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Abstract

Nearest neighbor classi®ers demand signi®cant computational resources (time and memory). Editing of the reference

set and feature selection are two di�erent approaches to this problem. Here we encode the two approaches within the

same genetic algorithm (GA) and simultaneously select features and reference cases. Two data sets were used: the

SATIMAGE data and a generated data set. The GA was found to be an expedient solution compared to editing

followed by feature selection, feature selection followed by editing, and the individual results from feature selection and

editing. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The nearest neighbor classi®er (1-nn)
(Dasarathy, 1990; Duda and Hart, 1973) is intu-
itive and accurate. According to 1-nn, an input is
assigned to the class of its nearest neighbor from
a stored labeled reference set. The main problem
using 1-nn is the signi®cant time and memory
resources that are required. With the develop-
ments of modern computational technology
(faster hardware, higher memory capacity), this
problem is likely to become less severe. On the
other hand, however, larger data sets are being
collected, stored and processed (e.g., in medical

imaging) and the 1-nn computational demand is
still a problem.

Let X � fX1; . . . ;Xng be the set of features
describing objects as n-dimensional vectors
x � �x1; . . . ; xn�T in Rn and let Z � fz1 . . . ; zNg;
zj 2 Rn, be the data set. Associated with each
zj; j � 1; . . . ;N , is a class label from the set
C � f1; . . . ; cg.

Two ways of reducing the operational time of 1-
nn are to structure the reference set properly or to
use fast search methods. Here we focus on two other
ways: editing and feature selection, and their simul-
taneous application. Instead of Z we use a subset
S1 � Z, and instead of X we use S2 � X . Fig. 1 shows
the reduction of Z, both row-wise and column-wise.

To ®nd a reduced set we use a genetic algorithm
(GA). Section 2 outlines editing and feature se-
lection, Section 3 describes our GA, Section 4
contains the experimental results and Section 5
o�ers some conclusions.
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2. Feature selection and editing

In this study we use two basic methods for ed-
iting: Hart's condensed nearest neighbor rule (Hart,
1968) and Wilson's method (Wilson, 1972). For
feature selection we use the Sequential Forward
Selection (SFS) method (Stearns, 1976). The three
algorithms are outlined in Figs. 2±4. Hart's algo-
rithm guarantees zero resubstitution errors on Z
using S1 as the reference set (S1 is called a consis-
tent subset of Z). Hart's method tends to retain
objects along the classi®cation boundaries. The

resultant set S1 depends on the ordering of the el-
ements of Z. In contrast to this, Wilson's method
rules out from Z objects which are misclassi®ed
(presumably the boundary objects!), retaining
those which are likely to belong to their own
Bayes-optimal classi®cation region. The selected
subset does not depend on the order of the ele-
ments in Z. None of these two methods has any
restriction on the cardinality of the resulting set S1.

Because of the peaking e�ect in feature selec-
tion, it is possible to ®nd a subset S2 � X such that
the classi®cation accuracy of 1-nn (P1-nn) using
only S2, is higher than that using all of X. SFS is a
simple and yet e�ective algorithm, although not
guaranteeing optimality of the solution, nor even
close sub-optimality. Ties in the classi®cation ac-
curacy are possible to occur because P1-nn is cal-
culated as the ``apparent error rate'' (i.e., the
proportion of correctly classi®ed elements of Z)
and is, therefore, discrete.

Although both data editing and feature selec-
tion aim at data reduction while trying to keep the
classi®cation accuracy as high as possible, their
semantics and therefore search strategies are dif-
ferent. For example, SFS starts with the best single
feature and adds one feature at a time. This
strategy is not applicable for data editing: First,
there cannot be any ``best data point'' to start
with. Second, feature selection searches through a

Fig. 2. Hart's condensing algorithm.

Fig. 1. Editing and feature selection for the 1-nn classi®er.
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smaller set (2n, the cardinality of the power set of
X) than editing (2N , the cardinality of the power
set of Z; usually N > n). Therefore, methods for
feature selection, like the groups of sequential
forward and backward selection (SFS, SBS)
(Stearns, 1976) and the extentions thereof (Pudil et
al., 1994) are not applicable for editing, nor are
editing search strategies applicable for feature se-
lection.

The opportunity to combine the two ap-
proaches lies in the fact that they use the same
criterion function: the classi®cation accuracy. Let
P�Z� be the power set of Z (the data set) and P�X �
be the power set of X (the feature set). We consider
the Cartesian product of the two power sets and
de®ne P1-nn as a real-valued function

P1-nn : P�Z� �P�X � :! �0; 1�:

Let S1 � Z and S2 � X . Then P1-nn�S1; S2� is the
classi®cation accuracy of the nearest neighbor
classi®er using S1 as the reference set and S2 as the
feature set. The problem now is how to search in
the combined space.

3. Genetic algorithms for simultaneous editing and

feature selection

There are controversies about applying Genetic
Algorithms (GAs) for feature selection. Some au-
thors ®nd them very useful (Chtioui et al., 1998;
Leardi, 1994, 1996; Sahiner et al., 1996; Siedlecki

Fig. 4. Sequential Forward (feature) Selection algorithm.

Fig. 3. Wilson's editing algorithm.
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and Sklansky, 1989), while others are skeptical
(Pudil et al., 1994) and warn that the results are
often not as good as expected, compared with
other (simpler!) feature selection algorithms (Jain
and Zongker, 1997).

Using GAs for data editing is suggested in
(Kuncheva, 1995, 1997). Although GAs do not
guarantee optimality of the solution, it was found
that they are an expedient editing technique (Ku-
ncheva and Bezdek, 1998).

In this study we propose to use a genetic algo-
rithm for simultaneous editing and feature selec-
tion. Three advantages of this idea are:
· The encoding of the problem is straightforward.
· Unlike many feature selection algorithms, GAs

do not assume monotonicity of the criterion
(®tness) function.

· Unlike many editing techniques, GAs have a
number of tuning parameters.

The usual problem with GAs is the long time to get
to a good solution. Notice that, in terms of real
application of the 1-nn classi®er, the GA is applied
in the training phase (o�-line), and the operational
time of 1-nn depends on the GA result.

The encoding of the problem is straightforward.
We believe that GAs are most suitable for binary
search problems, such as editing and feature se-
lection. The search space in our ``joint'' problem
consists of 2�N�n� elements. Each chromosome S is
a binary string consisting of N � n bits and rep-
resenting 2 sets: S1 � Z and S2 � X . The ®rst N bits
are used for S1, and the last n bits for S2. The ith bit
has value 1 when the respective element of Z=X is
included in S1=S2, and 0 otherwise. For example,
the chromosome corresponding to the reduced set
Z in Fig. 1 (data points z3; z5; z6; z8 and features
X2;X3;X5;X6) is

S � �0 0 1 0 1 1 0 1 0 0 1 1 0 1 1�:

As the ®tness function we use P1-nn and a pen-
alty term as a soft constraint on the total cardi-
nality of S1 and S2.

F �S� � P̂1-nn�S� ÿ a
�card�S1� � card�S2��

�N � n� ;

where a is a coe�cient. The classi®cation accuracy
is measured on a validation set, di�erent from the

training set Z. We assume that the reader is fa-
miliar with the basics of GAs, so only the speci®c
features are listed below:
· population size� 10;
· initialization probability� 0.8 (the number of

1's in the initial population is around 80% of
all bit values generated);

· terminal number of generations� 100;
· the whole population is taken as the mating set;
· 5 couples are selected at random (repetitions are

permitted) to produce 10 o�spring chromo-
somes (probability of crossover� 1.0);

· probability of mutation� 0.1;
· selection strategy: elitist, i.e., the current popu-

lation and the 10 o�springs are pooled and
the ``®ttest'' 10 survive as the next population.

4. Experiments

We used 2 data sets:
1. The SATIMAGE data from ELENA database

(anonymous ftp at ftp.dice.ucl.ac.be, directory
pub/neural-nets/ELENA/databases): 36 fea-
tures, 6 classes, 6435 data points with 3 di�erent
training±validation±test splits of the same size:
100/200/6135.

2. A generated data set (see Jain and Zongker,
1997): 20 features, 2 classes, 10 di�erent samp-
lings with training±validation±test sizes as 100/
200/1000. The classes were equiprobable, dis-
tributed as p1�x� � N�l1; I� and p2�x� �
N�l2; I�, where

l1 � ÿl2 �
1���
1
p ;

1���
2
p ; . . . ;

1�����
20
p

� �T

:

The experiments carried out are displayed in
Table 1. The editing and feature selection tech-
niques (the 4th row in the table) were applied in
the given order. For example, SFS + W means that
we ®rst apply the SFS procedure for feature se-
lection, and then Wilson's editing method with the
so reduced feature set. The results expressed as
error rates on the testing set and the number of
parameters retained (card�S1�; card�S2�; and their
product), averaged over 3 experiments with
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SATIMAGE and 10 experiments with the gener-
ated data, are presented in Tables 2 and 3.

Figs. 5 and 6 show the scatterplot of the
methods with respect to: the logarithm of the
number of parameters (the fewer, the better) and
the testing classi®cation error (1ÿ P1-nn, the smal-
ler, the better). The number of parameters of the
reduced set is calculated as card�S1� � card�S2�.
Points that are close to the origin of the coordinate

system are more desirable than those at a greater
distance. Considering the two criteria: high P1-nn

and low card�S1� � card�S2�, a Pareto-optimal set
of results can be de®ned for each of the two data
sets. Included in a Pareto-optimal set are the non-
dominated methods. A method is called non-
dominated if there is no other method from the
original set which is better on both criteria, or
equivalent on the one and better on the other
criterion. Methods in the Pareto-optimal sets are
marked with ``P'' in the last columns of Tables 2
and 3 and shown with a thick line in Figs. 5 and 6.
For the SATIMAGE data, the Pareto-optimal set
is f�W�H� � SFS; GA; W� SFS; SFSg and
for the generated data, f�W�H� � SFS; GA;
SFS�Wg.

5. Discussion and conclusions

Hart's method was originally designed for
®nding a consistent subset, not taking general-
ization into consideration. It is not surprising
then, that the method on its own, and various
combinations thereupon did not show high test-
ing accuracy in our experiments. The combined
editing (W + H) followed by feature selection
provides a compact data set but the classi®cation

Table 2

Averaged results with the SATIMAGE data (3 experiments)

Method Error (%) card�S1� card�S2� Total # Pareto-optimality

of parameters

All 17.87 100 36 3600

H 21.59 37.33 36 1344

W 18.97 78.33 36 2820

W + H 21.23 12 36 432

SFS 17.54 100 14.67 1467 P

H + SFS 20.65 38 14.33 545

W + SFS 17.68 78.33 14.67 1149 P

W + H + SFS 18.83 12 11 132 P

SFS + H 21.06 34.33 14 481

SFS + W 18.60 80.33 14.67 1178

SFS + W + H 19.84 12.67 14.67 186

GA 18.09 27 10.33 279 P

Table 1

1-nn experiments with the two data sets

Original set No editing, no feature selection

Editing Hart's condensing method (H)

(Hart, 1968)

Wilson's editing method (W)

(Wilson, 1972)

W followed by H (W + H)

Feature selection Sequential forward selection (SFS)

Editing and H + SFS

feature selection W + SFS

(separate) W + H + SFS

SFS + H

SFS + W

SFS + W + H

GA Simultaneous editing and feature

selection
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accuracy is not very high compared to other
methods in the experiment. Di�erent combina-
tions of SFS and Wilson's method appeared in
the two Pareto-optimal sets. They have a com-
paratively high accuracy but also a large number
of parameters. GAs turn out to be a good com-
promise with both high accuracy and a moderate
number of parameters and can be favored as the
best choice.

Discussion

Szir�anyi: Observing that the population size of
10 is rather low and the mutation probability is
high, to me it looks like a random search rather
than a genetic algorithm.

Kuncheva: True, this is a genetic algorithm that
deviates only slightly from random search. In fact,
random search would be my favorite strategy.

Table 3

Averaged results with the generated data (10 experiments)

Method Error (%) card�S1� card�S2� Total # of Pareto-

parameters optimality

All 11.94 100 20 2000

H 14.91 28.7 20 574

W 9.27 93.4 20 1868

W + H 12.62 20 20 400

SFS 9.59 100 13.9 1390

H + SFS 12.73 28.7 9.5 273

W + SFS 10.21 93.4 10.6 990

W + H + SFS 10.95 20 9.7 194 P

SFS + H 14.96 26.7 13.9 371

SFS + W 8.41 91.1 13.9 1266 P

SFS + W + H 11.94 14.6 13.9 203 P

GA 9.17 26.28 8.64 227 P

Fig. 5. Scatterplot of the methods for the SATIMAGE data.
Fig. 6. Scatterplot of the methods for the generated data.
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I could make the genetic algorithm more focused,
using a larger population, roulette wheel selection
and a smaller mutation rate, but I decided to try
this very basic and fast thing ®rst to see whether
there is any rabbit behind the bush.

Egmont-Petersen: First of all, the experiments
by Sklansky, published in Pattern Recognition
Letters in 1989 (Note of the editors: see (Siedlecki
and Sklansky, 1989) in this paper) also con®rm that
the genetic algorithm they used, leads to only very
minor improvements in the error rate. I just want
to con®rm that. I personally have good experience
with backward search. The reason is that back-
ward search takes all dependencies into account
when you start with the whole feature set. So, if
you have a very good classi®cation technique, you
include all dependencies, whereas if you do a se-
quential forward search, you do not take all these
mutual dependencies optimally into account, I
think. Could you comment on that?

Kuncheva: I think that Siedlecki and Sklansky
used a slightly di�erent criterion function. I did
not notice that they were not very happy with their
results. The second comment about the backward
search: using the nearest neighbour classi®er both
in forward selection and in backward selection, the
criterion is the accuracy of the nearest neighbour. I
found that it does not make much di�erence which
one is used. With other types of classi®er one of
the two, forward or backward selection, may be
better than the other.

Egmont-Petersen: It depends on how the de-
pendencies are taken into account. There is an-
other question: in your criterion function, you
have the same weight for all features. But some-
times, in practical classi®cation problems, some
features are much more di�cult to compute, much
more expensive than others. Can you always as-
sume that you can weigh them in this way?

Kuncheva: One may think of variations of the
criterion function. Of course you can use more
parameters (individual weights for the di�erent
features), but you have to make sure that you
choose proper values for these parameters in the
criterion function.

Pudil: I just want to make a little comment:
when you talked at the beginning about various
search strategies, you mentioned that the ¯oating
search strategy is the most e�cient one and you
referred to Jain and Zongker. This might lead to
the misleading conclusion that they developed it,
but that is not the case. I developed it and pub-
lished the algorithm; they just did the experimental
comparison study.

Kuncheva: Yes, I apologise for this. I know the
algorithm is due to you (Note of the editors: see
(Jain and Zongker, 1997; Pudil et al., 1994) in the
paper).
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