced by the introduction of a post-processing phase that is related, but not identical
to, the LVQ3 process. Although the post-processing with LVQ3 has been reported for the SOM and the basic VQ methods, in
this paper, we shall show that an analogous philosophy can be used in conjunction with the SVM and PNN rules. Our essential
modi;cation to LVQ3 ;rst entails a partitioning of the respective training sets into two sets called the Placement set and the
Optimizing set, which are instrumental in determining the LVQ3 parameters. Such a partitioning is novel to the literature.
Our experimental results demonstrate that the proposed enhancement yields the best reported prototype condensation scheme
to-date for both arti;cial data sets, and for samples involving real-life data sets.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. Overview

In statistical pattern recognition, the nearest neighbor
(NN) or the k-nearest neighbor (k-NN) classi;ers are
widely used classi;cation rules. Each class is described
using a set of sample prototypes, and the class of an un-
known vector is decided based on the identity of the closest
neighbor(s) which are found among all the prototypes [1].
This rule is simple, and yet it is one of the most eBcient
classi;cation rules in practice.
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The application of the classi;er, however, often suHers
from the computational complexity caused by the large num-
ber of distance computations, especially as the size increases
in high-dimensional problems [1,2]. Strategies that have
been proposed to solve this problem can be summarized into
the three following categories: (1) reducing the size of the
design set without sacri;cing the performance, (2) acceler-
ating the computation by eliminating the necessity of calcu-
lating superIuous distances, and (3) increasing the accuracy
of the classi;ers designed with the set of limited samples.

The ;rst solution, which is the main focus of this paper,
is to reduce the number of training vectors while simulta-
neously insisting that the classi;ers built on the reduced de-
sign set perform as well, or nearly as well, as the classi;ers
built on the original design set. This idea has been explored
for various purposes, and has resulted in the development
of many algorithms. It is interesting to note that Bezdek
et al. [3], who have composed an excellent survey of the
;eld, report that there are “zillions!” of methods for ;nding
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prototypes (see [3, p. 1459]). Our work does not compete
with theirs—it merely supplements their results with a hy-
brid scheme which combines the salient features of a few
families of the reported schemes.

Rather than reembark on a survey of the ;eld, we men-
tion here a few representative methods of the “zillions” that
have been reported. One of the ;rst of its kind is the con-
densed nearest neighbor (CNN) rule [4]. The CNN, how-
ever, includes “interior” samples which can be eliminated
completely without changes in the performance. Accord-
ingly, other methods have been proposed successively, such
as the reduced nearest neighbor (RNN) rule [5], the proto-
types for nearest neighbor (PNN) classi;ers [6], the selec-
tive nearest neighbor (SNN) rule [7], two modi;cations of
the CNN [8], the edited nearest neighbor (ENN) rule [9],
and the non-parametric data reduction method [10]. Addi-
tionally, in Ref. [11], the vector quantization (VQ) tech-
nique was also reported as an extremely eHective approach
to data reduction.

The above approaches to the problem of obtaining a
smaller prototype set can be categorized into two groups by
considering whether or not they can create new prototypes,
or whether they, rather, merely select some of the existing
data points as the prototypes. The schemes reported in Refs.
[6,11,12] create new prototype vectors (and do not merely
select training samples) in such a way that these prototypes
represent all the vectors in the original set in the “best”
possible manner. The methods of Refs. [4,5,7–10] are those
in which the prototype vectors are merely selected. It has
been proven that the former are partially superior to the
latter [3,11].

In designing NN classi;ers, however, prototypes near the
boundary play more important roles than those which are
more interior in the feature space. In creating or selecting
the prototypes, therefore, the vector points near the bound-
ary have to be considered to be more signi;cant, and the
created prototypes need to be moved or adjusted towards
the classi;cation boundary so as to yield a higher perfor-
mance. The approach that we now present is based on this
philosophy, namely that of creating, and adjusting. Indeed,
we shall ;rst choose a reduced set of initial prototypes or
code-book vectors by any of the known methods, and then
learn their optimal positions with an LVQ3-type algorithm,
thus minimizing the average classi;cation error.

On the other hand, support vector machines (SVM) [13]
have a capability of extracting vectors that support the
boundary between the two classes, and they thus satisfac-
torily represent the global distribution structure. Also, the
learning algorithm can be easily expanded to nonlinear
problems by employing techniques involving kernel func-
tions. Thus, apart from the CNN, PNN, and VQ methods,
in this paper, we also argue that the SVM can be used as
a means of selecting initial prototype vectors, which are
subsequently operated on by LVQ3-type methods.

The paper is organized as follows: In Section 2, we brieIy
review representative prototype reduction methods. A com-

plete survey is impossible here—the interested reader would
;nd more comprehensive surveys in Refs. [2,3]. Section 3
shows how prototype reduction methods can be enhanced
using VQ-based (LVQ3) learning methods. Experiments
and discussions are provided in Section 4. Finally, the
conclusions are given in Section 5.

1.2. Contributions of the paper

The main contribution of this paper is the demonstration
that data condensation schemes that are of a “hybrid” sort
are superior to those which are based on a single philosophy.
Traditionally, data condensation rules utilize a variety of
methods such as the CNN, the PNN, the VQ and the SVM
philosophies. Also, the LVQ3 algorithm has been tradition-
ally used in conjunction with other VQ-type algorithms,
namely, the LVQ1 and LVQ2 modules to enhance classi-
;cation [15,16]. First of all, a minor contribution of this
paper is to present a marginal enhancement of the “pure”
LVQ3 algorithm. But the more important contribution is the
proposed enhancement of post-processing the output of a
traditional data condensation rule with this new LVQ3 rule.
The result is a hybrid scheme which ;rst creates/selects
reduced prototypes, and then migrates them to enhance
the potential classi;cation. To maximize this classi;cation,
each training set is subdivided into two subsets, which
we have called the Placement set and the Optimizing set.
Using these sets, the optimal parameters of the LVQ3-type
algorithm are learned. The eHect of this hybrid scheme is
the following. While the number and initial positions of
the prototypes are obtained by the data condensation rule
that is used, their ;nal positions (and consequently, the
;nal discriminants) are learned by the mutual interactions
of the Placement and Optimizing sets using LVQ3-type
operations.

Another contribution of this paper is the demonstration
that the SVM classi;er can be improved by invoking a 1-NN
classi;cation after the LVQ3 has operated on the support
vectors. This, in our opinion, is signi;cant, because the SVM
has been shown to be one of the best classi;ers, especially
for applications operating in a high-dimensional feature
space.

The experimental results on synthetic and real-life data
prove the power of these enhancements. The real-life exper-
iments include two “medium-size” data sets, and two which
involve data sets with a large number of points and a fairly
high dimensionality. The results in almost all the cases is
conclusive.

2. Prototype reduction methods

As mentioned previously, various data reduction meth-
ods have been proposed in the literature—two excellent sur-
veys are found in Refs. [2,3]. To put the results available
in the ;eld in the right context, we mention, in detail, the
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contents of the latter. The survey of Ref. [3] contains a
comparison of 11 conventional PRS methods. This compar-
ison has been performed from the view of error rates and
the resultant number of prototypes that are obtained. The
experiments were conducted with four experimental data
sets which are both arti;cial and real. In summary, the 11
methods surveyed are: A combination of Wilson’s ENN and
Hart’s CNN (W+H), the random selection (RS) method, ge-
netic algorithms (GA), a tabu search (TS) scheme, a vector
quantization-based method (LVQ1), decision surface map-
ping (DSM), a scheme which involves LVQ with train-
ing counters (LVQTC), a bootstrap (BTS) method, a vec-
tor quantization (VQ) method, a generalized LVQ-fuzzy
(GLVQ-F) scheme, and a hard C-means clustering (HCM)
procedure. Among these, the W+H, RS, GA, and TS can be
seen to be selective PRS schemes, and the others fall into the
category of being creative. Additionally, the VQ, GLVQ-F,
and HCM are post-supervised approaches in which the meth-
ods ;rst ;nd prototypes without regard to the training data
labels, and then assign a class label to each prototype, while
the remaining are pre-supervised ones that use the data and
the class labels together to ;nd the prototypes. Finally, the
RS, LVQ1, DSM, BT, VQ, and GLVQ-F are capable of per-
mitting the user to de;ne the number of prototypes, while
the rest of the schemes force the algorithm to decide this
number.

The claim of Ref. [3], from the experimental results,
is very easily stated. Based on the experimental results
obtained, the authors of Ref. [3] claims that there seems
to be no clear scheme that is uniformly superior to all
the other PRS. Indeed, diHerent methods were found to
be superior for diHerent data sets. However, the experi-
ments showed that the creative methods can be superior to
the selective methods, but are, typically, computationally
more diBcult to determine. Also, the experimental results
revealed that the pre-supervised methods are better than
the post-supervised ones. Furthermore, there seems to be
no reason to believe that the auto-de;ned approaches are
superior to the user-de;ned ones.

Our fundamental claim is quite simply that we can
enhance any of the “zillions” of methods available by sub-
jecting it to a LVQ3-type post-processing phase. From this
perspective, we do not attempt to compare our new method
to any single currently existing scheme. Rather, we intend
to compare any enhanced scheme to its “virgin” counter-
part, namely, the one that has not be subjected to the LVQ3
processing. Essentially, we submit that similar enhance-
ments can be used to enrich any of the methods that have
been currently proposed.

Rather than survey the entire ;eld here, we attempt to
review some of the most pertinent families. The CNN and
the SVM are chosen as representative schemes of selecting
methods—the former is one of the ;rst methods proposed,
and the latter is historically recent. As opposed to these, the
PNN and VQ (or SOM) are considered to fall within the
family of prototype-creating algorithms.

2.1. The condensed nearest neighbor rule (CNN)

The CNN [4] is suggested as a rule which reduces the
size of the design set, and is largely based on statistical
considerations. However, the rule does not, in general, lead
to a minimal consistent set—a set which contains a minimum
number of samples within it to correctly classify all the
remaining samples in the given set. The procedure can be
formalized as follows, where the training set is given by T ,
and reduced prototypes are found in TCNN :

1. The ;rst sample is copied from T to TCNN ;
2. Do the following: Increasing i by unity from 1 to the

number of samples in T per epoch:

(a) classify each pattern xi ∈ T using TCNN as the proto-
type set;

(b) if a pattern xi is classi;ed incorrectly then add the
pattern to TCNN , and go to 3;

3. If i is not equal to the number of samples in T , then go
to 2;

4. Else the process terminates.

2.2. Prototypes for nearest neighbor (PNN) classi<ers

The algorithm of ;nding prototypes for nearest neighbor
classi;ers (referred to as PNN, here) [6], can be stated as
follows: Given a training set T , the algorithm starts with
every point in T as a prototype. Initially, set A is empty and
set B is equal to T . The algorithm selects an arbitrary point
in B and initially assign it to A. After this, the two closest
prototypes p in A and q in B of the same class are merged,
successively, into a new prototype, p∗, if the merging will
not degrade the classi;cation of the patterns in T , where
p∗ is the weighted average of p and q. For example, if p
and q are associated with weights Wp and Wq, respectively,
p∗ is de;ned as (Wpp+Wqq)=(Wp +Wq), and is assigned
a weight, Wp + Wq. Initially, every prototype has an asso-
ciated weight of unity. The procedure of PNN is sketched
below.

1. Copy T to B;
2. For all q∈B, set the weight Wq = 1;
3. Select a point in B, and move it from B to A;
4. MERGE = 0;
5. While B is not empty do:

(a) ;nd the closest prototypes p and q from A and B,
respectively;

(b) if p’s class is not equal to q’s class then insert q to
A and delete it from B;

(c) else merge p of weight Wp, and q of weight Wq,
to yield p∗, where p∗ = (Wpp+Wqq)=(Wp +Wq).
Let the classi;cation error rate of this new set of
prototypes be �:
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• if the � is increased then insert q to A, and delete it
from B;

• else delete p and q from A and B, insert p∗ with
weight Wp +Wq to A, and MERGE++;

6. If MERGE is equal to 0 then output A as the set of trained
code-book vectors, and the process terminates;

7. Copy A into B and go to 3.

Bezdek and his co-authors, proposed a modi;cation of the
PNN in Ref. [19]. First of all, instead of using the weighted
mean of the PNN to merge prototypes, they utilized the sim-
ple arithmetic mean. Secondly, the process for searching for
the candidates to be merged was modi;ed by partitioning
the distance matrix into submatrices “blocked” by common
labels. This modi;cation eliminated the consideration of
candidate pairs with diHerent labels. Based on the results
obtained from experiments conducted on the Iris data set,
the authors of Ref. [19] asserted that their modi;ed form of
the PNN yielded the best consistent reduced set for design-
ing multiple-prototype classi;ers. 2

2.3. Vector quantization and the self organizing map

The foundational ideas motivating VQ and the SOM are
the classical concepts that have been applied in the esti-
mation of probability density functions. Traditionally, dis-
tributions have been represented either parametrically or
non-parametrically. In the former, the user generally as-
sumes the form of the distribution function, and the pa-
rameters of the function are learned using the available
data points. In pattern recognition (classi;cation), these es-
timated distributions are subsequently utilized to generate
the discriminant hyper-planes or hyper-quadratics, whence
the classi;cation is achieved.

As opposed to the former, in non-parametric methods, the
practitioner assumes that the data must be processed in its
entirety (and not just by using a functional form to repre-
sent the data). The corresponding resulting pattern recogni-
tion (classi;cation) algorithms are generally of the nearest
neighbor (or k-nearest neighbor) philosophy, and are thus
computationally expensive.

The concept of VQ [14] can be perceived as one of
the earliest compromises between the above two schools
of thought. Rather than represent the entire data in a com-
pressed form using only the estimates, VQ opts to represent
the data in the actual feature space. However, as opposed to
the non-parametric methods which use all (or a subset) of

2 We believe that the LVQ3-based enhancement that we propose
in this paper, can also be utilized to enhance the scheme proposed
in Ref. [19]. We also believe that a similar enhancement can be
used for the clustering-based, genetic and random search methods
proposed in Ref. [20]. This is currently being investigated. The
authors are grateful to Professor Jim Bezdek for the instructive
discussions we had in Spain in April 2002.

the data in the training and testing phases of classi;cation,
VQ compresses the information by representing it using a
“small” set of vectors, called the code-book vectors. These
code-book vectors are migrated in the feature domain so
that they collectively represent the distribution under con-
sideration. We shall refer to this phase as the intra-regional
polarizing phase [17] explained below.

In both VQ and the SOM the polarizing algorithm is re-
peatedly presented with a point xi from the set of points of
a particular class. The neurons attempt to incorporate the
topological information present in xi. This is done as fol-
lows. First of all, the closest neuron to xi, Yj∗, is determined.
This neuron and a group of neurons in its neighborhood,
Bj∗, are now moved in the direction of xi. The set Bj∗ is
called the “activation bubble”. We shall presently specify
how this is determined. The actual migration of the neurons
is achieved by rendering the new Yj to be a convex combi-
nation of the current Yj and the data point xi for all j∈Bj∗.
More explicitly, the updating algorithm is as follows:

Yj(t + 1) =

{
(1− �(t))Yj(t) + �(t)xi if j∈Bj∗(t);

Yj(t) otherwise;
(1)

where t is the discretized (synchronized) time index.
This basic algorithm has two fundamental parameters,

�(t) and the size of the bubble Bj∗(t). �(t) is called the adap-
tation constant and satis;es 0¡�(t)¡ 1. Kohonen and oth-
ers [15,16] recommend steadily decrementing �(t) linearly
from unity for the initial learning phase and then switching
it to small values which decrease linearly from 0.2 for the
;ne-tuning phase.

The activation bubble, Bj∗(t), is the parameter which
makes VQ diHer from the SOM. Indeed, if the size of the
bubble is always set to be zero, only the closest neuron is
migrated, yielding a VQ scheme. However, in the SOM, the
nearest neuron and the neurons within a bubble of activation
are also migrated, and it is this widened migration process
which permits the algorithm to be both topology preserv-
ing and self-organizing. The size of the bubble is initially
assigned to be fairly large to allow a global ordering to de-
velop. Consequently, all the neurons tend to tie themselves
into a knot for a value of �(t) that is close to unity; they sub-
sequently quickly disperse. Once this coarse spatial resolu-
tion is achieved, the size of the bubble is steadily decreased.
Consequently, only those neurons which are most relevant
to the processed input point will be eHected by it. Thus
the ordering which has been achieved by the coarse resolu-
tion is not disturbed, but the ;ne tuning on this ordering is
permitted.

2.4. Support vector machines

The SVM [13] is a new and very promising classi;cation
technique developed at the AT& T Bell Laboratories. The
main motivating criterion is to separate the classes with a
surface that maximizes the margin between them. It is an
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approximate implementation of the structural risk minimiza-
tion induction principle that aims to minimize a bound on
the generalization error of a model, rather than minimizing
the mean square error over the training data set, which is the
philosophy that empirical risk minimization methods often
use.

Training an SVM requires a set of N examples. Each ex-
ample consists of an input vector xi and its label yi. The SVM
function that has to be trained with the examples contains N
free parameters, the so-called positive Lagrange multipliers
�i; i=1; : : : ; N . Each �i is a measure of how much the corre-
sponding training example inIuences the function. Most of
the examples do not aHect the function, and consequently,
most of the �i are 0. To ;nd these parameters, we have to
solve a quadratic programming (QP) problem like

Minimize
1
2

N∑
i; j=1

�iQij�j −
N∑
i=1

�i (2)

Subject to 06 �i6C;
N∑
i=1

yi�i = 0; (3)

where Q is an N × N matrix that depends on xi; yi and the
functional form of the SVM, and C is a constant to be chosen
by the user. A larger value of C corresponds to assigning a
higher penalty to the errors.

Solving the QP problem provides the support vectors
of the two classes, which correspond to the examples of
�i �= 0. Using these, we get a hyper-plane decision function
wTx + b = 0, which separates the positive examples hav-
ing +1s as their labels from the negative examples whose
labels are all −1. The weight vector and the threshold are
w=

∑Ns
i=1 �iyixi and b= 1

2 (w
Txp+wTxn), respectively, where

Ns is the number of support vectors, wT is the transpose of
w, and xp and xn are support vectors of the positive and the
negative classes, respectively.

Usually, to allow for much more general nonlinear deci-
sion functions, we have to ;rst nonlinearly transform the in-
put vectors into a high-dimensional feature space by a map
�, and then invoke a linear separation in that space. In this
case, minimizing Eq. (2) requires the computation of dot
products �(x) · �(y) in the higher-dimensional space. The
expensive calculations, however, can be avoided by using a
kernel function K obeying K(x; y)=�(x) ·�(y), that can be
evaluated eBciently. The kernel K includes functions such
as polynomials, radial basis functions or sigmoidal func-
tions. Details of the SVM can be found in Refs. [13,18,21].

3. Enhancing with LVQ3-type algorithms

3.1. The LVQ3 algorithm

We had earlier discussed the principles motivating the
LVQ and SOM families of algorithms, and discussed
the intra-polarizing phase. In a multi-class problem, the

code-book vectors for each region are subsequently mi-
grated so as to ensure that they adequately represent their
own regions and furthermore distinguish between the other
regions. This phase, which we refer to as the inter-regional
polarizing phase [17], also implicitly learns the discriminant
function to be used in a subsequent classi;cation module.
Note that these discriminant functions are of a nearest
neighbor philosophy, except that the nearest neighbors are
drawn from the set of code-book vectors (as opposed to
the entire set of training samples). Thus, they drastically
reduce the computational burden incurred in the testing of
traditional non-parametric methods.

In LVQ3, two code-book vectors mi and mj , which are
the two nearest neighbors to x, are simultaneously updated,
where x and mj belong to the same class, and x and mi

belong to diHerent classes. Moreover, x must fall into a zone
of values called the “window”, which is de;ned around the
mid-plane of mi and mj . Assume that di and dj are the
Euclidean distances of x from mi and mj , respectively. Then
x is de;ned to fall in a window of relative width w if

min
(
di

dj
;
dj

di

)
¿

(
1− w
1 + w

)
: (4)

The updating rules formi andmj ensure that the code-book
vectors continue to approximate the respective class distri-
butions and simultaneously enhance the quality of the clas-
si;cation boundary. These rules are

mi(t + 1) = mi(t)− �(t)[x(t)− mi(t)];

mj(t + 1) = mj(t) + �(t)[x(t)− mj(t)]: (5)

Additionally, even when x, mi and mj belong to the same
class, the code-book vectors are adjusted to enhance the
improvement as follows for k = i; j:

mk(t + 1) = mk(t)− �(t)�(t)[x(t)− mk(t)]: (6)

In Eqs. (5) and (6), t is the discretized (synchronized)
time index, and �(t) and �(t) are called the learning rate
and relative learning rate, respectively.

3.2. The proposed data reduction algorithm

As mentioned earlier, the heart of the proposed algorithm
involves post-processing the conventional data reduction
methods using the LVQ3. This, in itself, is novel. However,
the more crucial issue is that of determining the parameters
of the LVQ3. We shall accomplish this by partitioning the
training sets into two subsets, which are, in turn, utilized to
optimize the corresponding LVQ3 parameters. We clarify
all the relevant issues below.

3.2.1. Specifying the relevant LVQ3 criteria
The accuracy achievable in any classi;cation task to

which the LVQ3 is applied, and the time needed for learn-
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ing depend on the following factors which are discussed in
succession:

• an approximately-optimal number of code-book vectors
assigned to each class and their initial values;

• the parameters, namely the learning rate, the relative
learning rate, and the number of iteration steps.

Initialization of the code-book vectors: Since the class
borders are represented piecewise-linearly by segments of
mid-planes between the code-book vectors of neighboring
classes, it is recommended that the average distances be-
tween the adjacent code-book vectors should be the same on
both sides of the borders [15]. To achieve this, the medians
of the shortest distances between the initial code-book vec-
tors of each class are ;rst computed. If the distances turn out
to be very diHerent for the diHerent classes, new code-book
vectors may be added or old ones deleted from the deviat-
ing classes, and a tentative training cycle is run once. This
procedure can be iterated a few times.

Learning rates: The learning rate �(t) is usually made to
decrease monotonically with time. In Ref. [15], the rate � is
decremented linearly during the training as below

�(t) = �(0)
Number of Iteration

t + Number of Iteration
: (7)

Also, the value of �, the relative learning rate, is recom-
mended to be between 0.1 and 0.5, and the related window
width w is usually set to be a value between 0.2 and 0.3.

Number of learning steps: When the learning and test
phases are alternated, the recognition accuracy is ;rst im-
proved until an optimum is reached. After that, when learn-
ing is continued, the accuracy starts to decrease slowly due
to the so-called overlearning phenomenon. It is therefore
recommended that the learning process be stopped after 50–
200 times the total number of the code-book vectors [15].
However, the optimum number of iterations also depends
on the input data.

3.2.2. Determining the relevant LVQ3 parameters
The algorithm that we propose consists of two steps. We

;rst select or create initial prototypes by any one of the
conventional reduction methods described earlier. After this
selection/creation phase, we invoke a phase in which the
optimal positions are learned with an LVQ3-type scheme.
To achieve this, we assume that for every class, i, we are
given two sets, the training set, Ti; t , and validation set, Ti;V .
We ;rst partition the training set, Ti; t , into two subsets,

called the placement set, Ti;P , and the optimizing set, Ti;O,
where, Ti; t = Ti;P ∪ Ti;O. The intention is that the placement
set is used to position the condensed prototypes using the
LVQ3-type algorithm, and the parameters of the LVQ3-type
algorithm are, in turn, optimized by testing the classi;cation
eBciency of the current placement on the optimizing set,
Ti;O. Thus, the training set plays a triple role: (a) ;rst of all, it

is used to obtain the initial condensed vectors; (b) secondly,
one portion of this set is used by the LVQ3-type algorithm to
migrate the condensed vectors; (c) ;nally, the other portion
of the training set serves the purpose of “pseudo-testing”,
so as to obtain the best parameters for the LVQ3-type al-
gorithm. Using these sets 3 the procedure is formalized as
below for each class:

1. For every class, j, select an initial condensed prototype
set Yj;Test by using any one of the reduction methods
described earlier, and the entire training sets, Ti; t ;

2. Set YTest=∪Yj;Test , which is the set of the training samples
of all the classes.

3. Using YTest as the set of condensed prototype vectors,
do the followings using the placement sets, Ti;P , and the
optimizing sets, Ti;O for all the classes:

(a) perform LVQ3 using the points in the placement set,
Ti;P . The parameters of the LVQ3 are spanned by
considering increasing values of w from 0.0 to 0.5, in
steps of Uw. The sets Yj;Test (for all j) and YTest are
updated in the process. Select the best value w0 after
evaluating the accuracy of the classi;cation rule on
Ti;O, where the NN-classi;cation is achieved by the
adjusted YTest ;

(b) perform LVQ3 using the points in the placement set,
Ti;P . The parameters of the LVQ3 are spanned by
considering increasing values of � from 0.0 to 0.5, in
steps of U�. The sets Yj;Test (for all j) and YTest are
updated in the process. Select the best value �0 after
evaluating the accuracy of the classi;cation rule on
Ti;O, where the NN-classi;cation is achieved by the
adjusted YTest ;

(c) repeat the above steps with the current w0 and �0, till
the best values w∗ and �∗ are obtained;

4. Determine the best prototype set YFinal by invoking the
LVQ3 , times with the data in Ti;P , and where the pa-
rameters are w∗ and �∗, where the “pseudo-testing” is
achieved by using the Optimizing set, Ti;O.

The actual classi;cation accuracy is obtained by testing
the classi;er using the ;nal prototype set, YFinal, and the
original testing (validation) data points, Ti;V .

4. Experimental results: medium-size data sets

4.1. Experimental data

The proposed and the conventional prototype reduc-
tion methods were evaluated and compared by performing

3 Speci;c distinct indices j and i are used just for ease of notation.
The training sets are ;rst speci;ed in terms of the index j, but then
the placement and optimizing sets are used for every class i.
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Table 1
The benchmark data sets for experiments

Dataset Total No. of No. of
names patterns features classes

Random 400 (200, 200) 2 2
Iris2 100 (50, 50) 4 2
Ionosphere 351 (176, 175) 34 2

The vectors are divided into two sets of equal size, and used for
training and validation, alternately.

experiments on a number of design “medium-sized” data
sets, both real and arti;cial, summarized in Table 1.

The data set described as “Random”, was generated
randomly with a uniform distribution, but with irregular
decision boundaries as indicated in Fig. 1(a). The irregu-
larity of the boundary is clear. On the other hand, the data
sets “Iris2” and “Ionosphere”, which are real benchmark
data sets, are cited from the UCI Machine Learning Repos-
itory [22]. Originally, the “Iris” data set consists of three
classes: Setosa, Versicolor, and Virginica. However, since
the subset of Setosa samples is completely separated from
the others, it is not diBcult to classify it from the other two.
Therefore, we have opted to employ a modi;ed set “Iris2”,
which consisted only of the two classes, Versicolor and
Virginica.

In the above data sets, all of the vectors were normalized
within the range [ − 1; 1] using their standard deviations,
and the data set for class j was randomly split into two
subsets, Tj; t and Tj;V , of equal size. One of them was used
for choosing initial code-book vectors and training the clas-
si;ers as explained above, and the other one was used in
the validation (or testing) of the classi;ers. Later, the role
of these tests were interchanged. Fig. 1 shows a training
and a testing data set for the “Random” data set, where the
200 vectors of each class were represented by “∗” and “·”,
respectively.

Fig. 1. A training data Tj; t (a) and a test data Tj;V (b) for the “Random” data set. The 200 vectors of each class are represented by “∗” and
“·”, respectively.

4.2. Selecting initial prototypes

In order to evaluate the reduction methods, we selected
the initial prototypes from the data sets using the CNN,
the PNN, the VQ and the SVM algorithms. First, we chose
prototype vectors from the training data sets. Subsequently,
the test data sets were classi;ed with the 1-NN rule, where
the chosen vectors were utilized as the code-book vectors.
Finally, the experiment was repeated by exchanging the roles
of the data sets.

As an example, Fig. 2 shows the initial prototypes se-
lected with the CNN, PNN, VQ and SVM methods. In
the experiments, for the SVM program, we utilized a pub-
licly available software package [21] where a polynomial of
degree 3 was chosen as its kernel function.

Although no signi;cant diHerences between the dis-
tributions of the selected vectors is obvious, in Fig.
2, it is clear that the SVM method can choose an ap-
propriate number of support vectors which occur near
the boundary, and represent its structure appropriately.
Table 2 tabulates the values of Re(·), the data reduction
rates on the data sets, computed as Re(·)=(|Total vectors|−
|Chosen vectors|)=|Total vectors|, where | · | is the cardi-
nality of the corresponding set.

Using the set of selected vectors as a representative set of
the sample prototypes, which is considerably smaller than
the original training data set size, the 1-NN classi;cation
was used to test the testing data sets. Table 3 shows the
classi;cation error rates on the experiments, where the row
termed ORG shows the classi;cation error rate when all
vectors of the training data set were used as the prototypes
for classifying the test data set. Also, the row SVM †, shows
the classi;cation error rates of the pure SVM classi;er, not
the 1-NN classi;er, when it was biased and used a cubic
polynomial as its kernel.

Originally, the SVM had been developed to be suitable
for the solution of binary classi;cation problems. There-
fore, in this setting, when we are dealing with k-classes, we
recommend its use as a one-against-all classi;er, where the
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Fig. 2. Initial prototypes of the “Random” data set, which are selected by the CNN, PNN, VQ and SVM. In the pictures, selected vectors are
indicated by the circled “∗” and “·”, respectively. The numbers of selected vectors in (a), (b), (c) and (d) are 36, 30, 32 and 18, respectively.

Table 2
The prototype compression rates of the various conventional meth-
ods on the design data sets

Selection methods Random Iris2 Ionosphere

CNN 0.83 0.71 0.74
PNN 0.86 0.83 0.80
VQ 0.84 0.68 0.98
SVM 0.92 0.85 0.80

Table 3
The classi;cation error rates (%) on the data sets

Selection methods Random Iris2 Ionosphere

ORG 3.00 7.00 21.35
CNN 3.75 11.00 16.80
PNN 4.25 6.00 17.37
VQ 3.25 4.00 14.25
SVM† 2.75 8.00 17.37

jth classi;er constructs a hyper-plane between the jth class
and the remaining k − 1 classes.

4.3. Adjusting prototypes with LVQ3

We also did numerous experiments to determine the
classi;cation error rates of the 1-NN classi;ers after

adjusting the initial prototypes with our modi;ed LVQ3
algorithm. Four types of prototypes (initialized by the CNN,
PNN, VQ and SVM, respectively) as shown in Fig. 2, were
post-processed (adjusted) by the LVQ3 algorithm. Beside
the initial values and the number of code-book vectors, the
parameters of the post-processing phase were determined
as described earlier. In all the ;gures, the reported error
rate was obtained as the average after repeating the classi-
;cation 100 times each obtained by random presentations
of the training vectors in the various epochs. As in the case
of other learning problems, where the size of the sample
patterns set plays a signi;cant role, the same phenomenon
is seen in the case of the LVQ3-adjusting learning phase.
To overcome the small-sample problem, we utilized a sim-
pli;ed version of the scheme in which |Ti;O|= 1, namely, a
variant of the leave-one-out method.

We report here the results of performing the experiment
on three kinds of data sets. Additionally, for a complete
comparison, the LVQ3 learning was also achieved with the
code-book vectors initialized by Kohonen’s method [15].
Figures plotting the classi;cation error rates of LVQ3,
CNN+LVQ3, PNN+LVQ3, VQ+LVQ3 and SVM+LVQ3
for the “Random”, “Iris2” and “Ionosphere” data sets, re-
spectively, show that the classi;cation accuracy increases
to a certain extent and then tends to decrease. Thus, in
every case, it was expedient to invoke the LVQ3-type
algorithm which learned the LVQ3 parameters by par-
titioning the training sets Ti; t and using the sets Ti;P
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Table 4
The classi;cation error rates (%) of the various reported schemes
after the LVQ3 post-processing

Reduction methods Random Iris2 Ionosphere

LVQ3 6.32 4.24 17.18
CNN+LVQ3 3.12 7.87 18.19
PNN+LVQ3 3.03 10.40 15.97
VQ+LVQ3 2.95 4.00 15.33
SVM+LVQ3 1.90 7.01 17.00

Table 5
The “large-sized” data sets used for experiments

Dataset Total No. of No. of
names patterns features classes

Sonar 208 (104,104) 60 2
Arrhythmia 452 (226,226) 279 16

The vectors are divided into two sets of equal size, and used for
training and validation, alternately.

and Ti;O, as opposed to using the straightforward LVQ3
algorithm.

The lowest classi;cation error rates obtained from
performing the experiments are summarized in Table 4.
An overall comparison shows that every method aug-
mented by the LVQ3 performs better than an LVQ-based
method alone. Also, an overall comparison of Tables 3
and 4 shows that the accuracy of every method is im-
proved when augmented by the LVQ3 post-processing.
It is particularly worth mentioning that the pure SVM
classi;er can be improved by utilizing a 1-NN classi-
;er, after the LVQ3-learning has been invoked on the
vectors extracted by the SVM algorithm. It should also
be observed that this increase in classi;cation accuracy
is obtained without forfeiting excessive computational
time.

5. Experimental results: large data sets

In order to further investigate the advantage gained by
utilizing the proposed hybrid methods for high-dimensional
applications, we conducted experiments on “large-sized”
data sets, namely, the “Sonar” and the “Arrhythmia”, also
obtained from the UCI Machine Learning Repository [22].
The data sets are summarized in Table 5.

The “Sonar” data set contains 208 vectors. Each sam-
ple vector, of two classes, has 60 attributes which are all
continuous numerical values. The ”Arrhythmia” data set
contains 279 attributes, 206 of which are real valued and
the rest are nominal. In our experiments, the nominal fea-
tures were replaced by the zeros. The aim of the pattern

recognition exercise was to distinguish between the pres-
ence and absence of cardiac arrhythmia and to classify
the feature into one of the 16 groups. In our case, in the
interest of simpli;cation, we merely attempted to classify
the total instances into two category, namely, “normal” and
“abnormal”.

5.1. Experimental results

We performed experiments to determine the classi;cation
accuracy rates of the 1-NN classi;ers after adjusting the ini-
tial prototypes with our modi;ed LVQ3 algorithm. First of
all, the best values of the parameters �∗, w∗ and ,∗ were de-
termined as described earlier with the training set, Ti; t . Af-
ter that, the classi;cation rates of the 1-NN classi;ers were
evaluated with the validation set, Ti;V . The experimental re-
sults of the “Sonar” and “Arrhythmia” data sets are shown
in Table 6 and Table 7, respectively.
As in the case of the medium-size data sets, we parti-

tioned the given set into two subsets. The ;rst was used for
choosing the initial prototype vectors, selecting the best pa-
rameter values, and training the classi;ers. The second set
was used in the validation of the classi;ers. Later, the roles
of these sets were interchanged. In Tables 6 and 7, the ;rst
and second rows of each scheme are the experimental results
of the two subsets and the third row (bold-faced ;gures) is
their averaged values. The best values of �∗ and �∗ were de-
termined as mentioned earlier, and those of w∗ and ,∗ were
selected by considering increasing values of w from 0.0 to
0.5, in steps of 0.01, and of , from 1000 to 10,000, in steps
of 200, respectively.

From these tables we see that the philosophy of hybridiz-
ing almost uniformly gives us an enhanced performance.
We ;rst analyze the results for the “Arrhythmia” set. In this
case, the classi;cation accuracy increases in almost every
scenario. Here, the classi;cation problem is very diBcult
because of the large dimensionality, and so the advantage
gained by hybridizing is not so prominent. Observe that
although the basic CNN method yielded a 96.47% accu-
racy, the method when enhanced with LVQ3 yielded an
improved classi;cation of 97.62% accuracy. It should be
observed that in any pattern classi;cation problem, when the
recognition accuracies are high, obtaining an even higher
accuracy is a much more diBcult task. Thus, improving the
accuracy from 96% to 97% is often much more diBcult
than increasing the accuracy from 50% to 60%. Enhancing
the techniques with LVQ3 seems to be able to achieve
these second-order eHects. We observe, though, that the
accuracy of the SVM method fell marginally—but we at-
tribute this fall to the fact that the testing was done using a
NN-based (not SVM-based) philosophy. The way by which
we can rectify this for SVM-based testing is currently being
investigated.

In the case of the “Sonar” data set, we see that the
classi;cation accuracy increases in almost every scenario—
often yielding a marked improvement. Thus, while the
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Table 6
The experimental results of the “Sonar” data set

Reduction methods CB size Acc0 �∗ Acc1 w∗ Acc2 ,∗ Acc3

LVQ3 53 69.23 0.06 83.65 0.27 83.65 1200 77.57 (1.2014)
59 73.08 0.06 85.58 0.10 88.46 1200 76.60 (0.5477)

71.16 77.09

CNN+ LVQ3 52 78.85 0.06 99.00 0.15 100.0 1200 81.14 (0.9605)
53 80.77 0.06 100.0 0.44 100.0 1200 83.02 (0.9443)

79.81 82.08

PNN+ LVQ3 34 72.12 0.06 96.15 0.19 100.0 1400 83.56 (0.6731)
33 72.12 0.06 93.27 0.06 98.08 1200 82.60 (1.1971)

72.12 83.08

VQ+ LVQ3 32 78.85 0.06 87.50 0.11 92.31 1800 78.44 (1.0009)
32 77.88 0.06 89.42 0.06 91.35 6400 84.16 (0.9754)

78.37 81.30

SVM+ LVQ3 53 82.69 0.06 95.19 0.35 95.19 5600 80.42 (1.1091)
59 85.58 0.06 100.0 0.32 99.04 6400 81.29 (1.0829)

84.14 80.86

In these tables, CB size is the size of the set of code-book vectors—which is the number of prototypes. Also, �∗, w∗ and ,∗ are the best
values of the relative learning rate, the window width and the number of iteration steps, respectively. Acc0 is the classi;cation accuracy
(%) of the initial prototype YTest , before performing the post-processing; Acc1 and Acc2 are the classi;cation accuracies obtained while
learning the optimal values for w∗ and ,∗. Finally, Acc3 (standard deviation) is the averaged accuracy of the trained prototype YFinal for
the evaluation data set Ti;V .

Table 7
The experimental results of the “Arrhythmia” data set

Reduction methods CB size Acc0 �∗ Acc1 w∗ Acc2 ,∗ Acc3

LVQ3 65 96.90 0.06 100.0 0.36 100.0 1000 97.12 (0.2540)
69 97.35 0.06 98.67 0.16 98.67 1000 98.11 (0.2175)

97.07 97.62

CNN+ LVQ3 32 95.58 0.06 100.0 0.07 100.0 1000 96.69 (0.2211)
28 97.35 0.06 99.56 0.11 99.56 3000 98.54 (0.3233)

96.47 97.62

PNN+ LVQ3 8 98.67 0.06 100.0 0.1 100.0 5000 98.94 (0.5663)
7 99.56 0.06 99.56 0.17 99.56 5000 98.86 (0.4563)

99.12 98.90

VQ+ LVQ3 64 99.12 0.06 100.0 0.06 100.0 3000 99.40 (0.2373)
64 98.67 0.06 100.0 0.06 100.0 3000 98.61 (0.2110)

98.90 99.01

SVM+ LVQ3 65 99.56 0.06 99.56 0.17 99.56 9000 99.07 (0.4031)
69 99.56 0.06 99.12 0.21 99.12 6000 98.97 (0.2414)

99.56 99.02

In these tables, CB size is the size of the set of code-book vectors—which is the number of prototypes. Also, �∗, w∗ and ,∗ are the best
values of the relative learning rate, the window width and the number of iteration steps, respectively. Acc0 is the classi;cation accuracy
(%) of the initial prototype YTest , before performing the post-processing; Acc1 and Acc2 are the classi;cation accuracies obtained while
learning the optimal values for w∗ and ,∗. Finally, Acc3 (standard deviation) is the averaged accuracy of the trained prototype YFinal for
the evaluation data set Ti;V .

basic CNN method yielded only 79.81% accuracy, the
method when enhanced with LVQ3 yielded 82.08% accu-
racy. The most marked improvement was obtained for the
PNN scheme, whose accuracy increased from 72.12% to
83.08%.

Finally, it is also observed that every method, augmented
by the LVQ3, performs better than an LVQ-based method
alone. This can be seen by comparing the Acc0 and Acc3
columns in the respective tables. The power of hybridizing
is clear.
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6. Conclusions

In designing nearest neighbor classi;ers, prototypes near
the boundary play more important roles than those which
are more interior in feature space. Based on this idea, we
have proposed an improved prototype reduction scheme,
which ;rst generates potential prototypes using a conven-
tional method, and later yields superior prototypes by invok-
ing a post-processor which is an LVQ3-type algorithm. In
this paper, the initial prototype vectors were selected by us-
ing conventional methods such as the CNN, PNN, VQ and
SVM. The proposed method has been tested on arti;cial and
real-life benchmark data sets, and compared with the con-
ventional ones. From the experimental results, we see, ;rst
of all, that 1-NN classi;ers designed with the prototypes
are faster and more accurate than either pure 1-NN, or the
SVM classi;er. In contrast to the prototypes produced by
CNN, PNN, VQ and SVM, the prototypes post-processed by
LVQ3 seem to better (globally and more exactly) represent
the distribution of pattern examples, and also the proper-
ties that diHerentiate them. However, the classi;cation error
rates of the classi;ers designed with the prototypes vary with
the data set. We recommend that this issue be tackled on a
case-by-case basis, depending on the problem domain. We
believe that the hybrid scheme presented here has powerful
potential applications in data mining and text categorization.
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