
Design of an optimal nearest neighbor classifier using
an intelligent genetic algorithm

Shinn-Ying Ho *, Chia-Cheng Liu, Soundy Liu

Department of Information Engineering, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung 407, Taiwan

Received 13 August 2001; received in revised form 22 October 2001

Abstract

The goal of designing an optimal nearest neighbor classifier is to maximize the classification accuracy while mini-

mizing the sizes of both the reference and feature sets. A novel intelligent genetic algorithm (IGA) superior to con-

ventional GAs in solving large parameter optimization problems is used to effectively achieve this goal. It is shown

empirically that the IGA-designed classifier outperforms existing GA-based and non-GA-based classifiers in terms of

classification accuracy and total number of parameters of the reduced sets. � 2002 Elsevier Science B.V. All rights

reserved.
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1. Introduction

The nearest neighbor (1-nn) classifier is com-
monly used due to its simplicity and effectiveness
(e.g., Kuncheva and Bezdek, 1998; Kuncheva and
Jain, 1999). According to 1-nn rule, an input is
assigned to the class of its nearest neighbor from a
stored labeled reference set. The goal of designing
an optimal 1-nn classifier is to maximize the clas-
sification accuracy while minimizing the sizes of
both the reference and feature sets. It has been
recognized that the editing of the reference set and
feature selection must be simultaneously deter-
mined when designing the compact 1-nn classifier

with high classification power. Genetic algorithms
(GAs) have been shown to be effective for ex-
ploring NP-hard or complex non-linear search
spaces as efficient optimizers relative to computer-
intensive exhaustive search (e.g., Goldberg, 1989).
Kuncheva and Jain (1999) proposed a genetic
algorithm (KGA) for simultaneous editing and
feature selection to design 1-nn classifiers. KGA
was found to be an expedient solution compared
to editing followed by feature selection, feature
selection followed by editing, and the individual
results from feature selection and editing. The
investigated problem of designing an optimal 1-nn
classifier is described as follows (e.g., Kuncheva
and Jain, 1999):

Let X ¼ fX1; . . . ;Xng be the set of features de-
scribing objects as n-dimensional vectors x¼½x1;...;
xn�T in Rn and let Z¼fz1;...;zNg, zj2Rn, be the data
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set. Associated with each zj, j¼1;...;N , is a class
label from the set C¼f1;...;cg. The criteria of
editing and feature selection are to find subsets
S1�Z and S2�X such that the classification ac-
curacy is maximal and the number Np of parame-
ters of the reduced set is minimal, where Np¼
cardðS1ÞcardðS2Þ and cardð
Þ denotes cardinality.
Define P1-nnðS1;S2Þ as the classification accuracy of
the 1-nn classifier using S1 and S2 as a real-valued
function

P1-nn : P ðZÞ � P ðX Þ : ! ½0; 1�;
where P ðZÞ is the power set of Z and PðX Þ is the
power set of X. The optimization problem is how
to search for S1 and S2 in the combined space such
that P1-nn is maximal and Np is minimal. Essen-
tially, this is a bi-criteria combinatorial opti-
mization problem having an NP-hard search space
of CðN þ n; cardðS1Þ þ cardðS2ÞÞ instances (e.g.,
Horowitz et al., 1997), i.e., the number of ways
of choosing cardðS1Þ þ cardðS2Þ out of N þ n
parameters (0/1 decision variables), and two in-
commensurable and often competing objectives:
maximum of P1-nn and minimum of Np. Gener-
ally, the parameter number N þ n is large. De-
spite having been successfully used to solve many
optimization problems, conventional GAs cannot
efficiently solve large parameter optimization
problems (LPOPs). In this paper, a novel intelli-
gent genetic algorithm (IGA) (e.g., Ho et al., 1999)
superior to conventional GAs in solving LPOPs is
used to solve the problem of designing an optimal
1-nn classifier. It will be shown empirically that the
IGA-designed classifier outperforms existing GA-
based and non-GA-based classifiers in terms of
both P1-nn and Np.

IGA uses an intelligent crossover (IC) based on
orthogonal experimental design (OED). Sections 2
and 3 briefly introduce OED and IC. Section 4
presents the design of optimal 1-nn classifiers using
IGA. Section 5 reports the experimental results
and Section 6 brings the conclusion.

2. Orthogonal experimental design

Experiments are carried out by researchers or
engineers in all fields to compare the effects of

several conditions or to discover something new. If
an experiment is to be performed efficiently, a
scientific approach to planning it must be consid-
ered. The statistic design of experiments is the
process of planning experiments so that appro-
priate data will be collected, the minimum number
of experiments will be performed to acquire the
necessary technical information, and suitable sta-
tistic factor analysis methods will be used to ana-
lyze the collected data.

An efficient way to study the effect of several
factors simultaneously is to use OED based on
orthogonal arrays (OAs) and factor analysis. OAs
are used to provide the treatment settings at which
one conducts the ‘‘all-factors-at-one’’ statistical
experiments (e.g., Mori, 1995). Many design ex-
periments use OAs for determining which combi-
nations of factor levels or treatments to use for
each experimental run and for analyzing the data.
The OA-based experiments can provide near-
optimal quality characteristics for a specific ob-
jective. Furthermore, there is a large saving in the
experimental effort.

OA is a matrix of numbers arranged in rows
and columns where each row represents the levels
of factors in each run and each column represents
a specific factor. In the context of experimental
matrices, orthogonal means statistically indepen-
dent. The properties of OA are: (1) For the factor
in any column, every level occurs the same number
of times. (2) For the two factors in any two col-
umns, every combination of two levels occurs the
same number of times. (3) If any two columns of
an OA are swapped or some columns are ignored,
the resulting array is still an OA. (4) The selected
combinations used in OA experiments are uni-
formly distributed over the whole space of all
possible combinations.

The major reason for using OAs rather than
other possible arrangements in robust designs is
that OAs allow the individual factor (also known
as main) effects to be rapidly estimated, without
the fear of distortion of results by the effects of
other factors. Factor analysis can evaluate the ef-
fects of factors on the evaluation function, rank
the most effective factors, and determine the best
level for each factor such that the evaluation is
optimized.
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OED is certainly not mere observation of an
uncontrolled and random process. Rather, they
are well-planned and controlled experiments in
which certain factors are systematically set and
modified. OED specifies the procedure of drawing
a representative sample of experiments with the
intention of reaching a sound decision. Therefore,
OED, which makes uses of the efficient experi-
mental design and factor analysis, is regarded as a
systematic reasoning method.

3. Intelligent crossover

In the conventional crossover operations of
GA, two parents generate two children with a
combination of their chromosomes using a ran-
domly selected cut point. The merit of IC is that
the systematic reasoning ability of OED is incor-
porated in the crossover operator to economically
estimate the contribution of individual genes to a
fitness function, and consequently intelligently
pick up the better genes to form the chromosomes
of children. The high performance of IC arises
from that IC replaces the generate-and-test search
for children using a random combination of chro-
mosomes with a systematic reasoning search
method using an intelligent combination of se-
lecting better individual genes. Theoretically
analysis and experimental studies for illustrating
the superiority of IC with the use of OA and factor
analysis can be found in (e.g., Ho et al., 1999). A
concise example of illustrating the use of OA and
factor analysis can be found in (e.g., Ho et al.,
1999; Ho and Chen, 2001).

3.1. OA and factor analysis

A two-level OA used in IC is described as fol-
lows. Let there be c factors with two levels for each
factor. The total number of experiments is 2c for
the popular ‘‘one-factor-at-a-time’’ study. The
columns of two factors are orthogonal when the
four pairs, ð1; 1Þ, ð1; 2Þ, ð2; 1Þ, and ð2; 2Þ, occur
equally frequently over all experiments. Generally,
levels 1 and 2 of a factor represent selected genes
from parents 1 and 2, respectively. To establish an
OA of c factors with two levels, we obtain an in-
teger x ¼ 2dlog2 ðcþ1Þe, build an orthogonal array
Lxð2x�1Þ with x rows and ðx � 1Þ columns, use the
first c columns, and ignore the other ðx � c � 1Þ
columns. Table 1 illustrates an example of OA
L8ð27Þ. The algorithm of constructing OAs can be
found in (e.g., Leung and Wang, 2001). OED
can reduce the number of experiments for fac-
tor analysis. The number of OA experiments re-
quired to analyze all individual factors is only x or
OðcÞ.

After proper tabulation of experimental results,
the summarized data are analyzed to determine
the relative effects of various factors. Let yt de-
note the positive function evaluation value of ex-
periment t, t ¼ 1; 2; . . . ;x. Let Yt ¼ ytð1=ytÞ if the
objective function is to be maximized (minimized).
Define the main effect of factor j with level k as
Sjk:

Sjk ¼
Xx

t¼1

Y 2
t Ft; ð1Þ

where Ft ¼ 1 if the level of factor j of experiment t
is k; otherwise, Ft ¼ 0. Notably, the main effect

Table 1

Orthogonal array L8(2
7)

Experiment

number

Factor Function

evaluation value1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 y1
2 1 1 1 2 2 2 2 y2
3 1 2 2 1 1 2 2 y3
4 1 2 2 2 2 1 1 y4
5 2 1 2 1 2 1 2 y5
6 2 1 2 2 1 2 1 y6
7 2 2 1 1 2 2 1 y7
8 2 2 1 2 1 1 2 y8
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reveals the individual effect of a factor. The most
effective factor j has the largest main effect differ-
ence (MED) jSj1 � Sj2j. If Sj1 > Sj2, the level 1 of
factor j makes a better contribution to the opti-
mization function than level 2 does. Otherwise,
level 2 is better.

After the better level of each factor is deter-
mined, an intelligent combination consisting of
factors with better levels can be efficiently derived.
OED is effective for development design of efficient
search for the intelligent combination of factor
levels, which can yield a best or near-best function
evaluation value among all values of 2c combina-
tions.

3.2. IC operator

A candidate solution consisting of 0/1 decision
variables to an optimization problem is encoded
into a chromosome using binary codes. One gene
(variable) of a chromosome is regarded as a factor
of OED. If values of a specific gene in two parent
chromosomes are the same, i.e., all equal to value
0/1, this gene is not necessary to participate the IC
operation. Two parents breed two children using
IC at a time. Let the number of participated genes
in a parent chromosome be c. How to use OA and
factor analysis to achieve IC is described as the
following steps:

Step 1: Select the first c columns of OA
Lxð2x�1Þ where x ¼ 2dlog2 ðcþ1Þe.

Step 2: Let levels 1 and 2 of factor j represent
the jth variable of a chromosome coming from the
parents 1 and 2, respectively.

Step 3: Evaluate the fitness function values yt
for experiment t where t ¼ 1; 2; . . . ;x.

Step 4: Compute the main effect Sjk where
j ¼ 1; 2; . . . ; c and k ¼ 1; 2.

Step 5: Determine the better level for each
variable. Select level 1 for the jth factor if Sj1 > Sj2.
Otherwise, select level 2.

Step 6: The chromosome of the first child is
formed from the intelligent combination of the bet-
ter genes from the derived corresponding parents.

Step 7: Rank the most effective factors from
ranks 1 to c. The factor with large MED has
higher rank.

Step 8: The chromosome of the second child is
formed similarly as the first child except that the
variable with the lowest rank adopts the other level.

Step 9: The best and the second best individuals
among the two parents and two generated children
based on fitness performance are used as the final
children of IC for the elitist strategy.

It takes about x ¼ 2dlog2 ðcþ1Þe fitness evaluations
for performing an IC operation. The value c for
each IC operation would gradually decrease when
evolution proceeds with a decreasing number of
non-determinate variables. This behavior can
helpfully cope with the large parameter optimiza-
tion problem of simultaneous editing and feature
selection.

4. IGA-designed 1-nn classifier

4.1. Chromosome encoding and fitness function

The feasible solution S corresponding to the
reduced reference and feature sets is encoded using
a binary string consisting of N þ n bits and rep-
resenting two sets: S1 � Z and S2 � X . The first
N bits are used for S1, and the last n bits for S2. The
i-th bit has value 1 when the respective element of
Z/X is included in S1=S2, and 0 otherwise. The
search space consists of 2ðNþnÞ points.

The fitness function F ðSÞ using a counting es-
timator (e.g., Raudys and Jain, 1990) and a pen-
alty term as a soft constraint on the total
cardinality of S1 and S2 is defined as follows:

maximize F ðSÞ ¼
Xm
j¼1

hCEs ðvjÞ

� aðcardðS1Þ þ cardðS2ÞÞ; ð2Þ
where a is a weight. The classification accuracy is
measured on a validation set V ¼ fv1; . . . ; vmg,
different from the training set Z. If vj is correctly
classified on S by 1-nn rule, hCEs ðvjÞ ¼ 1, and 0
otherwise.

4.2. IGA

Conventional GA (e.g., KGA) which is called
simple genetic algorithm (SGA) consists of five
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primary operations: initialization, evaluation, se-
lection, crossover, and mutation. IGA can be sim-
ply the same as SGA with elitist strategy in
initialization, evaluation, selection, and mutation
operations. IGA with IC in the proposed approach
is described as follows:

Step 1: Initialization. Randomly generate an
initial population with Npop individuals.

Step 2: Evaluation. Evaluate the fitness func-
tion values of all individuals.

Step 3: Selection. Use the rank selection that
replaces the worst PsNpop individuals with the best
PsNpop individuals to form a new population,
where Ps is a selection probability.

Step 4: Crossover. Randomly select PcNpop in-
dividuals to perform IC, where Pc is a crossover
probability.

Step 5: Mutation. Apply the conventional bit-
inverse mutation operator to the population using
a mutation probability Pm. The best individual is
retained without being subject to the mutation
operation.

Step 6: Termination test. If a prespecified ter-
mination condition is met, end the algorithm.
Otherwise, go to Step 2.

Although different control parameter specifica-
tions of GA may result in different performances
of the designed classifiers, IGA uses the same
control parameters as KGA herein to illustrate its
simplicity and efficiency of designing 1-nn clas-
sifiers. The control parameters of KGA are as
follows: Npop ¼ 10, Pc ¼ 1:0, and Pm ¼ 0:1; the
number of 1’s in the initial population is around
80% of all bit values generated; and the elitist se-
lection strategy is used. The control parameters of
IGA are as follows: Npop ¼ 10, Ps ¼ 0, Pc ¼ 1:0,
and Pm ¼ 0:1. Since a larger number of fitness
evaluations than that of KGA is needed for one
crossover operation, the terminal conditions of
both IGA and KGA use the same number of fit-
ness evaluations.

The presented IGA is an efficient general-pur-
pose algorithm for solving large parameter opti-
mization problems. That is, IGA is not specially
designed for solving the investigated design prob-
lem of nearest neighbor classifiers. The effective-

ness of IGA with the used control parameters is
discussed as follows. The population size is very
small (Npop ¼ 10) and the best individual in the
population can surely participate the crossover
operation (Pc ¼ 1:0). In addition, a bit represent-
ing one decision variable is treated as a factor,
which is the smallest evaluation unit to be inher-
ited. Therefore, conventional selection step can be
disabled (Ps ¼ 0) that still results in high perfor-
mance. Since two offspring chromosomes of IC
may differ by just one bit, the diversity of popu-
lation would be decreased if Ps 6¼ 0. On the other
hand, a high mutation rate (Pm ¼ 0:1) would in-
crease the diversity of population. Note that the
best individual is retained without being subject to
the mutation operation. OA specifies a small
number of combinations that are uniformly dis-
tributed over the whole space of all possible
combinations, which equals the solution space if a
bit is treated as a factor. Therefore, factor analysis
of OED can economically explore the entire solu-
tion space and consequently IGA can obtain a
global optimal or near-optimal solution.

5. Experiments

Two experiments are used to demonstrate the
effectiveness of IGA in designing an optimal 1-nn
classifier. In Experiment 1, the same two data sets
used in KGA are tested to verify the superiority of
IGA. In Experiment 2, various generated data sets
are applied to KGA and IGA for demonstrating
the capability of solving the problem of designing
1-nn classifiers with high-dimensional patterns
with overlapping. Two data sets are described as
follows:

(1) The SATIMAGE data from ELENA data-
base (anonymous ftp at ftp.dice.ucl.ac.be, directory
pub/neural-nets/ELENA/databases): 36 features, 6
classes, 6435 data points with 3 different training-
validation-test splits of the same size: 100/200/
6135.

(2) A generated data set (e.g., Jain and Zongker,
1997) with some extensions: J features, 2 classes,
10 different samplings with training-validation-test
sizes as 100/200/1000. The classes were equiprob-
able, distributed as:
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p1ðxÞ � Nðl1; IÞ p2ðxÞ � Nðl2; IÞ;

where

l1 ¼ �l2 ¼
1ffiffiffi
1

p ;
1ffiffiffi
2

p ; . . . ;
1ffiffiffi
J

p
� �T

;

I ¼ 1; . . . ; 4; J 2 f20; 40; 60; 80; 100g:

5.1. Experiment 1

In this experiment, the SATIMAGE, and the
generated data set with I ¼ 1 and J ¼ 20 are used.
The average convergences of KGA and IGA using
a ¼ 0:04 are shown in Fig. 1. The experimental

results using IGA are reported in Tables 2 and 3,
compared with those of the Pareto-optimal sets
without considering IGA. For the SATIMAGE
data, the Pareto-optimal set is fWþHþ SFS;
KGA;Wþ SFS; SFSg and for the generated data,
fWþHþ SFS;KGA; SFSþWg, where H (Hart’s
condensed nearest neighbor rule, Hart, 1968) and W
(Wilson’s method, Wilson, 1972) are two basic
methods for editing, and SFS is the Sequential
Forward Selection method (Stearns, 1976). The
sign þ means a combination of two methods. The
scatterplots of IGA, KGA, and some non-GA-
based methods are shown in Fig. 2. All the results
of non-IGA methods are gleaned from the litera-

Fig. 1. The comparisons of convergences of KGA and IGA: (a) SATIMAGE data, (b) generated data.

Table 2

Average results with the SATIMAGE data (three experiments)

Method Testing error (%) CardðS1Þ CardðS1Þ Np Pareto-optimality

All 17.87 100 36 3600 Dominated

SFS 17.54 100 14.67 1467 Dominated

WþSFS 17.68 78.33 14.67 1149 Dominated

WþHþ SFS 18.83 12 11 132 Dominated

KGA 18.09 27 10.33 279 Dominated

IGA 16.28 17.66 6.0 106 Pareto-optimal

Table 3

Average results with the generated data (10 experiments)

Method Testing error (%) CardðS1Þ CardðS2Þ Np Pareto-optimality

All 11.94 100 20 2000 Dominated

WþHþ SFS 10.95 20 9.7 194 Dominated

SFSþW 8.41 91.1 13.9 1266 Dominated

KGA 9.17 26.28 8.64 227 Dominated

IGA 7.3 11.66 9.0 105 Pareto-optimal
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ture (e.g., Kuncheva and Jain, 1999). The reported
results of various methods are cited here to dem-
onstrate the high performance of the proposed
method in optimally designing compact 1-nn
classifiers with high classification power. That the
solution of IGA dominated all solutions of the
existing methods reveals that IGA outperforms all
participated methods.

5.2. Experiment 2

In this experiment, the generated data sets with
various I and J values are used to compare the
performances of IGA and KGA. The terminal
conditions of IGA and KGA use 10 000 fitness
evaluations. It is well recognized that the weight a
may affect the performance of the designed clas-
sifier when using the weighted-sum approach for
solving the bi-criteria optimization problem. We
demonstrate the superiority of IGA to KGA using

various a values. An efficient generalized multi-
objective evolutionary algorithm (e.g., Ho and
Chang, 1999) without using weights based on OA
and factor analysis can also be used to effectively
solve the investigated problem for obtaining a set
of Pareto-optimal solutions.

The generated data sets with I ¼ 2 and J ¼ 20
for various a values are tested and the experi-
mental results are reported in Table 4. The ex-
perimental results using the generated data sets
with a ¼ 0:04 and J ¼ 100 for various I values
(overlapping degrees) are reported in Table 5. The
experimental results using the generated data
sets with a ¼ 0:04 and I ¼ 4 for various J values
(dimensionalities) are reported in Table 6. IGA
outperforms KGA in terms of fitness value, clas-
sification error, and the number of parameters (Np)
for various a, I, and J values. These results reveal
that the IGA-based method can robustly handle
high-dimensional patterns with overlapping. Of

Fig. 2. Scatterplot of various methods: (a) SATIMAGE data, (b) generated data.
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course, domain knowledge, heuristics, and a spe-
cific set of IGA parameters can further improve
the performance.

6. Conclusions

In this paper, we have proposed a method of
designing an optimal 1-nn classifier using a novel
IGA with an IC based on orthogonal experimen-
tal design. Since the solution space is large and
complex, IGA superior to conventional GAs is
successfully used to solve the large parameter op-
timization problem. It has been shown empirically

that the IGA-designed classifier outperforms ex-
isting GA-based and non-GA-based classifiers in
terms of classification accuracy and total number
of parameters of the reduced sets. Furthermore,
IGA can be easily used without domain knowl-
edge to efficiently design 1-nn classifiers with high-
dimensional patterns with overlapping.
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Table 5

Average results with the generated data for various I values

Method KGA IGA FIGA=FKGA

I FKGA Error (%) CardðS1Þ CardðS1Þ Np FIGA Error (%) CardðS1Þ CardðS1Þ Np

1 191.6 12.1 48.0 49.0 2352 197.8 9.0 40.0 14.3 572 1.03

2 176.9 26.4 49.0 44.7 2190 191.2 23.5 47.0 22.0 1034 1.08

3 164.0 30.0 50.3 49.0 2468 182.9 26.3 49.0 29.3 1436 1.12

4 160.8 34.0 47.0 50.7 2383 183.8 31.3 46.7 25.7 1200 1.14

Table 6

Average results with the generated data for various J values

Method KGA IGA FIGA=FKGA

J FKGA Error (%) CardðS1Þ CardðS1Þ Np FIGA Error (%) CardðS1Þ CardðS1Þ Np

40 167.3 33.9 20.3 47.7 968 174.8 32.2 21.3 25.7 547 1.04

60 165.7 35.1 25.0 44.3 1108 177.7 31.3 30.3 26.7 809 1.07

80 170.1 34.5 37.6 44.7 1681 185.9 31.2 41.3 26.7 1103 1.09

100 160.8 34.0 47.0 50.7 2383 183.8 31.3 46.7 25.7 1200 1.14

Table 4

Average results with the generated data for various a values

Method KGA IGA

a Fitness

FKGA

Error

(%)

CardðS1Þ CardðS1Þ Np Fitness

FIGA

Error (%) CardðS1Þ CardðS1Þ Np

0.1 177.0 17.6 12.1 38.1 461 180.6 17.5 15.1 19.2 290

0.2 174.1 19.2 7.2 37.1 267 180.0 18.2 11.1 14.2 158

0.3 172.3 21.9 12.1 30.1 364 178.3 16.5 12.3 17.1 210

0.4 166.6 18.7 10.1 31.2 315 172.3 17.9 11.2 14.1 158

0.5 162.5 21.2 13.1 28.1 368 172.0 14.2 10.1 10.2 103

0.6 157.6 23.7 8.3 25.2 209 169.8 18.4 7.1 15.1 107

0.7 154.6 19.2 11.1 21.1 234 167.3 14.5 9.1 12.2 111

0.8 159.8 23.4 9.2 20.3 187 166.3 13.1 10.1 12.1 122

0.9 152.3 18.9 10.1 24.2 244 161.1 18.4 10.1 11.1 112
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