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Abstract

The goal of designing optimal nearest neighbor classifiers is to maximize classification

accuracy while minimizing the sizes of both reference and feature sets. A usual way is to

adaptively weight the three objectives as an objective function and then use a single-objective

optimization method for achieving this goal. This paper proposes a multi-objective approach

to cope with the weight tuning problem for practitioners. A novel intelligent multi-objective

evolutionary algorithm IMOEA is utilized to simultaneously edit compact reference and fea-

ture sets for nearest neighbor classification. Three comparison studies are designed to evalu-

ate performance of the proposed approach. It is shown empirically that the IMOEA-designed

classifiers have high classification accuracy and small sizes of reference and feature sets.

Moreover, IMOEA can provide a set of good solutions for practitioners to choose from in

a single run. The simulation results indicate that the IMOEA-based approach is an expedient

method to design nearest neighbor classifiers, compared with an existing single-objective

approach.
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1. Introduction

The nearest neighbor (1-nn) classifier is commonly used due to its simplicity and

effectiveness [1–5]. According to 1-nn rule, an input is assigned to the class of its
nearest neighbor from a labeled reference set. The goal of designing optimal 1-nn

classifiers is to maximize classification accuracy while minimizing the sizes of both

reference and feature sets. The design of 1-nn classifiers is related to concept forma-

tion and conception relationship identification in granular computing [6–8]. Each

subset of a universe is a granule representing a certain concept. A concept consists

of two parts, the extension and intension of the concept. The extension is the set

of objects which are instance of concept. The intension of a concept consists of all

attributes that are valid for all those objects. In an 1-nn classifier, the selected pro-
totypes partition patterns into disjoint subsets. Each subset can be regarded as a con-

cept, i.e., a granule of a certain class. The patterns in the subset are the extension of

the concept. The patterns in the same subset have same property: they have the same

nearest prototype, which is the intension of the concept. Designing optimal 1-nn

classifiers is to search for a set of prototypes associated with a subset of features

to optimize multiple objective functions.

Several studies [1,3–5,9,10] have found that genetic algorithms (GAs) [11] and

evolutionary algorithms (EAs) [12] are suitable for editing a compact reference set
(prototype selection) and selecting useful features individually, and the simulation re-

sults indicate that EA-based methods outperform some existing non-EA based meth-

ods in designing 1-nn classifiers. It has been recognized that reference and feature

sets must be simultaneously edited when designing compact 1-nn classifiers with high

classification power [1,3]. Ho et al. [1] proposed an intelligent genetic algorithm IGA

for simultaneous editing and feature selection to design 1-nn classifiers, using a

weighted-sum approach by combining multiple objectives into a single-objective

function. The IGA-based method is an efficient approach, compared with methods
of editing followed by feature selection, feature selection followed by editing, individ-

ual feature selection, individual editing, and Kuncheva�s GA-based method [3].
However, in order to obtain good solutions using the weighted-sum approach, do-

main knowledge and large computation cost are required for determining a set of

good weight values.

In this paper, a multi-objective approach utilizing a novel intelligent multi-objec-

tive evolutionary algorithm IMOEA [13,14] is proposed to solve the problem of

designing optimal 1-nn classifiers. IMOEA is superior to conventional multi-objec-
tive evolutionary algorithms (MOEAs) in solving some large multi-objective optimi-

zation problems (MOOPs). IMOEA is a multi-objective version of IGA by making

use of Pareto dominance relationship. Therefore, the proposed approach can cope

with the weight tuning problem for practitioners. Furthermore, IMOEA can effi-
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ciently obtain a set of non-dominated solutions in a single run, compared with a sin-

gle-objective EA using multiple runs in terms of solution quality and computation

cost. Three comparison studies are designed to evaluate performance of the pro-

posed approach. It is shown empirically that the IMOEA-designed classifiers have

high classification accuracy and small sizes of reference and feature sets. The exper-
imental results indicate that the IMOEA-based approach is an expedient method to

design nearest neighbor classifiers, compared with an existing single-objective

approach.

The organization of this paper is as follows. The investigated problem is described

in Section 2. Section 3 presents the design of optimal 1-nn classifiers using IMOEA.

Section 4 reports the experimental results and Section 5 concludes this paper.
2. The investigated problem

2.1. Designing 1-nn classifier

1-nn classifiers demand significant computation resources (time and memory).

Two ways of reducing operational cost of 1-nn classifiers are data editing and feature

selection. Simultaneous optimization of data editing and feature selection has been

recognized to be an efficient way to achieve high classification accuracy [1,3]. The
investigated problem of designing optimal 1-nn classifiers is described as follows

[1,3]:

Let X = X1, . . . ,Xn be a set of features describing objects as n-dimensional vectors
x = [x1, . . . ,xn]

T in Rn and let Z = z1, . . . ,zN, zj 2 Rn, be a data set. Associated with

each zj, j = 1, . . . ,N, is a class label from a set C = 1, . . . ,c. The criteria of data editing
and feature selection are to find subsets S1 � Z and S2 � X such that the classifica-

tion accuracy is maximal and the sizes of the reduced sets, card(S1) and card(S2), are

minimal, where card(Æ) denotes cardinality. Fig. 1 shows an example of editing sets of
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Fig. 1. Editing reference set and feature selection for the design of 1-nn classifiers. The reduced reference

set z3,z5,z6,z8 and feature set X2,X3,X5,X6 correspond to the chromosome S = [0 0 1 0 1 1 0 1 0 0

1 1 0 1 1].
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X and Z. Define a real-valued function P1-nn(V,S1,S2) as the classification accuracy

of a 1-nn classifier with S1 and S2:

P 1-nn : P ðZÞ � PðX Þ ! ½0; 1� ð1Þ
where P(Z) is the power set of Z and P(X) is the power set of X. The classification

accuracy P1-nn uses a counting estimator [15] measured on a given set V = v1, . . . ,vm,
as shown in Eq. (2). If vj is correctly classified using S1 and S2 by the 1-nn rule,

hCE(vj) = 1, and 0 otherwise.

P 1-nnðV ; S1; S2Þ ¼
Xm
j¼1

hCEðvjÞ=m ð2Þ

The problem is how to search for S1 and S2 in the combined space such that P1-nn
is maximal, and card(S1) and card(S2) are minimal.

Essentially, the investigated problem is an MOOP having a search space of

C(N + n, card(S1) + card(S2)) instances, i.e., the number of ways of choosing

card(S1) + card(S2) out of N + n binary decision variables with three incommensura-

ble and competing objectives. The investigated problem can be formulated as the fol-
lowing multi-objective optimization problem:

Maximum f1 ¼ P 1-nn
Minimum f2 ¼ cardðS1Þ
Minimum f3 ¼ cardðS2Þ

8><
>: ð3Þ
2.2. Review of weighted-sum approaches

For editing a reference set, Kuncheva et al. [9] and Cano et al. [4] found that EAs

using a weighted-sum objective function can offer high classification accuracy and a

good data reduction ratio for designing 1-nn classifiers. To edit a reference set and
select useful features simultaneously, Kuncheva et al. proposed a GA with a

weighted-sum approach, using a fitness function F as follows:

F ¼ P 1-nnðV ; S1; S2Þ 
 a
cardðS1Þ þ cardðS2Þ

N þ n

� �
: ð4Þ

The sum of card(S1) and card(S2) is used as a penalty term. The weight value a is
used to tune the degree of penalty.

Generally, the number N + n of binary decision variables is large. Large parame-

ter optimization problems often pose a great challenge to engineers due to the large

parametric space, the possibility of large infeasible and non-uniform areas, and the
presence of multiple peaks [16]. Despite having been successfully used to solve many

optimization problems, conventional GAs cannot efficiently solve large parameter

optimization problems. Therefore, Ho et al. [1] proposed IGA using the fitness func-

tion F in Eq. (4) to solve the investigated problem with a large number of decision

variables. It have been shown empirically that the IGA-designed classifiers outper-

form some existing methods, including Kuncheva�s GA-based method [3] in terms
of both classification accuracy and the number card(S1) · card(S2).
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The weighted-sum approach is intuitively simple and is capable of obtaining a

good solution in a single run. If dependencies among features are known, one can

easily take the dependencies into account and uses individual weight values for dif-

ferent features in the weighted-sum approach [10]. However, different data sets rep-

resent different classification problems with different degrees of difficulties [4].
Without using domain knowledge, it is difficult for practitioners to determine appro-

priate weight values in the weighted-sum approach and the results may be sensitive

to weight values. In order to obtain high performance, multiple experiments with dif-

ferent weight values for different data sets are necessary in the weighted-sum ap-

proach. For example, considering 10 levels of a weight value, the weighted-sum

approach without using domain knowledge has to perform 10 experiments to deter-

mine a good weight value. If there are 20 different kinds of data sets, 10 · 20 = 200
experiments are necessary for efficiently designing 20 classifiers. As a result, it is
essential to develop an efficient approach to coping with the weight tuning problem.

2.3. The proposed approach

Recently, MOEAs have been recognized to be well-suited for solving MOOPs be-

cause their abilities to exploit and explore multiple solutions in parallel and to find a

widespread set of non-dominated solutions in a single run [17]. Several MOEAs

based on Pareto dominance relationship are proposed to solve MOOPs directly,
and present more promising results than single-objective optimization techniques

theoretically and empirically [17–20]. By making use of Pareto dominance relation-

ship, MOEAs are capable of performing fitness assignment without using a weighted

linear combination of all objectives. Pareto dominance relationship and some related

terminologies are introduced below. Assume the multi-objective functions are to be

minimized. Mathematically, MOOPs can be represented as the following vector

mathematical programming problems:

minimize F ðY Þ ¼ ff1ðY Þ; f2ðY Þ; . . . ; fIðY Þg; ð5Þ

where Y denotes a solution and fi(Y) is generally a nonlinear objective function.

When the following inequalities hold between two solutions Y1 and Y2, Y2 is a

non-dominated solution and is said to dominate Y1(Y2 � Y1):

8i: fiðY 1Þ > fiðY 2Þ ^ 9j : fjðY 1Þ > fjðY 2Þ: ð6Þ

When the following inequality hold between two solutions Y1 and Y2, Y2 is said to

weakly zdominate Y1(Y2 � Y1):

8i: fiY 1 P fiðY 2Þ: ð7Þ
A feasible solution Y* is said to be a Pareto-optimal solution if and only if there

does not exist a feasible solution Y which dominates Y*, and the corresponding

vector of Pareto-optimal solutions is called Pareto-optimal front. An example in a

bi-objective space is shown in Fig. 2, where the circles represent non-dominated solu-

tions and the black dots are dominated solutions. MOEA seems to be an alternative
approach for solving the investigated problem on the assumption that no information



Fig. 2. Fitness values of the participant individuals with c = 12 in the objective space. The circles represent

non-dominated solutions and the black dots are dominated solutions. The fitness value of the dominated

individual A using GPSIFF is 3 
 2 + 12 = 13.
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on the preference among objectives is available. Moreover, a set of non-dominated

solutions can be provided for practitioners to choose from. If a solution is not suit-

able, practitioners can easily choose another solution without performing another

experiment. The issue now is how to develop an efficient MOEA for effectively solving

the problem of designing 1-nn classifiers.
3. IMOEA-designed 1-nn classifier

A novel intelligent multi-objective evolutionary algorithm IMOEA is utilized to

solve the problem of designing optimal 1-nn classifiers. The chromosome represen-

tation is presented in Section 3.1. The fitness assignment strategy of IMOEA is de-

scribed in Section 3.2. An intelligent crossover operation which plays an important

role in IMOEA is described in Section 3.3. The used IMOEA for designing 1-nn clas-

sifiers is provided in Section 3.4.

3.1. Chromosome representation

The feasible solution S corresponding to the reduced reference and feature sets is

encoded as a binary string consisting of N + n bits. The first N bits are used for

S1 � Z and the last n bits for S2 � X. The ith bit has a value 1 when the respective
element of Z(X) is included in S1(S2), and 0 otherwise. The search space consists of

2N + n points. For example, considering the reduced reference set z3,z5,z6,z8
and feature set X2,X3,X5,X6 in Fig. 1, the corresponding chromosome is S =

[0 0 1 0 1 1 0 1 0 0 1 1 0 1 1] with N = 9 and n = 6.
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3.2. Fitness assignment

Fitness assignment strategy is known as an important issue in solving MOOPs.

The fitness assignment strategy of IMOEA uses a generalized Pareto-based scale-

independent fitness function GPSIFF considering the quantitative fitness values in
the Pareto space for both dominated and non-dominated individuals. GPSIFF

makes the use of Pareto dominance relationship to evaluate individuals using a single

measure of performance.

Let the fitness value of an individual Y be a tournament-like score obtained from

all participant individuals by the following function:

GPSIFFðX Þ ¼ p 
 qþ c; ð8Þ
where p is the number of individuals which can be dominated by Y, and q is the num-

ber of individuals which can dominate Y in the objective space. Generally, a constant

c can be optionally added in the fitness function to make fitness values positive. In

this study, c is the number of all participant individuals. Note that GPSIFF is to

be maximized in IMOEA.

GPSIFF uses a pure Pareto-ranking fitness assignment strategy, which differs

from the traditional Pareto-ranking methods, such as non-dominated sorting

[11,21] and Zitzler and Thiele�s method [19]. GPSIFF can assign discriminative fit-
ness values to not only non-dominated individuals but also dominated ones. Fig.

2 shows an example for illustrating the fitness value using GPSIFF for a bi-objective

minimization problem. For example, three individuals are dominated by A (p = 3)

and two individuals dominate A (q = 2). Therefore, the fitness value of A is

3 
 2 + 12 = 13. It can be found that one individual has a larger fitness value if it
dominates more individuals. On the contrary, one individual has a smaller fitness

value if more individuals dominate it.

3.3. Intelligent crossover (IC)

In conventional crossover operations of GAs, two parents generate two children

with a combination of their chromosomes using randomly selected cut points. The

merit of IC is that, the systematic reasoning ability of orthogonal experimental de-

sign (OED) [22–24] is incorporated in the crossover operator to economically esti-

mate the contribution of individual genes to a fitness function, and then the better

genes are intelligently picked up to form the chromosomes of children. Theoretically
analysis and experimental studies for illustrating the superiority of IC with the use of

OED can be found in [1,14,25,26].

3.3.1. Orthogonal array and factor analysis

Orthogonal array (OA) is a factional factorial matrix, which assures a balanced

comparison of levels of any factor or interaction of factors. It is a matrix of numbers

arranged in rows and columns where each row represents the levels of factors in each

experiment, and each column represents a specific factor that can be changed from
each experiment. The array is called orthogonal because all columns can be evaluated
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independently of one another, and the main effect of one factor does not bother the

estimation of themain effect of another factor. A two-level OA used in IC is described

as follows.

Let there be c factors with two levels for each factor. The total number of exper-
iments is 2c for the popular ‘‘one-factor-at-a-time’’ study. The columns of two fac-
tors are orthogonal when the four pairs, (1,1), (1,2), (2,1), and (2,2), occur

equally frequently over all experiments. Generally, levels 1 and 2 of a factor repre-

sent selected genes from parents 1 and 2, respectively. To establish an OA of c factors
with two levels, first we obtain an integer x ¼ 2dlog2ðcþ1Þe, where the bracket repre-
sents a ceiling operator. Then, build an orthogonal array Lx(2

x
1) with x rows

and (x
1) columns and use the first c columns; the other (x 
 c 
 1) columns are
ignored. Table 1 illustrates an example of OA L8(2

7). The algorithm of constructing

OAs can be found in [24]. OED can reduce the number of experiments for factor
analysis. The number of OA combinations required to analyze all individual factors

is only x or O(c), where c + 1 6 x 6 2c.
After proper tabulation of experimental results, we can further proceed factor

analysis to determine the relative effects of various factors. Let Yt denote a function

value of the combination t, where t = 1, . . . ,x. Define the main effect of factor j with
level k as Sjk where j = 1, . . . ,c and k = 1,2

Sjk ¼
Xx

t¼1
Y t � Ot: ð9Þ

where Ot = 1 if the level of factor j of combination t is k; otherwise, Ot = 0. Since

GPSIFF is to be maximized, the level 1 of factor j makes a better contribution to
the function than level 2 of factor j does when Sj1 > Sj2. If Sj1 < Sj2, level 2 is better.

If Sj1 = Sj2, levels 1 and 2 have the same contribution. The main effect reveals the

individual effect of a factor. The most effective factor j has the largest main effect dif-

ference MED = jSj1 
 Sj2j. Note that the main effect holds only when no or weak
interaction exists, and that makes the OED-based IC efficient.

After the better one of two levels of each factor is determined, a reasoned combi-

nation consisting of c factors with better levels can be easily derived. The reasoned
combination is a potentially good approximation to the best one of the 2c combina-
Table 1

Orthogonal array L8(2
7)

Experiment

no. t

Factor Yt

1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 Y1
2 1 1 1 2 2 2 2 Y2
3 1 2 2 1 1 2 2 Y3
4 1 2 2 2 2 1 1 Y4
5 2 1 2 1 2 1 2 Y5
6 2 1 2 2 1 2 1 Y6
7 2 2 1 1 2 1 1 Y7
8 2 2 1 2 1 1 2 Y8



J.-H. Chen et al. / Internat. J. Approx. Reason. 40 (2005) 3–22 11
tions. OED uses well-planned procedures in which certain factors are systematically

set and modified, and then main effects of factors on the response variables can be

observed. Therefore, OED using OA and factor analysis is regarded as a systematic

reasoning method.

3.3.2. Procedures of intelligent crossover

Two parents breed two children using IC at a time. How to use OA and factor

analysis to perform the IC operation with c factors is described as the following
steps:

Step 1. Randomly divide the parent chromosomes into c pairs of gene segments
where each gene segment is treated as a factor.

Step 2. Use the first c columns of OA Lx(2
x
1) where x ¼ 2dlog2ðc þ 1Þe.

Step 3. Let levels 1 and 2 of factor j represent the jth gene segment of a chromo-
some coming from parents, respectively.

Step 4. Simultaneously evaluate the fitness values Yt of the x combinations corre-
sponding to the experiments t, where t = 1,. . ., x.

Step 5. Compute the main effect Sjk where j = 1,. . . ,c and k = 1,2.
Step 6. Determine the better one of two levels for each gene segment. Select level 1

for the jth factor if Sj1 > Sj2. Otherwise, select level 2.

Step 7. The chromosome of the first child is formed using the combination of the

better gene segments from the derived corresponding parents.
Step 8. Rank the most effective factors from rank 1 to rank c. The factor with a

large MED has a high rank.

Step 9. The chromosome of the second child is formed similarly as the first child

except that the factor with the lowest rank adopts the other level.

For one IC operation, the two children are more promising to be new non-dom-

inated individuals. The individuals corresponding to OA combinations are called by-

products of IC. The by-products are well planned and systematically sampled within
the hypercube formed by parents, so some of them are promising to be non-domi-

nated individuals. Therefore, the non-dominated by-products will be added to the

elite set in IMOEA.

IC attempts to identify good gene segments according to the main effect of factors

(gene segments), and seeks the best combination consisting of a set of good gene seg-

ments. It is desirable to evolve these good gene segments based on the evolution abil-

ity of EA such that a set of optimal gene segments can exist in a population.

Consequently, all these optimal gene segments can be collected to form an optimal
solution through the combination phase. IC also takes advantage of GPSIFF to

accurately estimate the main effect of factors and consequently can achieve an effi-

cient recombination using IC. It is less efficient for IC to use Zitzler and Thiele�s
method [19] where the fitness values of dominated individuals in a cluster are always

identical. The decision of number c depends on problem difficulties and stopping

conditions. If function evaluations are expensive, one may use a small value of c.
One can also use an adaptive value of c in IC.
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3.4. Intelligent multi-objective evolutionary algorithm

Since it has been recognized that the incorporation of elitism may be useful in

maintaining diversity and improving the performance of multi-objective EAs

[17,19,20], IMOEA selects a number of elitists from an elite set E in the selection
step. The elite set E with capacity NE maintains the best non-dominated solutions

generated so far. In addition, an external set E without capacity restriction is used
to store all the non-dominated solutions ever generated so far. The used IMOEA

in the investigated problem is as follows:

Step 1. (Initialization) Randomly generate an initial population of Npop individuals

and create two empty elite sets E, E and an empty temporary elite set E 0.

Step 2. (Evaluation) Compute all objective function values of each individual in

the population.
Step 3. (Fitness assignment) Assign each individual a fitness value by using

GPSIFF.

Step 4. (Update elite sets) Add the non-dominated individuals in both the popula-

tion and E 0 to E, and empty E 0. Considering all individuals in E, remove

the dominated ones in E. Add E to E, remove the dominated ones in E.
If the number of non-dominated individuals in E is larger than NE, ran-

domly discard excess individuals.

Step 5. (Selection) Select Npop 
 Nps individuals from the population using the
binary tournament selection and randomly select Nps individuals from E

to form a new population, where Nps = Npop · ps and ps is a selection pro-
portion. If Nps is greater than the number NE of individuals in E, let

Nps = NE.

Step 6. (Recombination) Perform the IC operations with a recombination proba-

bility pc. For each IC operation, add non-dominated individuals derived

from by-products and two children to E 0.

Step 7. (Mutation) Apply the mutation operator to each gene in the individuals
with a mutation probability pm.

Step 8. (Termination test) If a stopping condition is satisfied, stop the algorithm

and output E. Otherwise, go to Step 2.
4. Experimental results

Three comparison studies are designed to evaluate the performance of the

IMOEA-designed classifiers. First, the IGA-designed classifiers are compared with

the IMOEA-designed classifiers for revealing the merits of the proposed multi-objec-

tive approach. Second, a representative multi-objective algorithm SPEA [19] which

outperforms many existing MOEAs is selected to compare with IMOEA for evalu-

ating the efficiency of IMOEA. Third, the results of a decision-tree classifier C4.5 [27]

and DROP5 [28] using the same data sets are reported for further understanding the
effectiveness of the IMOEA-designed classifiers.
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4.1. Data sets

The 11 well-known data sets with numerical attribute values, shown in Table 2,

are used to evaluate performance of the proposed approach. All the data sets are

available from [29]. The set of test classification problems is composed of problems
with various dimensions from 3 to 60 and various degrees of overlapping that the

general test accuracy ranges from 50% to 100%. All the feature values are normalized

to real numbers in the unit interval [0,1].

To assure fair performance comparisons by avoiding the dependence on the train-

ing and test data, the following data partition is used. First, the patterns with the

same class label are put together without changing their order in the original data

file. Subsequently, the patterns with odd index values are assigned to the set V1
and the other patterns are assigned to the set V2. When V1(V2) is used as a training
set, V2(V1) is a test set. In the training phase, the training set is used to select the re-

duced sets S1 and S2, and calculate the classification accuracy P1-nn. The test classi-

fication accuracy is measured using the test set.

4.2. Performance measurement

The coverage metric C(A,B) of two solution sets A and B [19] used to compare the

performance of two corresponding algorithms considering the four objectives:

CðA;BÞ ¼ jfa 2 A; b 2 B; a � bgj
jBj ; ð10Þ

where � stands for weakly dominate in Pareto dominance relationship. The value

C(A,B) = 1 means that all individuals in B are weakly dominated by A. On the con-

trary, C(A,B) = 0 denotes that none of individuals in B is weakly dominated by A.

Because the C measure considers the weakly dominance relationship between two

sets A and B, C(A,B) is not necessarily equal to 1 
 C(B,A). The comparison results
Table 2

The number of classes, features, patterns, V1 and V2 of various data set

Data set Index No. of classes No. of features No. of patterns No. of V1 No. of V2

cmc 1 3 9 1473 738 735

glass 2 6 9 214 109 105

haberman 3 2 3 306 154 152

heartca 4 5 13 297 150 147

iris 5 3 4 150 75 75

liver-disorder 6 2 6 345 173 172

new-thyroid 7 3 5 215 108 107

pima 8 2 8 768 384 384

sonar 9 2 60 208 105 103

wdbc 10 2 30 569 285 284

wine 11 3 13 178 90 88

aSix patterns with missing attribute values are excluded.
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of two solution sets using the coverage metric are depicted using box plots. A box

plot provides an excellent visual result of a distribution. The box stretches from

the lower hinge (defined as the 25th percentile) to the upper hinge (the 75th percen-

tile) and therefore contains the middle half of the scores in the distribution. The med-

ian is shown as a line across the box. The whisker stretches 10% to 90%. The median
is shown as a line across the box.

For easy understanding, the data reduction ratio Drd is used to measure the effi-

ciency of editing reference sets:

Drd ¼ cardðS1Þ
N

ð11Þ

The feature reduction ratio Frd is used to measure the efficiency of editing feature
sets:

Frd ¼ cardðS2Þ
n

ð12Þ
4.3. IMOEA vs. IGA

The parameter settings of IGA are as follows: Npop = 30, ps = 0.2, pc = 0.6 and
pm = 0.05. The fitness function of IGA is F in Eq. (4). Nine different weight values

of a, a = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are used. In order to make com-
parisons with multi-objective solutions, the nine experiments using nine different

weight values ranged from 0.1 to 0.9 are regarded as an IGA run. The parameter set-

tings of IMOEA are as follows: Npop = 30, NEmax = 30, ps = 0.4, pc = 0.6 and

pm = 0.05. The factor value of OA is c = 7 in both IGA and IMOEA. The stopping
condition is the number of function evaluations Neval = 10000. Thirty independent

runs of IGA and IMOEA were performed. The solution set of an IGA run is com-
pared with the solutions set of an IMOEA run using the coverage metric.

Fig. 3 shows C(IGA, IMOEA) and C(IMOEA, IGA) from 30 runs, for the (train-

ing, test) data sets (V1,V2) and (V2, V1). Observing the median in the box plots, the

results shows that the solutions of IMOEA weakly dominate 40–80% solutions of

IGA, and the solutions of IGA weakly dominate 5–40% solutions of IMOEA.

The results reveal that IMOEA can evolve a set of non-dominated solutions that

cover the solutions of IGA. Table 3 listed the average numbers of non-dominated

solutions of IGA that are not dominated by IMOEA. Recalled that an IGA run is
composed of the nine experiments using nine different weight values, C(IMOEA,

IGA) in Fig. 3 and Table 3 indicate that only several good weight values used in

IGA can derive non-dominated solutions. This reveals that the performance of the

weighted-sum approach is sensitive to the weight value.

Theoretically, the weighted-sum approach does not attempt to optimize the sizes

of reference and feature sets, but only penalizes the individuals with large values of

card(S1) and card(S2). On the contrary, the multi-objective approach tries to opti-

mize all the three objectives. A typical Fig. 4 depicted the non-dominated solutions
obtained from 30 runs of IGA and IMOEA in solving the wdbc data set. Figs. 5–7



Fig. 3. Performance comparisons of IMOEA and IGA based on box plots. The vertical axis is the value of

C and the horizontal axis is the index of data sets.

Table 3

The average number of non-dominated solutions of IGA that are not dominated by IMOEA, averaged

from 30 IGA runs

Data set IGA

cmc 0.87

glass 1.27

haberman 0.93

heartc 1.13

iris 1.00

liver-disorder 0.53

new-thyroid 0.80

pima 1.27

sonar 1.17

wdbc 1.90

wine 1.03
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depicted the distribution of all the solutions obtained by IGA and IMOEA in each

objective. Table 4 shows the best results of each objective that obtained by IMOEA.

Fig. 5 shows both IGA and IMOEA can obtain high quality classification accuracy.

Due to the goodness and badness of solutions are determined using Pareto domi-

nance relationship, IMOEA may obtain non-dominated solutions with low classifi-

cation accuracy, but with small values of card(S1) and card(S2). Figs. 6 and 7 show

that IMOEA can obtain smaller reduction ratios and smaller numbers of features

than IGA. The ability to optimize the three objectives simultaneously enables
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Table 4

The best classification accuracy, data reduction ratio and feature reduction ratio obtained by IMOEA

Data set IMOEA

P1-nn Drd (%) Frd (%)

cmc 0.4881 31.77 5.26

glass 0.7384 7.92 11.11

haberman 0.7647 10.46 50.00

heartc 0.6131 12.79 7.69

iris 0.9867 1.33 25.00

liver 0.6812 12.75 16.67

new-thyroid 0.9861 2.80 20.00

pima 0.7201 22.27 12.50

sonar 0.8750 8.17 1.67

wdbc 0.9684 14.41 3.33

wine 0.9775 1.12 7.69

Average 0.7999 11.44 14.63
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IMOEA to search for representative patterns and relevant features. In consequence,

IMOEA can cope with the weight tuning problems, and IMOEA can obtain wide-

spread non-dominated solutions considering multiple objectives.

4.4. IMOEA vs. SPEA

The parameter settings of SPEA are Pc = 0.6 and Pm = 0.05. The population size

and the external population size of SPEA are 75 and 25, respectively. Thirty indepen-
dent runs were performed. The stopping condition is the number of function evalu-

ations Neval = 10,000.

Fig. 8 shows C(IMOEA,SPEA) and C(SPEA, IMOEA) from 30 runs. Observing

the median in the box plots, Fig. 8 shows that the solutions of IMOEA weakly dom-

inate 50–90% solutions of SPEA, and the solutions of SPEA weakly dominate 5–50%



Fig. 8. Performance comparisons of IMOEA and SPEA based on box plots. The vertical axis is the value

of C and the horizontal axis is the index of data sets.
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solutions of IMOEA. Fig. 4 depicted the non-dominated solutions obtained from 30

runs of SPEA, IGA and IMOEA in solving the wdbc data set. The results are similar

in the other data sets. The results indicate that IMOEA is an efficient MOEA and

can converge to well-distributed and high-quality solutions, compared with SPEA.

The reason is due to that the large number of decision variables poses difficulties

for SPEA to converge to Pareto-optimal solutions in a limited time. On the contrary,
IMOEA utilized IC, GPSIFF and elitism to cope with the large parameter optimiza-

tion problem efficiently.

4.5. IMOEA-designed 1-nn classifier vs. DROP5 and C4.5

Due to different aims and merits of classifiers, the performance of the proposed

approach cannot be directly compared with those of non-1-nn classifiers in justice.

However, some performance comparisons with a decision-tree classifier C4.5 release
8 [27], DROP5 [28] are given to demonstrate the merits of the proposed approach. In

this section, C4.5 release 8 algorithm with pruned tree and default parameters is

used. For each data set, the training set is used for training, and then the classifica-

tion accuracy is measured by the test set. Two trails using (V1,V2) and (V2,V1) are

(training, test) data sets are performed. The average classification accuracy, data

and feature reduction ratios of DROP5 and the C4.5 are reported in Table 5. The

classification accuracy of DROP5 and C4.5 are used as the baseline classification

accuracy. The data reduction ratio of DROP5 is used as the baseline data reduction
ratio.
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Due toMOEAs� nature, IMOEA tries to optimize the three objectives and tends to
obtain widespread solutions on all the three objectives. Considering onlyP1-nn, it is not

fair to perform t-test on all the classification accuracy of the IMOEA-designed classi-

fiers to the baseline classification accuracy. Therefore, Eq. (4) is adopted as a simple

decision making model to select a solution from a set of non-dominated solutions.
First, for each run of IMOEA, all the non-dominated solutions are measured using

the training set byEq. (4). Then,P1-nn of the best solution ismeasured using the test set.

Table 5 reports the results of DROP5 and C4.5. Table 6 reports the results of the

t-test on the classification accuracy of the selected IMOEA-designed classifiers using

a = 0.5 with DROP5 and the C4.5 classifiers. Table 6 shows that the classification
Table 5

Results of average classification accuracy, data reduction ratio and feature reduction ratio on DROP5 and

C4.5

Data set DROP5 C4.5

P1-nn Drd (%) Frd (%) P1-nn Drd (%) Frd (%)

cmc 0.4888 28.31 100 0.5050 100 100.00

glass 0.6692 30.29 100 0.6730 100 77.78

haberman 0.7256 13.72 100 0.7160 100 66.67

heartc 0.5418 19.86 100 0.5420 100 96.15

iris 0.9200 20.67 100 0.9265 100 37.50

liver-disorder 0.5883 30.14 100 0.6580 100 100.00

new-thyroid 0.9210 12.56 100 0.9255 100 80.00

pima 0.7227 20.18 100 0.7055 100 87.50

sonar 0.7694 27.36 100 0.7405 100 16.67

wdbc 0.9367 8.97 100 0.9170 100 21.67

wine 0.9439 12.35 100 0.9320 100 26.92

Average 0.7480 20.40 100 0.7492 100 64.62

Table 6

Results of t-test on the classification accuracy of the selected IMOEA-designed classifiers, the C4.5

classifiers and DROP5, with 29 degrees of freedom at the 0.05 the significance level

Data set IMOEA (a = 0.5) t-test

P1-nn Deviation DROP5 C4.5

cmc 0.4461 0.0103 Lose Lose

glass 0.6698 0.0183 Equal Equal

haberman 0.6891 0.0176 Lose Lose

heartc 0.5340 0.0159 Lose Lose

iris 0.9400 0.0174 Win Win

liver-disorder 0.5872 0.0237 Equal Lose

new-thyroid 0.9464 0.0153 Win Win

pima 0.6711 0.0155 Lose Lose

sonar 0.8001 0.0199 Win Win

wdbc 0.9426 0.0073 Win Win

wine 0.9306 0.0158 Lose Equal

The solutions of IMOEA are selected using Eq. (4) with a = 0.5.



Table 7

Results of average data and feature reduction ratio on the IGA-designed classifiers, and the selected

IMOEA-designed classifiers

Data set IGA IMOEA (a = 0.5)

Drd (%) Frd (%) Drd (%) Frd (%)

cmc 47.15 32.67 41.48 14.67

glass 37.88 16.67 27.95 11.11

haberman 25.54 39.67 22.50 35.67

heartc 38.30 15.77 33.52 8.69

iris 4.52 33.00 6.47 25.00

liver-disorder 36.56 25.83 26.25 17.83

new-thyroid 13.88 24.00 9.52 20.00

pima 36.60 27.25 30.75 15.63

sonar 33.00 13.68 23.69 2.45

wdbc 24.96 20.27 18.58 5.27

wine 12.99 11.15 7.19 7.69

Average 28.31 23.63 22.54 14.91

The solutions of IMOEA are selected using Eq. (4) with a = 0.5.
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accuracy of the selected IMOEA-designed classifiers are good in four data sets, but

are inferior to the baseline classification accuracy in five data sets. Table 7 reports the

data and the feature reduction ratios of IMOEA-designed classifiers and IGA-de-

signed classifiers. It shows that the selected IMOEA-designed classifiers offer smaller

data and feature reduction ratios than those of the IGA-designed classifiers. Com-

pare the data reduction ratios of the selected IMOEA-designed classifiers with those

of DROP5 in Table 5, it shows that the selected IMOEA-designed classifiers offer

smaller data reduction ratios than those of DROP5 in small data sets, but bigger
data reduction ratios than those of DROP5 in large data sets. Compare the feature

reduction ratios of the selected IMOEA-designed classifiers in Table 7 with those of

the C4.5 classifiers in Table 5, it shows that the selected IMOEA-designed classifiers

offer smaller feature reduction ratios than those of the C4.5 classifiers. The simula-

tion results indicate that the proposed approach can achieve better data and feature

reduction ratios without losses in generalization accuracy.

If the first preference of practitioners is classification accuracy, fine tuning of can

select solutions with better classification accuracy than those of the selected solutions
using a = 0.5. Other multi-criteria decision making techniques [18], such as fuzzy
multi-criteria decision making, can be used to select a suitable solution for practitio-

ners, instead of using the simple decision making model. If the first preference is the

data reduction ratio, a large value Neval should be given for a data set with a large

number of instances.

4.6. Summary

From the comparison studies, it reveals that the merits of the IMOEA-designed

1-nn classifiers are:
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(1) Generality. For practitioners, tuning weight values for high performance of the

weighted-sum approaches in solving a classification problem is not required.

Weight tuning for different classification problems is not necessary, too.

(2) Effectiveness. High-quality and widespread solutions can be obtained, compared

with some existing methods in terms of classification accuracy, the size of refer-
ence set and the size of feature set.

(3) Economy. The training computation cost is less than the weighted-sum

approaches with multiple experiments.

(4) Flexibility. A set of non-dominated solutions can be generated in a single run of

IMOEA. A satisfactory solutions can be fast obtained by given preferences from

practitioners, without performing another run of EAs.
5. Conclusion

In this paper, we have proposed an approach to designing optimal 1-nn classifiers

using a novel intelligent multi-objective evolutionary algorithm IMOEA with intel-

ligent crossover based on orthogonal experimental design. The proposed approach

cope with the weight tuning problem for practitioners. It has been shown empirically

that the IMOEA-designed classifiers have high performance, compared with the
IGA-based and SPEA-based classifiers in terms of classification accuracy, the size

of reference set and the size of feature set. Moreover, IMOEA provides a set of solu-

tions for practitioners to choose from. IMOEA can be easily applied without using

domain knowledge to efficiently design 1-nn classifiers with high-dimensional pat-

terns with overlapping. The simulation results indicate that the IMOEA-based ap-

proach is a good alternative method to design nearest neighbor classifiers,

compared with some existing approaches.
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