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Abstract The presence of noise in data is a common problem that produces several negative
consequences in classification problems. In multi-class problems, these consequences are
aggravated in terms of accuracy, building time, and complexity of the classifiers. In these
cases, an interesting approach to reduce the effect of noise is to decompose the problem
into several binary subproblems, reducing the complexity and, consequently, dividing the
effects caused by noise into each of these subproblems. This paper analyzes the usage of
decomposition strategies, and more specifically the One-vs-One scheme, to deal with noisy
multi-class datasets. In order to investigate whether the decomposition is able to reduce the
effect of noise or not, a large number of datasets are created introducing different levels and
types of noise, as suggested in the literature. Several well-known classification algorithms,
with or without decomposition, are trained on them in order to check when decomposition is
advantageous. The results obtained show that methods using the One-vs-One strategy lead
to better performances and more robust classifiers when dealing with noisy data, especially
with the most disruptive noise schemes.
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1 Introduction

Any classification problem [14,49] consists of m training examples, characterized by n
attributes Ai , i = 1, . . . , n that are either numerical or categorical, with Di their correspond-
ing domains. Thus, an example x is represented as an n-dimensional attribute vector

x = (x1, . . . , xn) ∈ D = D1 × · · · × Dn .

Each of these examples is labeled with one out of the M possible classes L={λ1, . . . , λM }.
Many current real-world classification problems, such as the classification of cancer tissues
[5] or the recognition of business documents [36], must distinguish between more than two
classes, that is, M > 2. These problems are formally known as multi-class classification
problems.

Classification algorithms aim to extract the implicit knowledge from previously known
labeled examples of the problem creating a model, called a classifier, which should be capa-
ble of predicting the class for new unobserved examples. For this reason, the classification
accuracy of a classifier is directly influenced by the quality of the training data used. Data
quality depends on several components [50], for example, the source and the input proce-
dure, inherently subject to errors. Real-world datasets usually contain corrupted data that
may hinder the interpretations, decisions, and therefore, the classifiers built from that data.

Usually, the more classes in a problem, the more complex it is. In multi-class learning,
the generated classifier must be able to separate the data into more than a pair of classes,
which increases the chances of incorrect classifications (in a two-class balanced problem,
the probability of a correct random classification is 1/2, whereas in a multi-class problem it
is 1/M). Furthermore, in problems affected by noise, the boundaries, the separability of the
classes, and therefore, the prediction capabilities of the classifiers may be severely hindered.

Given the loss of accuracy produced by noise, the need of techniques to deal with it has
been proved in previous works [9,23,56]. In the specialized literature, two ways have been
proposed in order to mitigate the effects produced by noise:

1. Adaptation of the algorithms to properly handle the noise [11,42]. These methods are
known as robust learners and they are characterized by being less influenced by noisy
data.

2. Preprocessing of the datasets aiming to remove or correct the noisy examples [8,18].

However, even though both techniques can provide good results, drawbacks exist. The
former depends on the classification algorithm, and therefore, the same result is not directly
extensible to other learning algorithms, since the benefit comes from the adaptation itself.
Moreover, this approach requires to change an existing method, which neither is always pos-
sible nor easy to develop. However, the latter requires the usage of a previous preprocessing
step, which is usually time-consuming. Furthermore, these methods are only designed to
detect an specific type of noise and hence, the resulting data might not be perfect [53]. For
these reasons, it is important to investigate other mechanisms, which could lead to decrease
the effects caused by noise without neither needing to adapt each specific algorithm nor
having to make assumptions about the type and level of noise present in the data.

When dealing with multi-class problems, several works [6,27] have demonstrated that
decomposing the original problem into several binary subproblems is an easy, yet accurate
way to reduce their complexity. These techniques are referred to as binary decomposition
strategies [32]. The most studied schemes in the literature are: One-vs-One (OVO) [27],
which trains a classifier to distinguish between each pair of classes, and One-vs-All (OVA)
[6], which trains a classifier to distinguish each class from all other classes. Both strategies

123



Analyzing the presence of noise in multi-class problems 181

can be encoded within the error-correcting output codes framework [4,13]. However, none of
these works provide any theoretical nor empirical results supporting the common assumption
that supposes a better behavior against noise of decomposition techniques (than not using
decomposition). Neither they show what type of noise is better handled by decomposition
techniques.

On this account, this paper analyzes the usage of the OVO strategy, which generally
outstands over OVA [15,16,24,43,45], and checks its suitability with noisy training data. It
should be mentioned that, in real situations, the existence of noise in the datasets is usually
unknown—therefore, neither the type nor the quantity of noise in the dataset can be known or
supposed a priori. Hence, tools which are able to manage the presence of noise in the datasets,
despite its type or quantity (or unexistence), are of great interest. If the OVO strategy (which
is a simple yet effective methology when clean1 datasets are considered) is also able to
properly (better than the baseline non-OVO version) handle the noise, its usage could be
recommended in spite of the presence of noise and without taking into account its type.
Furthermore, this strategy can be used with any of the existing classifiers which are able to
deal with two-class problems. Therefore, the problems of algorithm level modifications and
preprocessing techniques could be avoided, and if desired, they could also be combined.

In order to carry out the analysis, a thorough empirical study will be developed considering
several well-known learning algorithms having a very different behavior with noisy data:
two rule-based systems, which are considered robust to noise—C4.5 [42] and Repeated
Incremental Pruning to Produce Error Reduction (RIPPER) [11]—and an instance-based
learning method, which is considered very noise-sensitive—k-Nearest Neighbors (k-NN)
[35]—will be studied. Even though the theoretical robustness of these methods has been
previously studied [29,40,41], there is a lack of empirical studies analyzing the real behavior
of such methods when dealing with noisy data, particularly if the OVO decomposition is
used. Considering two different noise categories, class and attribute noise, 800 datasets will
be created [56]. Several noise schemes presented in the literature will be used to introduce
these types of noise [46,56–58] and a large number of noise levels—from 5 to 50 %, by
increments of 5 %—will be also studied. The differences between the OVO and non-OVO
(baseline) classifiers will be analyzed through an analysis of both the accuracy and the
robustness achieved on these datasets. The results obtained will be contrasted using the
proper statistical tests, as recommended in the specialized literature [12].

The experimental framework stated will allow us to extract a series of conclusions on
the effect of noise in multi-class problems and the usage of OVO in this scenario. We will
concrete the types of noise—class (random/pair) or attribute noise(random/Gaussian)—that
are more detrimental for the classifier performance and those where OVO provides a higher
advantage. We will also determine in which extent OVO helps robust and noise-sensitive
learners to deal with noisy data and the reasons of the increase of the robustness of such
methods when using OVO. All these conclusions will be presented in Sect. 7.

A web page with all the complementary material associated with this paper is available at
http://sci2s.ugr.es/ovo_noise, including the basic information of this paper, all the datasets
created, and the complete results obtained for each classification algorithm.

The rest of this paper is organized as follows. Section 2 presents an introduction to classifi-
cation with noisy data. Section 3 is devoted to the motivations for the usage of binary decom-
position strategies in multi-class classification problems and recalls the OVO decomposition
scheme. Next, Sect. 4 describes the experimental framework. Section 5 includes the analysis

1 We refer to clean and noise-free datasets to the original datasets without additional induced noise, despite
they might have noise, but it is not quantifiable, and hence it cannot be used to evaluate the robustness of the
methods against noise.
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of the results obtained by the classifiers on data with class noise, whereas Sect. 6 focuses on
attribute noise. Section 7 provides a summary including the conclusions that can be extracted
from the analysis of the results. Finally, Sect. 8 presents the concluding remarks.

2 Classification with noisy data

Real-world data are never perfect and often suffers from corruptions that may hinder the
analysis of the data and their interpretations, that is, the models extracted and hence the
decisions made on their basis. In classification, noise can negatively affect the system per-
formance in terms of classification accuracy, building time, size, and interpretability of the
classifier [55,56]. The presence of noise in the data may affect the intrinsic characteristics
of a classification problem, since these corruptions could introduce new properties in the
problem domain. For example, noise can lead to the creation of small clusters of examples
of a particular class in areas of the domain corresponding to another class, or it can cause
the disappearance of examples located in key areas within a specific class. The boundaries
of the classes and the overlapping between them are also factors that can be affected as a
consequence of noise. All these alterations difficult the knowledge extraction from the data
and spoil the models obtained using that noisy data when they are compared to the models
learned from clean data, which represent the real implicit knowledge of the problem [56].

The quality of a dataset is determined by a large number of components [50]. Among
them, the class labels and the attribute values are two sources influencing the quality of
a classification dataset. The quality of the class labels refers to whether the class of each
example is correctly assigned; the quality of the attributes refers to the capability to charac-
terize the examples for classification purposes. Two types of noise in a given dataset can be
distinguished based on these two information sources [52]:

1. Class noise (or labeling errors). It occurs when an example is incorrectly labeled. Class
noise can be attributed to several causes, such as subjectivity during the labeling process,
data entry errors, or inadequacy of the information used to label each example. Two types
of class noise can be distinguished:

– Contradictory examples. There are duplicate examples in the dataset having different
class labels [21].

– Misclassifications. Examples are labeled with other class label different from the real
one [57].

2. Attribute noise. It refers to corruptions in the values of one or more attributes. Examples
of attribute noise are: erroneous attribute values, missing or unknown attribute values,
and incomplete attributes or “do not care” values.

In this paper, class noise refers to misclassifications, whereas attribute noise refers to
the erroneous attribute values, because they are the most common in real-world data [56].
Furthermore, erroneous attribute values, unlike other types of attribute noise, such as missing
values [33] (which are easily detectable), have been less studied in the literature.

Treating class and attribute noise as corruptions of the class labels and attribute values,
respectively, has been also considered in other works in the literature [37,56]; for instance,
in [56], the authors reached a series of interesting conclusions, showing that attribute noise
is more harmful than class noise or that eliminating or correcting examples in datasets with
class and attribute noise, respectively, may improve classifier performance. They also showed
that attribute noise is more harmful in those attributes highly correlated with the class labels.
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Analyzing the presence of noise in multi-class problems 183

In [37], the authors checked the robustness of methods from different paradigms, such as
probabilistic classifiers, decision trees, instance-based learners or support vector machines,
studying the possible causes of their behaviors.

However, most of the works found in the literature are only focused on class noise. In
[7], the problem of multi-class classification in the presence of labeling errors was studied.
The authors proposed a generative multi-class classifier to learn with labeling errors, which
extends the multi-class quadratic normal discriminant analysis by a model of the mislabeling
process. They demonstrated the benefits of this approach in terms of parameter recovery as
well as improved classification performance. In [22], the problems caused by labeling errors
occurring far from the decision boundaries in multi-class Gaussian process classifiers were
studied. The authors proposed a robust multi-class Gaussian process classifier, introducing
binary latent variables that indicate when an example is mislabeled. Similarly, the effect of
mislabeled samples appearing in gene expression profiles was studied in [54]. A detection
method for these samples was proposed, which take advantage of the measuring effect of
data perturbations based on the support vector machine regression model. They also proposed
three algorithms based on this index to detect mislabeled samples. An important common
characteristic of these works, also considered in this paper, is that the suitability of the pro-
posals was evaluated on both real-world and synthetic or noisy-modified real-world datasets,
where the noise can be somehow quantified.

In order to model class and attribute noise, we consider four different synthetic noise
schemes found in the literature, in such a way that we can simulate the behavior of the
classifiers in the presence of noise:

1. Class noise usually occurs on the boundaries of the classes, where the examples have
similar characteristics—although it might occur on any other areas of the domain. In
this paper, class noise is introduced using a random class noise scheme [46] (randomly
corrupting the class labels of the examples) and a pairwise class noise scheme (labeling
examples of the majority class with the second majority class) [56,57]. Considering
these two schemes, the similarities between any pair of classes and only between the two
majority classes are simulated, respectively.

2. Attribute noise can proceed from several sources, such as transmission constraints, faults
in sensor devices, irregularities in sampling, and transcription errors [47]. The erroneous
attribute values can be totally unpredictable, that is, random, or they can imply a low
variation with respect to the correct value. We use a random attribute noise scheme
[56,58] and a Gaussian attribute noise scheme [44] in order to simulate each one of the
possibilities, respectively. We introduce attribute noise in accordance with the hypothesis
that interactions between attributes are weak [56]. As a result, the noise introduced
into each attribute has a low correlation with the noise introduced into the rest of the
attributes.

Robustness is the capability of an algorithm to build models that are insensitive to data
corruptions and suffer less from the impact of noise [25]. Thus, a classification algorithm is
said to be more robust than other one if the former builds classifiers which are less influenced
by noise than the latter, that is, more robust. In order to analyze the degree of robustness of the
classifiers in the presence of noise, we will compare the performance of the classifiers learned
with the original (without induced noise) dataset with the performance of the classifiers
learned using the noisy dataset. Therefore, those classifiers learned from noisy datasets being
more similar (in terms of results) to the noise-free classifiers will be the most robust ones.
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3 Addressing multi-class classification problems by decomposition

Multi-class classification problems are frequent in real-world classification tasks. Examples
of such problems are the classification of micro-arrays [30], electroencephalogram signals
[19] or texts [31], and audio streams [1]. These problems are more general and complex than
the special case of two classes, that is, binary classification problems.

In the literature, multi-class classifier learning has been overcome in two different ways
[32]: (1) adapting the internal operations of the learning algorithm and (2) decomposing the
multi-class problem into a set of easier to solve binary subproblems. The former embeds
the management of the multiple classes in the algorithm, whereas the latter aims to reduce
the complexity of the original problem by decomposing it into simpler binary subproblems.
In such a way, any binary classifier learning algorithm can be used as base learner, without
needing to adapt its learning procedure. The first alternative may be a very complex issue
[38]; therefore, it is common to use the decomposition alternative when the algorithms are
not easily adaptable, that is, suppor vector machines [48], but also when adaptations exist,
since its benefits have been proved [16].

3.1 Decomposition strategies for multi-class problems

Several motivations for the usage of binary decomposition strategies in multi-class classifi-
cation problems can be found in the literature [15,16,24,43]:

– The separation of the classes becomes easier (less complex), since less classes are consid-
ered in each subproblem [15,34]. For example, in [28], the classes in a digit recognition
problem were shown to be linearly separable when considered in pairs. A simpler alter-
native than learning a unique nonlinear classifier to separate all classes simultaneously.

– Classification algorithms, whose extension to multi-class problems is not easy, can
address multi-class problems using decomposition techniques [15].

– In [39], the advantages of the usage of decomposition was pointed out when the classifi-
cation errors for different classes have distinct costs. The binarization allows the binary
classifiers generated to impose preferences for some of the classes.

– Decomposition allows one to easily parallelize the classifier learning, since the binary
subproblems are independent and can be solved with different processors.

Dividing a problem into several new subproblems, which are then independently solved,
implies the need of a second phase where the outputs of each problem need to be aggregated.
Therefore, decomposition includes two steps:

1. Problem division. The problem is decomposed into several binary subproblems which are
solved by independent binary classifiers, called base classifiers [15]. Different decom-
position strategies can be found in the literature [32]. The most common one is OVO
[27].

2. Combination of the outputs [16]. The different outputs of the binary classifiers must
be aggregated in order to output the final class prediction. In [16], an exhaustive study
comparing different methods to combine the outputs of the base classifiers in the OVO and
OVA strategies is developed. Among these combination methods, the weighted voting
[26] and the approaches in the framework of probability estimates [51] are highlighted.

This paper focuses the OVO decomposition strategy due to the several advantages shown
in the literature with respect to OVA [15,16,24,43]:
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– OVO creates simpler borders between classes than OVA.
– OVO generally obtains a higher classification accuracy and a shorter training time than

OVA because the new subproblems are easier and smaller.
– OVA has more of a tendency to create imbalanced datasets which can be counterproduc-

tive [17,45].
– The application of the OVO strategy is widely extended and most of the software tools

considering binarization techniques use it as default [3,10,20].

3.2 One-vs-One decomposition scheme

The OVO decomposition strategy consists of dividing a classification problem with M classes
into M(M − 1)/2 binary subproblems. A classifier is trained for each new subproblem only
considering the examples from the training data corresponding to the pair of classes (λi , λ j )

with i < j considered.
When a new instance is going to be classified, it is presented to all the binary classifiers.

This way, each classifier discriminating between classes λi and λ j provides a confidence
degree ri j ∈ [0, 1] in favor of the former class (and hence, r ji is computed by 1 − ri j ). These
outputs are represented by a score matrix R:

R =

⎛
⎜⎜⎜⎝

− r12 · · · r1M

r21 − · · · r2M
...

...

rM1 rM2 · · · −

⎞
⎟⎟⎟⎠ (1)

The final output is derived from the score matrix by different aggregation models. The
most used and simplest combination, also considered in the experiments of this paper, is the
application of a voting strategy:

Class = arg max
i=1,...,M

∑
1≤ j �=i≤M

si j (2)

where si j is 1 if ri j > r ji and 0 otherwise. Therefore, the class with the largest number of
votes will be predicted. This strategy has proved to be competitive with different classifiers
obtaining similar results in comparison with more complex strategies [16].

4 Experimental framework

First, the base datasets used in the experiments are described (Sect. 4.1). Afterward, how the
noise is induced into them is explained (Sect. 4.2). The algorithms used as base classifiers
and their parameters are presented in Sect. 4.3. Finally, the methodology for the analysis of
the results is explained in Sect. 4.4.

4.1 Base datasets

The experimentation is based on twenty real-world multi-class classification problems from
the KEEL-dataset repository2 [2]. Table 1 shows the datasets sorted by the number of classes
(#CLA). Moreover, for each dataset, the number of examples (#EXA) and the number of
attributes (#ATT), along with the number of real, integer and nominal attributes (R/I/N) are

2 http://www.keel.es/datasets.php.
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Table 1 Summary description of the classification datasets

Dataset #CLA #EXA #ATT (R/I/N) Dataset #CLA #EXA #ATT (R/I/N)

Balance 3 625 4 (4/0/0) Flare 6 1,066 11 (0/0/11)

Contraceptive 3 1,473 9 (0/9/0) Glass 7 214 9 (9/0/0)

Iris 3 150 4 (4/0/0) Satimage 7 643 36 (0/36/0)

Newthyroid 3 215 5 (4/1/0) Segment 7 2,310 19 (19/0/0)

Splice 3 319 60 (0/0/60) Shuttle 7 2,175 9 (0/9/0)

Thyroid 3 720 21 (6/15/0) Ecoli 8 336 7 (7/0/0)

Vehicle 4 846 18 (0/18/0) Led7digit 10 500 7 (7/0/0)

Nursery 5 1,269 8 (0/0/8) Penbased 10 1,099 16 (0/16/0)

Page-blocks 5 547 10 (4/6/0) Yeast 10 1,484 8 (8/0/0)

Automobile 6 150 25 (15/0/10) Vowel 11 990 13 (10/3/0)

presented. Some of the largest datasets (nursery, page-blocks, penbased, satimage, splice,
and led7digit) were stratified at 10 % in order to reduce the computational time required for
training, given the large amount of executions carried out. For datasets containing missing
values (such as automobile or dermatology), instances with missing values were removed
from the dataset before the partitioning.

4.2 Introducing noise into datasets

In the datasets presented in the previous section, the initial amount and type of noise present
on them are unknown. Therefore, no assumptions about the base noise type and level can
be made. For this reason, these datasets are considered to be noise-free, in the sense that
no new noise has been induced. In order to control the amount of noise in each dataset and
to check how it affects the classifiers, noise is introduced into each dataset in a supervised
manner. Four different noise schemes, which are proposed in the specialized literature, are
used in order to introduce a noise level of x % into each dataset. The following procedures
are followed in order to induce the different noise schemes:

1. Introduction of class noise.

– Random class noise [46]. It supposes that exactly x % of the examples are corrupted.
The class labels of these examples are randomly changed by other one out of the M
classes.

– Pairwise class noise [56,57] . Being X the majority class and Y the second majority
class, an example with the label X has a probability of x/100 of being incorrectly
labeled as Y .

2. Introduction of attribute noise.

– Random attribute noise [56,58]. x % of the values of each attribute in the dataset
are corrupted. To corrupt an attribute Ai , approximately x % of the examples in the
data set are chosen, and their Ai value is assigned a random value from Di . A uniform
distribution is used either for numerical or nominal attributes.

– Gaussian attribute noise [44]. This scheme is similar to the random attribute noise,
but in this case, the Ai values are corrupted adding a random value to them following
a Gaussian distribution of mean = 0 and standard deviation = (max − min)/5,
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being max and min the upper and lower limits of Di , respectively. Nominal attributes
are treated as in the case of the random attribute noise.

In order to create a noisy dataset from an original noise-free dataset, the noise is introduced
into the training partitions as follows:

1. A unique identifier, that is, an index, is assigned to each example of the full original
dataset.

2. A level of noise x %, of either class noise (random or pairwise) or attribute noise (random
or Gaussian), is introduced into a copy of the full original dataset. Each example maintains
its identifier in this noisy copy.

3. Both datasets, the original one and the noisy copy, are partitioned into fivefolds. Each
one of the folds in the original dataset must have examples with the same identifiers that
the corresponding fold in the noisy copy.

4. The training partitions are built from the noisy copy (using 4 of the fivefolds), whereas
the test partitions are formed of instances from the original dataset (using the fold with
examples whose identifiers have not been considered in the training set).

Introducing noise into the training partitions while keeping the test partitions noise-free,
as performed in other works in the literature [56], allows one to observe how noisy data affect
the training process, observing how the test results are degraded depending on the type and
level of noise introduced. Furthermore, the robustness of the methods can be better studied
since the effects of noise are isolated in the training process.

The accuracy estimation of the classifiers in a dataset is obtained by means of 5 runs of a
stratified fivefolds cross-validation (5-fcv). Hence, a total of 25 runs per dataset, noise type,
and level are averaged. Each fold has a larger number of examples considering 5 partitions
than considering a higher number of partitions, for example, 10, which is desirable in multi-
class problems where some of the classes might be not represented in the test sets. Therefore,
the performance of each classifier built is evaluated with a larger number of examples in each
test set of the 5-fcv. This fact lets that little modifications in the classifier due to the effect
of noise on training sets to be shown better in test sets because we consider a larger number
of examples. Furthermore, performing 5 runs of each 5-fcv, the final results obtained are
stabilized.

A large collection of new noisy datasets are created from the aforementioned 20 base
datasets. Both types of noise are independently considered: class and attribute noise. For
each type of noise, the noise levels ranging from x = 0 % (base datasets) to x = 50 %, by
increments of 5 %, are studied. Therefore, 200 noisy datasets are created for each of the four
noise schemes. The total number of datasets in the experimentation is 820. Hence, considering
the 5 × 5fcv of the 820 datasets, 20,500 executions are carried out for each classifier (which
are repeated for the OVO and non-OVO versions). All these datasets are available on the web
page associated with this paper.

4.3 Algorithms and parameters

The choice of the learning algorithms—C4.5 [42], RIPPER [11], and k-NN [35]—has been
made on the basis of their good behavior in a large number of real-world problems and their
different characteristics against noise. They have been also considered in previous works
focused on noisy data [37,56]. Moreover, notice that all these learning methods are capable
of handling multiple classes inherently, which is needed in order to be comparable against
the usage of the OVO strategy.
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Table 2 Setup of the parameters for the classification algorithms

Rule-based learning Instance-based learning

C4.5 RIPPER k-NN

Confidence: c = 0.25 Folds: f = 3 Neighbors: k = 3, 5

Min. instances per leaf: i = 2 Optimizations: r = 2 Distance: HVDM

Pruned tree

C4.5 and RIPPER are considered robust learners tolerant to noisy data. Both use pruning
strategies to reduce the chances of classifiers to be affected by noisy instances from the
training data [40,41]. However, when the noise level is relatively high, even these robust
learners may obtain a poor performance. Regarding k-NN, it is known to be more sensitive
to noise than other learning algorithms. Furthermore, the value of k determines a higher or
lower sensitivity to noise [29], since a larger value of k usually implies a lower influence on
the prediction of the closest potential noisy examples. In this manner, this paper studies the
effect of noise on the performance of robust and noise-sensitive learners, and more specifically
focusing on multi-class problems, it compares their baseline results with respect to the usage
of the OVO strategy. Hence, we check whether the advantages usually attributed to OVO are
maintained in the presence of noise or not; in such a way, we provide an in-depth study of
these cases (Sects. 5, 6) followed by a thorough explanation of the results (Sect. 7).

The classification algorithms have been executed using the default parameters recom-
mended by the authors, which are shown in Table 2.

4.4 Methodology of analysis

In order to check the suitability of methods using OVO when dealing with noisy data, the
results of C4.5, RIPPER, 3-NN, and 5-NN with and without decomposition are compared
one another using three distinct properties:

1. The performance of the classification algorithms on the test sets for each level of induced
noise defined as its accuracy rate. For the sake of brevity, only averaged results are shown
(the rest can be found on the web page associated with this paper), but it must be taken into
account that our conclusions are based on the proper statistical analysis, which considers
all the results (not averaged).

2. The relative loss of accuracy (RLA) (Eq. 3) is used to measure the percentage of variation
of the accuracy of the classifiers in a concrete noise level with respect to the original case
with no additional noise:

RLAx % = Acc0 % − Accx %

Acc0 %
, (3)

where RLAx % is the relative loss of accuracy at a noise level x %, Acc0 % is the test
accuracy in the original case, that is, with 0 % of induced noise, and Accx % is the test
accuracy with a noise level x %.

3. Box-plots are used to easily analyze the distribution of the RLA values. The values of the
median and the interquartile range, along with its size, can provide a good approximation
about the robustness of the methods over all the datasets. Thus, a method with a lower
median and a lower and more compact interquartile range will be always preferable, since
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its behavior with new noisy datasets is more similar in accuracy to that obtained with the
original dataset.

In order to properly analyze the performance and RLA results, the Wilcoxon’s signed rank
statistical test is used, as suggested in the literature [12]. This is a nonparametric pairwise test
that aims to detect significant differences between two sample means, that is, the behavior of
the two algorithms involved in each comparison. For each type and noise level, the OVO and
non-OVO versions will be compared using Wilcoxon’s test and the p values associated with
these comparisons will be obtained. The p value represents the lowest level of significance
of a hypothesis that results in a rejection and it allows one to know whether two algorithms
are significantly different and the degree of their difference. We will consider a difference
to be significant if the p value obtained is lower than 0.1—even though p values slightly
higher than 0.1 might be showing important differences. We study both, performance and
robustness, because the conclusions reached with one of these metrics necessary not imply
the same conclusions with the other one.

5 Analysis of the OVO strategy with class noise

In this section, the performance and robustness of the classification algorithms using the
OVO decomposition with respect to its baseline results when dealing with data suffering
from class noise are analyzed. Section 5.1 is devoted to the study of the random class noise
scheme, whereas Sect. 5.2 analyzes the pairwise class noise scheme. The results obtained for
each single dataset can be found on the web page associated with this paper.

5.1 Random class noise scheme

Table 3 shows the test accuracy and RLA results for each classification algorithm at each
noise level along with the associated p-values between the OVO and the non-OVO version
from the Wilcoxon’s test. The few exceptions where the baseline classifiers obtain more ranks
than the OVO version in the Wilcoxon’s test are indicated with a star next to the p value.

From these results, the following points can be highlighted:

– The test accuracy of the methods using OVO is higher at all the noise levels. Moreover,
the low p values show that this advantage in favor of OVO is significant.

– The RLA values of the methods using OVO are lower than those of the baseline methods
at all noise levels. These differences are also statistically significant as reflected by the
low p values. Only at some very low noise levels—5 and 10 % for C4.5 and 5 % for 5-
NN—the results between the OVO and the non-OVO version are statistically equivalent,
but notice that the OVO decomposition does not hinder the results, simply the loss is not
lower.

Figure 1 shows the distribution of the RLA results of each algorithm at each noise level on
datasets with random class noise. For all the classification algorithms, these graphics show
that the medians of the RLA results of the OVO approach are much lower with respect to
those of non-OVO. Moreover, the interquartile range is generally lower and more compact
for OVO. Therefore, when noise randomly affects the class labels, the suitability of the
OVO decomposition is proved to be advantageous. The binary decomposition of the problem
provides better predictions. Hence, OVO is more robust against this type of class noise,
obtaining a greater performance and a lower RLA result. This may be attributed to the
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Table 3 Test accuracy, RLA results, and p values on datasets with random class noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.13 82.14 73.51 80.82 81.00 82.93 81.65 83.14

10 80.50 81.71 71.30 79.86 80.00 82.29 81.01 82.56

15 79.37 81.39 68.52 78.41 78.76 81.49 80.39 82.13

20 78.13 80.27 66.71 77.35 76.91 80.01 79.55 81.36

25 76.96 79.54 64.26 76.25 75.15 78.99 78.43 80.58

30 75.22 78.87 62.91 74.98 73.24 77.39 77.21 79.82

35 73.35 77.89 60.48 73.40 70.82 75.30 75.48 78.28

40 71.10 76.88 58.32 72.12 68.18 73.08 73.82 76.83

45 67.96 75.74 56.18 69.98 64.90 70.27 70.86 74.93

50 64.18 73.71 53.79 67.56 61.66 66.98 68.04 72.73

p values (%)

0 – – – –

5 0.0206 0.0001 0.0003 0.0033

10 0.0124 0.0001 0.0001 0.0036

15 0.0008 0.0001 0.0001 0.0137

20 0.0028 0.0001 0.0004 0.0017

25 0.0010 0.0001 0.0002 0.0032

30 0.0002 0.0001 0.0003 0.0013

35 0.0003 0.0001 0.0008 0.0028

40 0.0002 0.0001 0.0005 0.0111

45 0.0003 0.0001 0.0019 0.0019

50 0.0001 0.0001 0.0028 0.0008

RLA value

Results (%)

0 – – – –

5 0.66 0.73 6.04 1.59 1.07 0.57 0.63 0.38

10 1.56 1.28 9.35 2.79 2.27 1.33 1.46 1.12

15 3.01 1.65 13.13 4.56 3.96 2.34 2.37 1.67

20 4.63 3.15 15.44 5.86 6.20 4.15 3.48 2.67

25 6.12 3.98 18.89 7.23 8.37 5.33 4.87 3.61

30 8.36 4.90 20.74 8.82 10.78 7.27 6.40 4.53

35 10.77 6.11 23.97 10.76 13.48 9.74 8.46 6.38

40 13.46 7.41 26.72 12.35 16.79 12.35 10.30 8.11

45 17.30 8.86 29.70 15.05 20.74 15.79 14.12 10.48

50 21.87 11.29 32.74 18.10 24.51 19.64 17.47 13.12

p values (%)

0 – – – –

5 0.7369* 0.0003 0.0040 0.6012
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Table 3 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.5257 0.0001 0.0017 0.1354

15 0.0025 0.0001 0.0012 0.0731

20 0.0304 0.0001 0.0004 0.0479

25 0.0017 0.0001 0.0005 0.0522

30 0.0006 0.0001 0.0005 0.0124

35 0.0003 0.0001 0.0025 0.0276

40 0.0001 0.0001 0.0012 0.0333

45 0.0002 0.0001 0.0022 0.0057

50 0.0001 0.0001 0.0036 0.0015

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(c) (d)

Fig. 1 Box-plots representing the distribution of the RLA results on datasets with random class noise

division of the mislabeled examples, hindering in this way only some classifiers. As these
classifiers are only a part of the global system, they do not affect as much as in the original
case.
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5.2 Pairwise class noise scheme

The pairwise class noise results are shown in Table 4. The test accuracy and RLA of each
classification algorithm at each noise level are presented. The associated p values between
the OVO and non-OVO version of each algorithm are also shown. The following points can
be concluded:

– The test accuracy of the methods using OVO is statistically better—as shown by the
p values—than those of non-OVO at almost all noise levels. C4.5 and RIPPER at a
noise level of 50 % are exceptions: with C4.5, both OVO and non-OVO, are statistically
equivalent; with RIPPER, the non-OVO version is statistically better. In the last part of
this subsection, we try to obtain an explanation to these results.

– Attending to the RLA results:

– C4.5 with OVO is only statistically better at intermediate noise levels 15–20 %. Both
methods are statistically equivalent in the rest of noise levels—except at the maximum
noise level, 50 %, where non-OVO is statistically better. But having equivalent RLA,
OVO performs statistically better in most of the cases.

– Both versions of RIPPER, with and without OVO, are statistically equivalent at all
noise levels—except at the maximum noise level 50 % where non-OVO is statistically
better.

– 3-NN and 5-NN with OVO present better RLA results. The lower p-values are gen-
erally obtained from 20 to 25 % of noise. Other levels of noise are also remarkable
with 5-NN, as 5 %.

Figure 2 shows the distribution of RLA results with pairwise class noise. These graphics
show similar conclusions to those obtained from the analysis of the RLA results and the
corresponding p-values:

– At the lowest noise levels, C4.5 and RIPPER using OVO are slightly better than non-OVO
(attending to their medians and interquartile ranges). However, from 30 % on (C4.5) and
from 25 % on (RIPPER), the methods using OVO are more detrimental than those not
using it.

– 3-NN and 5-NN with and without OVO are much more similar, but OVO is better at some
noise levels.

These results show that OVO achieves more accurate predictions when dealing with this
type of noise; however, it is not so advantageous with C4.5 or RIPPER as with k-NN in terms
of robustness when noise only affects one class. For example, the behavior of RIPPER with
this noise scheme can be related to the hierarchical way in which the rules are learned: it starts
learning rules of the class with the lowest number of examples and continues learning those
classes having more examples. When introducing this type of noise, RIPPER might change
its training order, but the remaining part of the majority class can still be properly learned,
since it has now more priority. Moreover, the original second majority class, now with noisy
examples, will probably be the last one to be learned and it would depend on how the rest of
the classes have been learned. Decomposing the problem with OVO, a considerable number
of classifiers will have a notable quantity of noise—those of the majority and the second
majority classes and hence, the tendency to predict the original majority class decreases—
when the noise level is high, it strongly affects the accuracy, since the majority has more
influence on it.
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Table 4 Test accuracy, RLA results, and p values on datasets with pairwise class noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.40 82.24 76.94 81.71 81.24 83.02 81.78 83.19

10 80.94 81.86 75.94 80.71 80.65 82.36 81.42 82.82

15 80.43 81.71 75.64 80.32 79.25 80.97 80.49 81.94

20 79.82 81.03 74.77 79.62 77.75 79.65 79.41 81.01

25 78.96 80.28 73.89 78.67 75.88 77.71 77.55 79.08

30 78.49 79.26 73.38 78.05 73.53 75.47 75.29 76.81

35 77.41 78.28 71.89 76.42 71.24 73.18 72.92 74.50

40 76.17 76.91 71.60 76.19 68.77 70.89 69.89 71.65

45 73.45 74.26 70.73 74.04 66.55 68.48 67.13 68.83

50 63.63 63.52 67.11 65.78 64.11 65.86 64.02 65.52

p values (%)

0 0.0070 0.0002 0.0522 0.0930

5 0.025 0.0001 0.0152 0.0228

10 0.0033 0.0003 0.0019 0.0137

15 0.0022 0.0003 0.0036 0.0090

20 0.0017 0.0002 0.0005 0.0022

25 0.0008 0.0005 0.0012 0.0015

30 0.0090 0.0001 0.0045 0.0100

35 0.0366 0.0013 0.0002 0.0032

40 0.0276 0.0003 0.0015 0.0040

45 0.0333 0.0333 0.0022 0.0072

50 0.5016* 0.0930* 0.0008 0.0057

RLA value

Results (%)

0 – – – –

5 0.30 0.56 1.17 0.48 0.74 0.44 0.48 0.34

10 0.91 1.01 2.38 1.72 1.25 1.22 0.89 0.82

15 1.62 1.25 2.58 2.17 2.88 2.81 2.05 1.88

20 2.39 2.13 3.52 3.03 4.69 4.33 3.29 2.93

25 3.52 3.13 4.58 4.22 6.75 6.58 5.48 5.22

30 4.16 4.49 5.13 4.84 9.57 9.09 8.05 7.81

35 5.50 5.69 6.77 6.82 12.12 11.76 10.76 10.41

40 7.01 7.38 7.25 7.12 15.03 14.29 14.37 13.68

45 10.38 10.65 8.28 9.70 17.57 17.01 17.53 16.86

50 21.03 22.28 12.22 18.75 20.23 20.00 21.06 20.67

p values (%)

0 – – – –

5 0.2043* 0.2790 0.2954 0.1354
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Table 4 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.8721* 0.3317 0.3507 0.3507

15 0.0304 0.3507 0.2043 0.5503

20 0.0859 0.4781 0.2959 0.0674

25 0.3317 0.9702 0.1005 0.0620

30 0.6813 0.6542 0.2471 0.3507

35 0.7652 0.6542* 0.0674 0.1913

40 0.6274 0.6274* 0.1169 0.0793

45 0.7369 0.1169* 0.1259 0.0522

50 0.0400* 0.0001* 0.0731 0.0620

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(d)(c)

Fig. 2 Box-plots representing the distribution of the RLA results on datasets with pairwise class noise

In contrast with the rest of noise schemes, with this noise scheme, all the datasets have
different real percentages of noisy examples at the same noise level of x %. This is because
each dataset has a different number of examples of the majority class, and thus a noise
level of x % does not affect all the datasets in the same way. In this case, the percentage of
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Table 5 Noise levels—remarked with gray—where the RLA results of OVO are better that those of the
non-OVO version

noisy examples with a noise level of x % is computed as (x · Nmaj)/100, where Nmaj is the
percentage of examples of the majority class.

Therefore, in order to deepen in the analysis of the robustness results with this noise
scheme, the RLA results on each single dataset must be studied. With this aim, Table 5
shows for each dataset, remarked in gray, those noise levels where the OVO version obtains
better RLA results than the non-OVO version. The datasets appearing in this table are
sorted by their percentage of examples of the majority class (Nmaj). Noise affects adja-
cent datasets similarly—since close datasets have similar percentages of noisy examples at
the same noise level of x %. Thus, those datasets and noise levels where OVO works better
are easily identified.

From this table, several conclusions can be drawn:

– C4.5 and RIPPER with OVO have better RLA results on those dataset having a large
number of examples of the majority class.

– 3-NN and 5-NN with OVO have better RLA results, without being affected by the number
of examples of the majority class.

Therefore, following the previous analysis, we can state that when the noise only affects
one class, OVO clearly provides advantages in terms of the accuracy of the classifiers built.
However, methods using OVO are affected by noise in a similar way to those that do not use
OVO, that is, both have similar robustness, although OVO outstands at some noise levels. The
robustness of C4.5 and RIPPER with OVO is remarkable with those datasets having a large
number of majority class examples, that is, with those dataset where the noise percentage is the
highest. The robustness of k-NN methods is not so dependent on the number of examples of
the majority class, and the methods with OVO have better RLA results, which are distributed
more homogeneously.

6 Analysis of the OVO strategy with attribute noise

In this section, the performance and robustness of the classification algorithms using OVO
in comparison with its non-OVO version when dealing with data with attribute noise are
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analyzed. Section 6.1 is devoted to the study of the random attribute noise scheme, whereas
Sect. 6.2 analyzes the Gaussian attribute noise scheme.

6.1 Random attribute noise scheme

The test accuracy, RLA results, and p values of each classification algorithm at each noise
level are shown in Table 6. From these results, the following points can be highlighted:

– The test accuracy of the methods using OVO is always statistically better at all the noise
levels.

– The RLA values of the methods using OVO are lower than those of the baseline methods
at all noise levels—except in the case of C4.5 with a 5 % of noise level. Regarding the p
values, a clear tendency is observed, the p-value decreases when the noise level increases
with all the algorithms.

– With most of the methods—C4.5, RIPPER, and 5-NN—the p values of the RLA results at
the lowest noise levels (up to 20–25 %) show that the robustness of OVO and non-OVO
methods is statistically equivalent. From that point on, the OVO versions statistically
outperform the non-OVO ones. The case of 3-NN is even more favorable to OVO, since
only a high p value is found at the lowest noise level, i.e., 5 %.

Figure 3 shows the box-plots of RLA results. For all the classification algorithms and noise
levels, these graphics show that the medians of the RLA results of OVO are much lower with
respect those of non-OVO. Moreover, the interquartile range is also generally lower and more
compact for the methods using OVO.

Therefore, the usage of OVO is clearly advantageous in terms of accuracy and robustness
when noise affects the attributes in a random and uniform way. This behavior is particularly
notable with the highest noise levels, where the effects of noise are expected to be more
detrimental.

6.2 Gaussian attribute noise scheme

In Table 7, the test accuracy and RLA results of each classification algorithm at each noise
level, along with the associated p value between the OVO and non-OVO version of each
algorithm, are shown. From these results, the following conclusions can be pointed out:

– The test accuracy of the methods using OVO is better at all the noise levels. Moreover,
the low p values show that this advantage in favor of OVO is statistically significant.

– Regarding the RLA results, the p values show a clear decreasing tendency when the
noise level increases with all the algorithms. In the case of C4.5, OVO is statistically
better from a 35 % of noise level on, and in 3-NN from 20 % on. RIPPER and 5-NN
are statistically equivalent at all noise levels—although 5-NN with OVO obtains higher
Wilcoxon’s ranks.

It is important to note that in some cases, particularly in the comparisons involving RIP-
PER, some RLA results show that OVO is better than the non-OVO version in average but
the latter obtains more ranks in the statistical test—even though these differences are not
significant. This is due to the extreme results of some individual datasets, such as led7digit
or flare, in which the RLA results of the non-OVO version are much worse than those of the
OVO version. Anyway, we should notice that average results themselves are not meaning-
ful and the corresponding nonparametric statistical analysis must be carried out in order to
extract meaningful conclusions, which reflects the real differences between algorithms.
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Table 6 Test accuracy, RLA results, and p values on datasets with random attribute noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.26 82.10 77.18 81.50 80.90 82.53 81.01 82.45

10 80.31 81.65 76.08 80.85 79.23 81.52 79.81 81.34

15 79.39 80.83 74.83 80.03 78.31 80.22 78.97 80.31

20 78.71 80.27 73.95 79.15 76.99 79.20 77.63 79.38

25 77.54 79.64 72.77 78.11 75.36 77.71 76.58 77.96

30 76.01 78.25 71.25 77.06 73.37 76.05 74.68 76.46

35 74.55 77.42 70.05 76.15 71.62 74.28 73.05 75.01

40 73.58 76.19 68.66 74.56 69.62 72.66 71.29 73.65

45 71.79 75.21 67.64 73.35 67.56 70.56 69.26 71.53

50 70.49 73.51 65.50 71.66 65.88 69.15 67.72 70.07

p values (%)

0 0.0070 0.0002 0.0522 0.0930

5 0.0400 0.0012 0.0038 0.0100

10 0.0169 0.0003 0.0004 0.0910

15 0.0169 0.0001 0.0022 0.0707

20 0.0057 0.0003 0.0008 0.0015

25 0.0007 0.0005 0.0017 0.0080

30 0.0043 0.0001 0.0005 0.0112

35 0.0004 0.0001 0.0019 0.0032

40 0.0032 0.0001 0.0005 0.0006

45 0.0009 0.0002 0.0008 0.0012

50 0.0036 0.0007 0.0001 0.0011

RLA value

Results (%)

0 – – – –

5 0.50 0.74 0.97 0.80 0.98 0.94 1.39 1.20

10 1.82 1.32 2.56 1.62 3.45 2.23 3.03 2.62

15 3.02 2.41 4.24 2.69 4.31 3.82 3.97 3.87

20 3.88 3.11 5.46 3.77 5.85 4.99 5.72 5.03

25 5.48 3.87 7.10 5.13 7.96 6.87 6.94 6.80

30 7.54 5.77 9.20 6.42 10.71 9.01 9.57 8.76

35 9.38 6.70 10.89 7.57 12.65 11.12 11.57 10.49

40 10.64 8.25 12.81 9.64 15.22 12.98 13.73 12.08

45 13.04 9.60 14.13 11.24 17.91 15.72 16.34 14.85

50 14.74 11.74 17.21 13.33 19.96 17.40 18.14 16.55

p values (%)

0 – – – –

5 0.4115* 0.5016* 0.8813* 0.5755
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Table 6 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.4781 0.5755 0.1560 1.0000*

15 0.2471 0.3507 0.2627 0.9108

20 0.2471 0.1454 0.0930 0.1354

25 0.0930 0.2322 0.0620 0.5257

30 0.0304 0.0438 0.0124 0.1672

35 0.0015 0.0064 0.0333 0.0731

40 0.0569 0.0036 0.0100 0.0111

45 0.0137 0.0251 0.0064 0.0152

50 0.0152 0.0064 0.0008 0.0228

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(c) (d)

Fig. 3 Box-plots representing the distribution of the RLA results on datasets with random attribute noise

Figure 4 shows the distribution of the RLA results by means of box-plots. As in the case
of the random attribute noise, these graphics show that the medians and interquartile ranges
of the RLA results of OVO are much lower with respect to those of non-OVO.

123



Analyzing the presence of noise in multi-class problems 199

Table 7 Test accuracy, RLA results and p values on datasets with Gaussian attribute noise

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

Test accuracy

Results (%)

0 81.66 82.70 77.92 82.15 81.79 83.39 82.10 83.45

5 81.46 82.33 76.82 81.64 81.29 83.02 81.52 83.09

10 80.93 81.67 76.53 81.12 80.88 82.54 80.91 82.52

15 80.51 81.69 76.16 80.64 79.87 81.72 80.61 82.21

20 79.77 81.11 75.35 80.06 79.56 81.41 80.16 81.74

25 79.31 80.98 74.69 79.72 78.87 80.90 79.85 81.21

30 79.03 80.40 74.46 78.93 77.98 80.29 78.84 80.77

35 77.95 79.94 73.85 78.76 77.05 79.35 78.12 79.75

40 77.36 79.51 72.94 78.10 76.27 78.60 77.53 79.11

45 76.38 78.64 72.37 77.34 75.11 77.48 76.58 78.25

50 75.29 78.03 71.57 76.27 74.90 77.10 76.02 77.72

p values (%)

0 0.0070 0.0002 0.0522 0.0930

5 0.0442 0.0003 0.0033 0.0050

10 0.1262 0.0004 0.0089 0.0064

15 0.0152 0.0003 0.0033 0.0169

20 0.0048 0.0002 0.0033 0.0036

25 0.0019 0.0002 0.0100 0.0187

30 0.0051 0.0003 0.0008 0.0025

35 0.0007 0.0002 0.0036 0.0040

40 0.0019 0.0003 0.0025 0.1262

45 0.0004 0.0004 0.0017 0.0364

50 0.0004 0.0008 0.0019 0.0251

RLA value

Results (%)

0 – – – –

5 0.28 0.47 1.53 0.62 0.57 0.44 0.88 0.46

10 0.92 1.27 1.90 1.26 1.11 0.98 1.68 1.13

15 1.53 1.25 2.38 1.84 2.57 2.02 2.10 1.56

20 2.40 1.99 3.49 2.59 2.74 2.32 2.51 2.09

25 3.05 2.13 4.44 2.97 3.73 2.98 2.91 2.75

30 3.42 2.91 4.66 3.95 5.00 3.74 4.34 3.32

35 4.86 3.43 5.52 4.18 6.27 4.87 5.19 4.61

40 5.67 4.03 6.74 4.96 7.23 5.85 6.03 5.38

45 6.95 5.14 7.46 5.99 8.79 7.26 7.25 6.51

50 8.37 5.87 8.50 7.35 8.80 7.64 7.82 7.16

p values (%)

0 – – – –

5 0.3144* 0.5503 0.6274 0.4781
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Table 7 continued

C4.5 RIPPER 3-NN 5-NN

Base OVO Base OVO Base OVO Base OVO

10 0.0766* 0.8519* 0.9702 0.4115

15 0.5755 0.3507* 0.5016 0.4115

20 0.8405 0.9108* 0.1913 0.3905

25 0.3547 0.9702* 0.2627 0.9108

30 0.6542 0.2627* 0.1005 0.2627

35 0.1354 1.0000* 0.1169 0.3507

40 0.1169 0.3905 0.0620 0.9405

45 0.0930 0.9405* 0.0859 0.2471

50 0.0090 0.6542* 0.0731 0.2180

Those cases where the baseline classifiers obtain more ranks than the OVO version in the Wilcoxon’s test are
indicated with a *

(a) (b)

(d)(c)

Fig. 4 Box-plots representing the distribution of the RLA results on datasets with Gaussian attribute noise

Hence, the OVO approach is also suitable considering the accuracy achieved with this
type of attribute noise. The robustness results are similar between the OVO and non-OVO
versions with RIPPER and 5-NN. However, in C4.5 and 3-NN, there are statistical differences
in favor of OVO at the highest noise levels. The box-plots show that methods using OVO
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have a better and more homogeneous behavior with all the datasets, that is, methods using
OVO have a more similar behavior with noisy problems, whereas the robustness results are
much more unpredictable with the non-OVO methods. Hence, the behavior of the non-OVO
methods is much better with some particular datasets, whereas with others is much worse.
Nevertheless, regardless of the dataset considered, OVO is more stable with respect to its
robustness results.

7 OVO Decomposition and Noise Schemes: Lessons Learned

Attending to the accuracy and robustness results analyzed in the previous sections, several
conclusions can be extracted about the degree of disruptiveness of the different types of noise:

1. Class Noise. The random class noise scheme is much more disruptive than the pairwise
class noise scheme.

2. Attribute Noise. The random attribute noise scheme is more disruptive than the Gaussian
attribute noise scheme.

3. Class vs. Attribute Noise. The random class noise is clearly more disruptive than the
random attribute noise. The ranking of disruptiveness follows with the pairwise class
noise and the Gaussian attribute noise.

Regarding the behavior of the methods using the OVO decomposition when dealing with
the different noise types, the following points can be pointed out:

1. OVO & Class Noise. The methods using OVO have better classification accuracies at
the different noise levels. The robustness of the methods using OVO is more notable with
the random class noise scheme, although it also outstands with the pairwise class noise
scheme on those datasets with the highest percentages of noisy examples.

2. OVO & Attribute Noise. The usage of the OVO approach produces better accuracies
with both attribute noise schemes. The robustness results of OVO are remarkable with
the random attribute noise scheme, where the differences are larger due to its higher
disruptiveness.

3. OVO & Homogeneity of the Robustness Results. The box-plots representing the distri-
bution of RLA results show that methods using OVO are expected to have a more similar
behavior with problems suffering from noise, being generally more robust than methods
not using OVO.

The following remarks can be made about how the methods with a different noise tolerance
benefit from the usage of OVO:

1. OVO & Robust Learners. In spite of being robust learners, the performance of C4.5
and RIPPER with the more disruptive noise schemes—the random class noise scheme
and the random attribute noise scheme—is much more deteriorated as the noise level
increases if they do not use OVO. Therefore, the good behavior of both methods with OVO
considering standard datasets [16] remains with noisy datasets. Indeed, their differences
with respect to the baseline classifiers are increased.

2. OVO & Noise-sensitive Learners. k-NN methods also benefits from the usage of OVO.
The differences of robustness between the OVO and non-OVO version, although they are
generally in favor of OVO, are not so accentuated as in the case of the robust learners. With
the less disruptive noise schemes—the pairwise class noise and the Gaussian attribute
noise—RLA results of OVO and non-OVO are affected more similarly than in the case
of the random noise schemes, where the differences increases along with the noise level.
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Therefore, the methods using OVO obtain better performances than baseline methods
when noise is present in the data. Methods using OVO also generally create more robust
classifiers than baseline classifiers when the noise level increases, and particularly, with the
more disruptive noise schemes—random class noise and random attribute noise. We can
conclude that these results may be supported by the following hypotheses:

1. Distribution of the noisy examples in the subproblems. When decomposing the prob-
lem into several binary subproblems with OVO, the complexity of the original problem
decreases. As a consequence, noisy examples are divided into each subproblem, which
also decreases the effect of noise in each binary classifier, thereby having a lower influence
in the final performance.

2. Increase of the separability of the classes. The decomposition increases the separability
of the classes, since only one boundary must be established. The corruptions of noise in
these regions is less notable and the classifiers are less influenced.

3. Collecting information from different classifiers. The aggregation of the outputs from
the base classifiers produces more robust classifiers, since some fails can be corrected.
Besides, if a noisy example does not belong to one of both classes involved in the learning
of a classifier, the classifier will not be affected by that example, and its predictions will
not be hindered.

8 Concluding remarks

This paper analyzes the suitability of the usage of the OVO decomposition when dealing
with noisy training datasets in multi-class problems. A large number of noisy datasets have
been created considering different types, schemes, and levels of noise, as proposed in the
literature. The C4.5 and RIPPER robust learners and the noise-sensitive k-NN method have
been evaluated on these datasets, with and without the usage of OVO.

The results obtained have shown that the OVO decomposition improves the baseline clas-
sifiers in terms of accuracy when data are corrupted by noise in all the noise schemes studied.
The robustness results are particularly notable with the more disruptive noise schemes—the
random class noise scheme and the random attribute noise scheme—where a larger amount of
noisy examples and with higher corruptions are available, which produces greater differences
(with statistical significance).

Three hypotheses have been introduced aiming to explain the better performance and
robustness of the methods using OVO when dealing with noisy data: (1) the distribution of
the noisy examples in the subproblems, (2) the increase of the separability of the classes, and
(3) the possibility of collecting information from different classifiers.

As final remark, we must emphasize that one usually does not know the type and level
of noise present in the data of the problem that is going to be addressed. Decomposing a
problem suffering from noise with OVO has shown a better accuracy, higher robustness,
and homogeneity with all the classification algorithms tested. For this reason, the usage of
the OVO decomposition strategy in noisy environments can be recommended as an easy to
applicate, yet powerful tool to overcome the negative effects of noise in multi-class prob-
lems.

In future works, the synergy between OVO in combination with noise preprocessing
techniques will be studied in order to check its suitability to deal with noisy data. Moreover,
the behavior of OVO in different noisy frameworks must be studied, that is, where both the
training and the test sets are affected by noise.
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