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This paper introduces the generalized Egghe-indices as
a new family of scientific impact measures for ranking
the output of scientific researchers. The definition of
this family is strongly inspired by Egghe’s well-known
g-index. The main contribution of the paper is a fam-
ily of axiomatic characterizations that characterize every
generalized Egghe-index in terms of four axioms.

Introduction

A Brief Summary of Scientific Impact Indices

Jorge Hirsch (2005) proposed the h-index (or Hirsch-
index) as a tool for quantifying the scientific productivity
and the scientific impact of an individual researcher: “A sci-
entist has index h if h of his or her n articles have at least h
citations each, whereas the other n − h articles have at most
h citations each.”

The main strength (and perhaps the main weakness) of
the Hirsch-index is that it is a robust, very simple, and fairly
primitive indicator. It has attracted a lot of attention, and it
has been applied to a variety of areas; see for instance Ball
(2005), Cronin and Meho (2006), Glänzel (2006), Liu and
Rousseau (2007), Oppenheim (2007), and van Raan (2006).

Note that the h-index ignores the number of citations
to each individual publication beyond what is needed to
achieve a certain h-index. So what do we really know about
a researcher with an h-index of 5? Perhaps this researcher
is Professor X who has reached a meager total of 25 cita-
tions (5 papers with 5 citations). Or perhaps this researcher is
the famous Mister Y whose research has attracted more than
1000 citations (5 papers with 200 citations plus another 50
papers each with 5 citations). Since the h-index fails to sepa-
rate Professor X from Mister Y, Leo Egghe (2006a) proposed
the so-called g-index, which assigns more weight to highly
cited publications: “A scientist has index g if g is the largest
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integer such that his or her top g papers received together at
least g2 citations.”

Note that the g-index of Professor X is a low 5, whereas
the g-index of Mister Y equals a high 33. The g-index is con-
stantly gaining popularity and visibility, and it is discussed
by many authors; see for instance Egghe (2006b), Ruane and
Tol (2008), Schreiber (2007, 2008), and Tol (2008).

Marek Kosmulski (2006) has proposed yet another scien-
tific impact index, that usually is called the h2-index or the
Kosmulski-index: “A scientist has index k if the top k of his
or her n articles have at least k2 citations each, whereas the
remaining n − k articles have at most (k + 1)2 − 1 citations
each.”

Kosmulski (2006) states that in practice his index is sig-
nificantly easier to compute than the Hirsch-index: It reduces
the amount of work that goes into the checking and verifying
of author names, publications, and received citations. On the
other hand, the Kosmulski-index is still highly correlated with
the total number of citations received. The Kosmulski-index
has been studied for instance by Liu and Rousseau (2007).

Deineko and Woeginger (in press) introduced a fam-
ily of common generalizations of the Hirsch-index and
the Kosmulski-index. These common generalizations
are called the generalized Kosmulski-indices, and they are
all built around certain infinite, nondecreasing sequences
〈s(1), s(2), s(3), s(4), . . .〉 of positive integers. “A scientist
has index l if the top l of his or her n articles have at least
s(l) citations each, whereas the remaining n − l articles have
at most s(l + 1) − 1 citations each.”

It is not hard to see that for the sequence s(l) ≡ l this def-
inition yields the Hirsch-index, and that for the sequence
s(l) ≡ l2 this definition yields the Kosmulski-index.

Wu (2008) discusses the Wu-index, which coincides with
the generalized Kosmulski-index for the sequence s(l) ≡ 10l.
Van Eck and Waltman (2008) introduce several generaliza-
tions of the Hirsch-index and of the g-index, and analyze their
relationships with other indices. A distinguishing feature of
these generalizations is that the indices are not restricted to
integer values any more.
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Axiomatic Characterizations

Axiomatic analysis is one possible approach to analyz-
ing and understanding the structure of mathematical decision
rules. Which decision rules are the “best” rules to use? Which
decision rules are able to meet our expectations? These are
difficult questions that usually do not allow a clear answer.
The central idea of axiomatic analysis is to describe a decision
rule as a set of properties. If we understand which properties
are satisfied and which properties are violated by a given
decision rule, we will have a complete picture of its behav-
ior. We refer the reader to Arrow (1951) and to Moulin (1988)
for axiomatic characterizations of many concepts in mathe-
matical decision making, and for an introduction into the
underlying ideas.

With respect to scientific impact indices, Woeginger
(2008b) characterized the h-index in terms of three axioms
(called A1, B, and D), and Woeginger (2008a) character-
ized the g-index in terms of three other axioms (called E,
T1, and T2 ). The axioms in these two characterizations
are very simple and capture certain elementary, natural,
desired properties of scientific impact indices. Marchant
(in press) provides an axiomatic characterization in terms
of six axioms for the ranking of scientists that results
from the h-index, and for some other bibliometric rank-
ings. For every sequence 〈s(1), s(2), s(3) . . . 〉, Deineko and
Woeginger (in press) provide an axiomatic characterization
of the corresponding generalized Kosmulski-index. These
axiomatic characterizations follow and naturally general-
ize the axiomatic characterization of the Hirsch-index in
Woeginger (2008b).

Contribution of This Paper

We introduce a certain class of new generalizations of
Egghe’s g-index. These generalizations are built around the
g-index in very much the same spirit as the generalized
Kosmulski-indices of Deineko and Woeginger (in press) are
built around the h-index and the Kosmulski-index. Every
generalized Egghe-index is centered around an infinite non-
decreasing sequence of positive integers. As a main result,
we provide axiomatic characterizations of all these general-
ized Egghe-indices in terms of four axioms. Our axiomatic
characterizations follow and generalize the axiomatic char-
acterization of the g-index provided by Woeginger (2008a).

This article is organized as follows: The follwing sec-
tion first provides several basic definitions and preliminaries
around scientific impact indices. The next section then intro-
duces the family of generalized Egghe-indices. The subse-
quent section recalls the axiomatic characterization of the
g-index in terms of three axioms as given in Woeginger
(2008a). Then one of the underlying axioms is parameter-
ized and appropriately generalized, and another new technical
axiom is introduced. The resulting four axioms yield the
axiomatic characterization of the generalized Egghe-indices.
The final sections contain the proofs of our two main results
on this new characterization.

Definitions and Preliminaries

A researcher with n ≥ 0 publications is represented by a
vector x = (x1, . . . , xn) with nonnegative integer components
x1 ≥ x2 ≥ . . . ≥ xn; the kth component xk of this vector states
the total number of citations to the kth-most important pub-
lication. For technical reasons, we also assume that xk = 0
holds for all components with indices k ≥ n + 1; this simpli-
fies some of our arguments and definitions, and it allows us to
avoid tedious range checks for indices. Intuitively, these fic-
titious zero-components correspond to fictitious publications
without citations. Let X denote the set of all such vectors with
nonincreasing components.

We say that a vector x = (x1, . . . , xn) ∈ X is dominated by
a vector y = (y1, . . . , ym) ∈ X, if n ≤ m and xk ≤ yk holds for
all k = 1, . . . , n. We write x � y to denote this situation.

Definition 1. A scientific impact index (or index, for short)
is a function f from the set X into the set N of nonnegative
integers that satisfies the following three conditions:

• If x is the empty vector, then f (x) = 0.
• If x = (x1, . . . , xn) and y = (x1, . . . , xn, 0), then f (x) = f (y).
• Monotonicity: If x � y, then f (x) ≤ f (y).

These three conditions are natural and easy to justify: A
researcher without output has no impact. Publications with-
out citations (and in particular the fictitious publications that
correspond to the fictitious zero-components) have no impact,
and hence cannot influence the impact of a researcher. If the
citations to the output of researcher Y dominate the citations
to the output of researcher X publication by publication, then
Y has more impact than X.

Definition 2. Let f : X → N be some scientific impact index,
and let x be some element of X. Then the f -core of vector x
consists of the first f (x) components of x.

Note that because of the fictitious vector components with
0 citations, the f -core is indeed well-defined. Intuitively, the
f -core of vector x contains the most important publications
with respect to index f (that is, the author’s core publica-
tions). One of our axioms (axiom T2 below) is centered
around the f -core.

The Generalized Egghe-Indices

The following definition provides a formal mathematical
description of the g-index introduced by Egghe (2006a).

Definition 3. The g-index is the scientific impact index
g: X → N that assigns to every vector x = (x1, . . . , xn) the
value g(x) := max{k : ∑k

i=1 xi ≥ k2}.
Another equivalent definition of the g-index is based

on the function A(k) = (
∑k

i=1 xi)/k, which specifies the
average value of the k largest components of the vector
x = (x1, . . . , xn). This function A(k) is a nonincreasing func-
tion in k, and the g-index is the maximum integer k satisfying
A(k) ≥ k.
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Definition 4. A function s: N → N is called gracious, if it
satisfies the following three conditions:

1. s(k) ≥ 1 for all k ≥ 1;
2. s is nondecreasing, that is, s(k − 1) ≤ s(k) for all k ≥ 1;
3. s is convex, that is, 2s(k) ≤ s(k − 1) + s(k + 1) for all k ≥ 1.

In the following Definition 5, we finally introduce the main
contribution of this article:A new and natural family of scien-
tific impact indices. Since their definition is heavily inspired
by Egghe’s definition of the g-index, we decided to call these
new indices the generalized Egghe-indices.

Definition 5. Let s: N → N be a gracious function. The cor-
responding generalized Egghe-index G[s] assigns to every
vector x = (x1, . . . , xn) in X the value G[s](x) := max{k:∑k

i=1 xi ≥ k · s(k)]}.
It is easily seen that the generalized Egghe-index G[s]

as introduced in Definition 5 is well-defined: The average
function A(k) is nonincreasing and tends to 0, as k tends to
infinity. The values s(k) are nondecreasing and positive for
k ≥ 1. Hence there exists a unique largest integer k for which
A(k) ≥ s(k), and this unique value coincides with G[s](x). For
all k smaller than this value we have A(k) ≥ s(k), and for all
k larger than this value we have A(k) ≤ s(k).

Furthermore, we will say that the function s is the underly-
ing scaffold-function on which the generalized Egghe-index
G[s] is built. Note that Definition 5 generalizes the index in
Definition 3: If the scaffold-function is the gracious identity-
function id(k) = k, then the corresponding index G[id] is the
g-index. Another example for a generalized Egghe-index is
the index that counts the overall number of citations to all
publications. It corresponds to the gracious scaffold-function
s with (k) ≡ 1.

We conclude this section with a simple but useful
observation.

Observation 1. Let s be a gracious function, and let
x = (x1, . . . , xn) be some element of X with G[s](x) = k. Then
any component of vector x outside the G[s]-core has value at
most s(k + 1) − 1.

Proof. Suppose otherwise. Then x contains k + 1 compo-
nents that are greater or equal to s(k + 1), and the sum of its
first k + 1 components would be at least (k + 1) · s(k + 1),
which is a contradiction. �

Some Old and Some New Axioms

In this section, we will first recall the three old axioms
E, T1, and T2 from Woeginger (2008a), and afterwards
introduce two appropriately parameterized axioms. Axiom
E states that by adding a strong new publication and consis-
tently improving the citations to one’s old publications, one
should also raise one’s index. Axioms T1 and T2 concern the
transfer of citations between publications.

E: If the (n + 1)-dimensional vector y results from the n-
dimensional vector x by first adding an article with

f (x) or with f (x) + 1 citations and afterwards increas-
ing the number of citations of each article by one, then
f (y) = f (x) + 1.

T1: Let x = (x1, . . . , xn) ∈ X, and let 1 ≤ i < j ≤ n. If vec-
tor y ∈ X results from x by setting xi := xi + 1 and
xj := xj − 1, then f (y) ≥ f (x).

T2: Let x = (x1, . . . , xn) ∈ X, and let 1 ≤ i < j ≤ f (x) with
xi ≥ xj + 2. If vector y ∈ X results from x by setting
xi := xi ± 1 and xj := xj + 1, then f (y) = f (x).

The main result of Woeginger (2008a) shows that these
three axioms together concisely characterize Egghe’s g-
index.

Proposition 1 (Woeginger, 2008a). A scientific impact
index f : X → N satisfies the three axioms E, T1, and T2,
if and only if it is the g-index.

Next, we will parameterize axiom E in terms of a gracious
scaffold-function s: N → N. Since our global goal is to get
a separate axiomatic characterization for every generalized
Egghe-index G[s] for every gracious scaffold-function s, it is
only natural to make the axioms depend on the function s.

E[s]: Let the (n + 1)-dimensional vector y result from the
n-dimensional vector x by first adding an article with c
citations, where c satisfies s( f (x)) ≤ c ≤ s( f (x) + 1),
and by afterwards increasing the number of cita-
tions of every article by s( f (x) + 1) − s( f (x)). Then
f (y) = f (x) + 1 holds.

Furthermore, we introduce the following purely technical
axiom Z[s]. Note that axiom Z[s] becomes vacuous in the
cases where s(1) = 1 holds, since then its statement is already
covered by Definition 1.

Z[s]: f(s(1) = 1, . . . s(1) − 1) = 0.

Consider the special case where the scaffold-function
is the identity-function s(k) ≡ k: Then axiom E[s] exactly
boils down to the old axiom E (and this observation pro-
vides some intuition and justification for the formulation of
E[s]). Furthermore, in this case the technical axiom Z[s] boils
down to the condition f (0, . . . , 0) = 0, which is implied by
Definition 1.

The following theorem forms the main contribution of this
article.

Theorem 1. Let s: N → N be a gracious function. Then a
scientific impact index f : X → N satisfies the four axioms
E[s], T1, T2, and Z[s] if and only if it is the generalized
Egghe-index G[s].

Note that for the identity-function s(k) ≡ k, our character-
ization Theorem 1 indeed boils down to the characterization
of Egghe’s g-index in Proposition 1.

The following Theorem 2 demonstrates that our character-
ization in Theorem 1 is tight: We cannot drop any of the four
characterizing axioms, without losing the uniqueness conclu-
sion. Another interesting consequence of Theorem 2 is that
none of these four axioms is implied by the other axioms.
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Theorem 2. Let s: N → N be a gracious function. Then
there exist scientific impact indices that satisfy

1. the axioms T1, T2, and Z[s], but not E[s];
2. the axioms E[s], T2, and Z[s], but not T1;
3. the axioms E[s], T1, and Z[s], but not T2.

Furthermore, if the gracious function s satisfies s(1) ≥ 2,
then there exists a scientific impact index that satisfies

4. the axioms E[s], T1, and T2, but not Z[s].

The proofs of Theorems 1 and 2 will be given below.

Proof of the Characterization Theorem

In this section we prove Theorem 1. Hence, fix an arbi-
trary gracious scaffold-function s: N → N and consider the
corresponding generalized Egghe-index G[s]. We begin with
a simple observation that will be applied many times in this
section and also in the next section.

Observation 2. Let x and y be two vectors as defined in
axiom E[s], and let k = f (x). Then the newly added compo-
nent in y has a value d that satisfies s(k + 1) ≤ d ≤ s(k + 2).

Proof. Since c satisfies s(k) ≤ c ≤ s(k + 1) and since
d = c + s(k + 1) − s(k), we get s(k + 1) ≤ d ≤ 2s(k + 1) − s(k).
The convexity condition 3 in Definition 4 yields
2s(k + 1) − s(k) ≤ s(k + 2). �

For proving the if-part of Theorem 1, we will check
that G[s] indeed satisfies the four axioms E[s], T1, T2, and
Z[s]. Consider an n-dimensional vector x = (x1, . . . , xn) with
G[s](x) = k. This means that

k∑

i=1

xi ≥ k · s(k), (1)

and that simultaneously

k+1∑

i=1

xi < (k + 1) · s(k + 1). (2)

We first consider axiom E[s]. Let the (n + 1)-
dimensional vector y result from x as described in the
statement of axiom E[s]. Then vector y contains the
k components x1 + s(k + 1) − s(k), . . . xk + s(k + 1) − s(k)
and a newly added component of value d that satisfies
s(k + 1) ≤ d ≤ s(k + 2); see Observation 2. By using Inequal-
ity 1, we get that

k+1∑

i=1

yi ≥ d +
k∑

i=1

(xi + s(k + 1) − s(k))

≥ s(k + 1) + k · s(k) + k · (s(k + 1) − s(k))

= (k + 1) · s(k + 1). (3)

Furthermore, Observation 1 yields xk+2 < s(k + 1). Then
the corresponding component in vector y has value at
most 2s(k + 1) − s(k) ≤ s(k + 2), and also the newly added

component satisfies d ≤ s(k + 2); see Observation 2. There-
fore the k + 2 largest components in y are the k + 1 values
x1 + s(k + 1) − s(k), . . . , xk+1 + s(k + 1) − s(k) and some
component of value at most s(k + 2). By using Inequality
2 and the convexity condition 3 in Definition 3, we get

k+2∑

i=1

yi ≤
k+1∑

i=1

(xi + s(k + 1) − s(k)) + s(k + 2)

< (k + 1) · s(k + 1) + (k + 1)(s(k + 1) − s(k))

+ s(k + 2)

= (k + 1) · (2s(k + 1) − s(k)) + s(k + 2)

≤ (k + 2) · s(k + 2). (4)

The two Inequalities 3 and 4 together imply G[s](y) = k + 1,
and this establishes axiom E[s] for the generalized Egghe-
index G[s].

Also, axioms T1 and T2 are satisfied by index G[s]: Mov-
ing citations to the higher-value components in vector x can
never lead to a violation of Inequality 1.And moving citations
to smaller-value components within the G[s]-core of vector x
will leave both crucial Inequalities 1 and 2 untouched. Finally,
index G[s] satisfies axiom Z[s] by definition.

For the proof of the only-if-part of Theorem 1, we consider
an arbitrary scientific impact index f that satisfies the four
axioms E[s], T1, T2, and Z[s].We will show that index f coin-
cides with the generalized Egghe-index G[s]. Our argument
is based on the following four technical lemmas.

Lemma 1. For k ≥ 0, let the k-dimensional vector u[k] con-
sist of exactly k components of value exactly s(k). Then
f (u[k]) = k holds.

Proof. The proof is done by induction on k ≥ 0. The state-
ment for k = 0 follows from Definition 1. In the inductive
step, we consider the two vectors x = u[k] and y = u[k+1].
The inductive assumption yields f (x) = k. Note that vec-
tor y results from x by first adding an article with c = s(k)
citations and afterwards increasing the number of citations
of every article by s(k = 1) + s(k). Now axiom E[s] yields
f (y) = f (x) + 1, and hence f (u[k+1]) = k + 1. �

Lemma 2. Every vector x = (x1, . . . , xn) ∈ X satisfies
f (x) ≥ G[s](x).

Proof. Since the statement is trivial if G[s](x) = 0,
we will throughout assume that k := G[s](x) ≥ 1. This
implies

∑k
i=1 xi ≥ k · s(k). We define t as the smallest

index that satisfies
∑t

i=1 xi ≥ k · s(k); note that t ≤ k. We
define a k-dimensional vector y = (y1, . . . , yk) by setting
yi = xi for 1 ≤ i ≤ t − 1, by setting the t-th component
yt = k · s(k) − ∑t−1

i=1 yi, and by setting yi = 0 for t + 1 ≤
i ≤ k. Note that

∑t
i=1 yi = ∑k

i=1 yi = k · s(k).
First, observe that all components in y are bounded by

the corresponding components in vector x. Hence y � x, and
f (y) ≤ f (x). Secondly, we claim that f (u[k]) ≤ f (y) (with
vector u[k] as introduced in Lemma 1). Indeed, define r as
the largest index for which yr ≥ s(k). Then one can produce
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vector y by starting from vector u[k] and by repeatedly moving
citations from the components with index greater than r to
the components with index at most r. Then axiom T1 yields
f (u[k]) ≤ f (y).

Summarizing, we have the two inequalities f (y) ≤ f (x)
and f (u[k]) ≤ f (y), which together with Lemma 1 imply
k ≤ f (x). This completes the proof of the lemma. �

Lemma 3. For k ≥ 1 and l ≥ 0, let the (k + l − 1)-
dimensional vector v[k,l] consist of k − 1 components of value
s(k) together with l components of value s(k) − 1. Then
f (v[k,l]) = k − 1 holds.

Proof. The proof is done by induction on k ≥ 1.
The statement for k = 1 concerns vectors of the form
(s(1) − 1, . . . , s(1) − 1), and follows immediately from
axiom Z[s].

In the inductive step, we consider the vectors x = v[k,l] and
y = v[k+1,l]. The inductive assumption yields f (x) = k − 1.
Vector y results from x by first adding an article with
c = s(k) citations, and afterwards increasing the number
of citations of every article by s(k + 1) − s(k); note that c
satisfies s( f (x)) ≤ c ≤ s( f (x) + 1). Now axiom E[s] yields
f (y) = f (x) + 1, and hence f (v[k+1,l]) = k. �

Lemma 4. Every vector x = (x1, . . . , xn) ∈ X satisfies
f (x) ≤ G[s](x).

Proof. Let k = f (x). We modify vector x step by step in the
following way: As long as the f -core contains two com-
ponents xi and xj with i < j and xi ≥ xj + 2, we update
xi := xi − 1 and xj := xj + 1. By axiom T2, this cannot
change the value that index f takes for this vector. Eventually,
this process must terminate with a vector y of the following
shape: For some index t with 1 ≤ t ≤ k, the first t compo-
nents of y all have the same value m. The components yi

with t + 1 ≤ i ≤ k all have the same value, m − 1. The com-
ponents yi with i ≥ k + 1 all take values at most yk. Since f
and G[s] both satisfy axiom T2, we get f (y) = f (x) = k and
also G[s](y) = G[s](x).

Now let us investigate the f -core of vector y. Suppose for
the sake of contradiction that either (a) m ≤ s(k) − 1 holds, or
that (b) m = s(k) and t ≤ k − 1 holds. In either case, vector y
is dominated by the vector v[k,n−k+1] (which has been intro-
duced and discussed in Lemma 3). This domination implies
f (y) ≤ f (v[k,n−k+1]) = k − 1, and contradicts f (y) = k. This
contradiction establishes that either (c) m = s(k) and t = k,
or (d) m ≥ s(k) + 1 must hold. In either case we derive∑k

i=1 yi ≥ k · s(k). This implies G[s](y) ≥ k, which yields the
desired inequality G[s](y) ≥ k = f (x). �

The statements in Lemma 2 and Lemma 4 together yield
f (x) = G[s](x) for every vector x = (x1, . . . , xn) in X. This
completes the proof of Theorem 1.

Proof of the Tightness Theorem

In this section we will prove Theorem 2. Throughout this
section, we consider some fixed gracious scaffold-function

s : N → N. The following straightforward lemma covers
Part 1 of Theorem 2.

Lemma 5. Consider the zero-index fa: X → N that assigns
to every vector the value 0. This index fa satisfies the axioms
T1, T2, and Z[s], but violates E[s].

Proof. The index fa trivially satisfies the axioms T1, T2,
and Z[s]. Furthermore the vectors x = (0) and y = (s(1), s(1))
demonstrate that fa violates axiom E[s]. �

The following Lemma 6 settles Part 2 of Theorem 2. It is
centered around an index fb that belongs to the generalized
Kosmulski-indices as studied by Deineko and Woeginger (in
press).

Lemma 6. Consider the index fb: X → N that assigns to
every vector x = (x1, . . . , xn) the value fb(x) := max{l: xl ≥
s(l)}. This index fb satisfies the three axioms E[s], T2, and
Z[s], but violates T1.

Proof. The index fb obviously satisfies Z[s]. Consider a
vector x = (x1, . . . , xn) with fb(x) = k. This is equivalent to
the two inequalities xk ≥ s(k) and xk+1 < s(k + 1). Clearly,
neither of these two inequalities can be violated by moving
citations to the smaller-value components within the first k
components of x. Therefore, index fb satisfies T2.

Next, let us consider axiom E[s]. Let the (n + 1)-
dimensional vector y result from x as described in the state-
ment of axiom E[s]. Then vector y contains the k components
x1 + s(k + 1) − s(k), . . . , xk + s(k + 1) − s(k) and a newly
added component of value at least s(k + 1); see Observa-
tion 2. Since xk + s(k + 1) − s(k) ≥ s(k + 1), we conclude
yk+1 ≥ s(k + 1). The convexity condition 3 in Definition 4
implies

yk+2 ≤ xk+1 +s(k+1)−s(k) < 2s(k+1)−s(k) ≤ s(k+2).

The two inequalities yk+1 ≥ s(k + 1) and yk+2 ≥ s(k + 2)
together yield fb(y) = k + 1. Hence, index fb satisfies E[s].

Finally, consider the two vectors x = (s(2), s(2)) and
y = (s(2) + 1, s(2) − 1). Since fb(x) = 2 and fb(y) < 2, index
fb violates axiom T1. �

Now let us turn to Part 3 of Theorem 2. This is somewhat
tedious, since we have to distinguish two cases on function
s: In the first case we assume that the function s is bounded
from above. Since s also satisfies the convexity condition
3 in Definition 4, it then must be a constant function with
s(l) ≡ p for all l ≥ 1. This first case is handled in Lemma 7. In
the second case we assume that the function s is unbounded.
This second case is handled in Lemma 8.

Lemma 7. Assume that the gracious function s is bounded,
and satisfies s(l) ≡ p for all l ≥ 0. Consider the index fc:
X → N that assigns to every vector x = (x1, . . . , xn) the value.

• fc(x) = G[s](x), if x1 ≤ p;
• fc(x) = G[s](x) + 1, if x1 ≥ p + 1
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This index fc satisfies the three axioms E[s], T1, and Z[s],
but violates T2.

Proof. The index fc violates axiom T2, since for
x = (p + 1, p − 1, 0) and y = (p, p, 0), we have fc(x) = 3
but fc(y) = 2. The index fc satisfies axiom Z[s], since
G[s](p − 1, . . . , p − 1) = 0 implies yc(p − 1, . . . , p − 1) = 0.
We claim that index fc also satisfies axiom T1: Indeed, con-
sider a vector y that results from vector x by moving citations
to the higher-value components. Since G[s] satisfies axiom
T1, we have G[s](x) ≤ G[s](y). Furthermore we have x1 ≤ y1.
This implies the desired fc(x) ≤ fc(y).

It remains to show that index fc satisfies axiom
E[s]. Consider an arbitrary n-dimensional nonzero vec-
tor x = (x1, . . . , xn) ∈ X with f ′

c(x) = k. Then the (n + 1)-
dimensional vector y in the statement of axiom E[s] results
by adding one new component of value p to vector x. This
implies G[s](y) = G[s](x) + 1, and y1 ≥ p + 1 if and only if
x1 ≥ p + 1. Hence the desired fc(y) = fc(y) + 1 holds. �

Lemma 8.Assume that the gracious function s is unbounded.
The index f ′

c: X → N assigns to every vector x = (x1, . . . , xn)
with x1 < s(1) the value f ′

c(x) = 0, and to every vector
x = (x1, . . . , xn) with x1 ≥ s(1) the largest integer k that
satisfies one of the following three conditions:

• x1 = s(k) and x2 = x3 = . . . = xk = s(k);
• s(k) < x1 < s(k + 1);
• x1 = s(k + 1) and xk+1 < s(k + 1).

The index f ′
c satisfies the three axioms E[s], T1, and Z[s],

but violates T2.

Proof. Note that the index f ′
c is well-defined, as the func-

tion s is unbounded. Let us argue that index f ′
c violates

axiom T2: Since s is unbounded, there exists an integer
m ≥ 2 with 3 ≤ s(m) < s(m + 1). Then f ′

c(s(m) + 1, 0) = m,
whereas f ′

c(s(m), 1) < m; this contradicts with axiom T2. Fur-
thermore, index f ′

c satisfies axiom Z[s] by definition, and it
is easy to see that f ′

c satisfies axiom T1.
It remains to show that index f ′

c satisfies axiom E[s]. Con-
sider an arbitrary n-dimensional vector x = (x1, . . . , xn) ∈ X
with f ′

c(x) = k. Let the (n + 1)-dimensional vector y =
(y1, . . . , yn+1) result from x as described in the statement of
axiom E[s]. By Observation 2, the newly added component
of value d satisfies s(k + 1) ≤ d ≤ s(k + 2). First we discuss
the case where f (x) = k = 0. Then s(1) ≤ d ≤ s(2) implies
y1 ≥ s(1), and hence f (y) ≥ 1. Furthermore x1 < s(1) implies
y2 < 2s(1) − s(0) ≥ s(2), and hence f (y) ≤ 1. This yields the
desired f ′

c(y) = f ′
c(x) + 1.

From now on we assume f (x) = k ≥ 1.We branch into three
cases that correspond to the three cases in the definition of f ′

c.

• If x1 = s(k) and x2 = x3 = . . . = xk = s(k), then y contains k
components of value s(k + 1) plus the new component d with
s(k + 1) ≤ d ≤ s(k + 2). Then f ′

c(y) = k + 1.
• If s(k) < x1 < s(k + 1) holds, then s(k + 1) < x1 + s(k + 1) −

s(k) < s(k + 2). The newly added component d in y satisfies
s(k + 1) ≤ d ≤ s(k + 2). This implies that the largest com-
ponent y1 in y satisfies s(k + 1) < y1 ≤ s(k + 2), and that

the second-largest component satisfies y2 < s(k + 2). Hence
f ′

c(y) = k + 1.
• Finally assume x1 = s(k + 1) and xk+1 < s(k + 1). Then

s(k + 1) ≤ x1 + s(k + 1) − s(k) ≤ s(k + 2), and xk+1 + s(k +
1) − s(k) < s(k + 2). The newly added component d in y
satisfies s(k + 1) ≤ d ≤ s(k + 2). This implies s(k + 1) ≤ y1 ≤
s(k + 2), and yk+2 < s(k + 2). Hence f ′

c(y) = k + 1.

Since all three cases led to f ′
c(y) = f ′

c(y) + 1, index f ′
c

indeed satisfies axiom E[s]. �

Finally, Lemma 9 settles Part 4 of Theorem 2.

Lemma 9. Assume that the gracious scaffold function s
satisfies s(1) ≥ 2. Consider the impact index fd : X → N

that assigns to every vector x = (x1, . . . , xn) the value
fd(x) = max{l: ∑l

i=1 xi ≥ l · s(l) − 1}. This index fd satis-
fies the three axioms E[s], T1, and T2, but violates Z[s].

Proof. The index fd clearly violates axiom Z[s], since
fd(s(1) − 1, . . . , s(1) − 1) = 1. For axioms E[s], T1, and T2,
consider a vector x with fd(x) = k. This means that

k∑

i=1

xi ≥ k · s(k) − 1, (5)

and that
k+1∑

i=1

xi < (k + 1) · s(k + 1) − 1. (6)

The index fd satisfies axiom T1, since moving citations
to the higher-value components in vector x can never violate
Inequality 5. The index fd satisfies axiom T2, since moving
citations to smaller-value components within the fd-core of
vector x will leave both Inequalities 5 and 6 untouched.

It remains to show that index fd satisfies axiom E[s].
Let the (n + 1) -dimensional vector y result from x as
described in the statement of axiom E[s]. Then y contains the
k components x1 + s(k + 1) − s(k), . . . , xk + s(k + 1) − s(k)
and a newly added component of value d, where
s(k + 1) ≤ d ≤ s(k + 2); see Observation 2. By using Inequal-
ity 1, we get that

k+1∑

i=1

yi ≥ d+
k∑

i=1

(xi+s(k+1)−s(k)) ≥ (k+1) ·s(k+1)−1.

(7)

Furthermore, it can be seen that xk+2 < s(k + 1). We con-
clude that the k + 2 largest components in y are the k + 1
values x1 + s(k + 1) − s(k), . . . , xk+1 + s(k + 1) − s(k) and
some component of value at most 2s(k + 1) − s(k) ≤ s(k + 2).
We derive

k+2∑

i=1

yi ≤
k+1∑

i=1

(xi + s(k + 1) − s(k)) + s(k + 2)

< (k + 2) · s(k + 2) − 1. (8)

The two displayed Inequalities 7 and 8 together imply
fd(y) = k + 1, which establishes axiom E[s]. �

This completes the proof of Theorem 2.
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