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a b s t r a c t

The Hirsch-index is a well-known index for measuring and com-
paring the output of scientific researchers. The main contribution
of this article is an axiomatic characterization of the Hirsch-index
in terms of three natural axioms. Furthermore, two other scientific
impact indices (called the w-index and the maximum-index) are
defined and characterized in terms of similar axioms.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

How does one measure productivity, quality, and visibility of a scientific researcher? How does
one quantify the cumulative impact and relevance of an individual’s scientific research output? In
our current academic system, many crucial decisions around faculty recruitment, research time, Ph.D.
positions, travel money, award of grants, and promotions depend on our answers to these questions.
Natural approaches are based on the publication records and the citation records. Relevant parameters
are for instance the number of published papers, the number of citations for each paper, the journals
where the papers were published, the impact factors of these journals, etc.

In 2005, Jorge Hirsch proposed the so-calledHirsch-index (or h-index) to quantify both the scientific
productivity and the scientific impact of a scientist. This Hirsch-index is based on the scientist’s most
cited papers and on the number of citations that they have received in other people’s publications: “A
scientist has index h, if h of his or her n papers have at least h citations each, and the other n − h papers
have at most h citations each.”Hence a scientist with a Hirsch-index of 25 has published 25 papers that
have each attracted at least 25 citations; some of these papers may have attracted considerably more
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than 25 citations, and other publications of this authormay have attracted considerably fewer than 25
citations. Since the Hirsch-index reflects both the number of publications and the number of citations
per publication, authors with very few high-impact publications and authors with many low-impact
publications will score a weak Hirsch-index. Obviously, a scientist’s Hirsch-index can never decrease
over time, butmaywell increase as newpapers are published and the old papers incrementally attract
citations. Hirsch (2005) argues that two individualswith similar Hirsch-index are comparable in terms
of their overall scientific impact, even if their total number of papers or their total number of citations
is very different. Conversely, comparing two individuals (of the same scientific age) with a similar
number of papers or a similar citation count but very different Hirsch-index, the one with the higher
Hirsch-index is likely to be the more accomplished scientist.

Hirsch (2005) demonstrates that the Hirsch-index has high predictive value for theoretical
physicists: For instance, Nobel prize winners in this area usually have a Hirsch-index between 35
and 39, and over the last 20 years every Nobel prize winner had a Hirsch-index between 22 and 79.
Since different research areas have different publishing cultures, the Hirsch-index can not be used to
compare researchers from different fields. For instance, the Hirsch-index of a moderately productive
scientist in physics typically equals his number of years of service, whereas the Hirsch-index of a
biomedical scientist tends to be substantially higher. Over the last few years, the Hirsch-index has
becomewidely used and recognized. Cronin andMeho (2006) and Oppenheim (2007) apply it to rank
influential information scientists. Bornmann and Daniel (2005, 2007), Hirsch (2007), and van Raan
(2006) study and compare the Hirsch-index against other bibliometric indicators.

In this paper, we provide an axiomatic characterization of the Hirsch-index, in verymuch the same
spirit as Arrow (1950, 1951), May (1952), and Moulin (1988) did for numerous other problems in
mathematical decision making. Furthermore, we will define and analyze two other scientific impact
indices that we dub the w-index and the maximum-index. We feel that the w-index is not only of
theoretical interest, but may be useful for practical purposes.

This article is organized as follows: Section 2 provides basic definitions around scientific impact
indices. Section 3 introduces five natural axioms that capture certain desired features of scientific
impact indices. Section 4 formulates our axiomatic characterizations of the Hirsch-index, thew-index,
and the maximum-index, and Section 5 contains the proofs of these characterizations.

2. Scientific impact indices

A researcher with n ≥ 0 publications is formally described by a vector x = (x1, . . . , xn) with non-
negative integer components x1 ≥ x2 ≥ · · · ≥ xn; the kth component xk of this vector states the total
number of citations to this researcher’s kth-most important publication. If n = 0, the researcher has
no publications and the vector is empty. Let X denote the set of all such vectors. We say that a vector
x = (x1, . . . , xn) is dominated by a vector y = (y1, . . . , ym), if n ≤ m holds and if xk ≤ yk for 1 ≤ k ≤ n;
we will write x � y to denote this situation.

Definition 2.1. A scientific impact index (or index, for short) is a function f from the set X into the set
N of non-negative integers that satisfies the following two conditions:

• If x = (0, 0, . . . , 0) or if x is the empty vector, then f (x) = 0.
• Monotonicity: If x � y, then f (x) ≤ f (y).

Both properties seem to be a conditio sine qua non for measuring the scientific impact: If one’s
scientific research fails to generate citations (all-zero vector x), it has no impact. A researcher without
publications (empty vector x) has no impact. If the citations to the scientific output of researcher Y
dominate the citations to the scientific output of researcher X publication by publication, then Y has
more impact than X. The monotonicity condition also implies that the scientific impact of a scientist
can never decrease over time.

The following two definitions provide a formal mathematical description of the Hirsch-index, and
introduce a (closely related) new scientific impact index that we will call the w-index. An h-index of
at least k means that there are k distinct publications that all have at least k citations. And a w-index
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Fig. 1. Publications are on the horizontal axis, and the numbers x1 ≥ x2 ≥ · · · ≥ xn of citations per publication are on the
vertical axis. The area under the curve gives the total number of citations. The side of the square on the left hand side yields the
h-index. The legs of the isosceles right-angled triangle on the right hand side yield the w-index.

of at least k means that there are k distinct publications that have at least 1, 2, 3, 4, . . . , k citations,
respectively.

Definition 2.2. The h-index (or Hirsch-index) is the scientific impact index h : X → N that assigns to
vector x = (x1, . . . , xn) the value h(x) := max{k : xm ≥ k for all m ≤ k}.

Definition 2.3. The w-index is the scientific impact index w : X → N that assigns to vector x =

(x1, . . . , xn) the value w(x) := max{k : xm ≥ k − m + 1 for all m ≤ k}.

Equivalently, the h-index can be defined as h(x) := max{k : xk ≥ k}. We prefer the formulation in
Definition 2.2 since it clearly exhibits the similarity to the w-index.

Fig. 1 provides two geometric illustrations for the h-index and the w-index. The depicted curve
plots the citations of n publications in decreasing order. The h-index (illustrated on the left hand side)
corresponds to a largest possible h×h square below this curve. This square has one corner at the origin,
and its diametric corner is the intersection point of the curve with the 45◦ line through the origin. The
w-index (illustrated on the right hand side) corresponds to a largest possible isosceles right-angled
triangle below the curve. This isosceles triangle has one corner at the origin, one leg of length w on
the horizontal axis, and another leg of length w on the vertical axis. The longest side of the triangle
touches the curve. (Sloppily speaking, the h-index maximizes the volume of a scaled copied of an `∞

unit ball under the curve, while the w-index maximizes the volume of a scaled copied of an `1 unit
ball under the curve.)

Apparently, the h-index and the w-index are closely related, and at most a factor of 2 away from
each other – a square of side length h contains an isosceles right-angled triangle with legs of length h.
And an isosceles right-angled triangle with legs of length w contains a square of side length w/2. This
yields the following proposition.

Proposition 2.4. Every vector x ∈ X satisfies h(x) ≤ w(x) ≤ 2 h(x).

It is easy to determine one’s h-index and w-index manually by using one of the free Internet
databases (as for instance Google Scholar). The two computation procedures are very similar and
kind of dual to each other. The only difference is that one computation traverses the publications
in increasing order of citations, whereas the other computation does this in decreasing order.

The h-index is determined as follows.Work through the list of publications in DECreasing order
of citations (as x1 ≥ x2 ≥ · · · ≥ xn), and keep a counter ctr that is initialized at 0. Every time
you move to a new xk, compare it against the current value of the counter. If ctr < xk, then
increase ctr , otherwise do nothing. Once you reach your bottom publication xn, the value of
the counter contains your h-index.

The w-index is determined as follows. Work through the list of publications in INCreasing
order of citations (as xn ≤ xn−1 ≤ · · · ≤ x1), and keep a counter ctr that is initialized at 0. Every
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time you move to a new xk, compare it against the current value of the counter. If ctr < xk,
then increase ctr , otherwise do nothing. Once you reach your top publication x1, the value of
the counter contains your w-index.

When computing the h-index, the above procedure may actually be terminated early as soon as
ctr ≥ xk holds for the first time (since the counter will never be increased after this point). Therefore
in practice thew-indexwill take longer to compute, as senior authors typically have dozens of articles,
that is, as n is typically much larger than h(x) and w(x).

To conclude this section, we introduce the so-calledmaximum-index fmax which simply counts the
number of citations to one’s strongest publication.

Definition 2.5. The maximum-index is the scientific impact index fmax : X → N that assigns to vector
x = (x1, . . . , xn) the value fmax(x) := x1.

Obviously every vector x ∈ X satisfies h(x) ≤ fmax(x) and w(x) ≤ fmax(x). There is no non-trivial way of
lower-bounding the h-index and the w-index in terms of the maximum-index.

3. The five axioms

Wewill formulate five fairly natural axioms that capture certain desired elementary properties of
a scientific impact index f : X → N. The first two axioms concern the addition of a single publication
to a publication list. If the publication is only average with respect to the current index, it should not
raise the index. But if the publication is above the current average, then this should also be reflected
in a higher index.

A1. If the (n+1)-dimensional vector y results from the n-dimensional vector x by adding a new article
with f (x) citations, then f (y) ≤ f (x).

A2. If the (n+1)-dimensional vector y results from the n-dimensional vector x by adding a new article
with f (x) + 1 citations, then f (y) > f (x).

The next two axioms concern the addition of new citations to old publications. Minor changes in
the citation record should not lead to major changes in the index. One such minor change is that one
single publication receives more citations.

B. If the n-dimensional vector y results from the n-dimensional vector x by increasing the number of
citations of a single article, then f (y) ≤ f (x) + 1.

Another minor change occurs, if every publication in the publication record receives at most one
additional citation.

C. If the n-dimensional vector y results from the n-dimensional vector x by increasing the number of
citations of every article by at most one, then f (y) ≤ f (x) + 1.

Our final axiom concerns the case where both, the number of publication (as in A1 and A2) and the
number of citations (as in B and C) go up. Adding a strong new publication and consistently improving
the citations to one’s old publications should also raise the index.

D. If the (n+1)-dimensional vector y results from the n-dimensional vector x by first adding an article
with f (x) citations and afterwards increasing the number of citations of every article by at least one,
then f (y) > f (x).

We stress that the three axioms A1, A2, and D should be interpreted within the context of the
monotonicity condition in Definition 2.1. These three axioms discuss the addition of a new article
with f (x) + 1 or f (x) citations, and monotonicity generalizes this to the addition of an article with at
most f (x) citations (for axiom A1), at least f (x) + 1 citations (for axiom A2), and at least f (x) citations
(for axiom D).

It is easy to see that the five axioms are not independent of each other. For instance axiom A2
implies axiom D.
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Proposition 3.1. If a scientific impact index satisfies axiom A2, then it also satisfies D.

A more interesting dependency is stated in the following theorem; its proof will be delayed to
Section 5.

Theorem 3.2. If a scientific impact index satisfies the axioms A1 and A2, then it must violate axiom B.

As an immediate consequence of Theorem 3.2, we derive that the five axioms are contradictory.

Proposition 3.3. No scientific impact index can simultaneously satisfy all five axioms A1,A2,B,C, andD.

Finally, let us discuss the contents of these axioms. Axioms A1 and A2 are compelling, and precisely
express one’s intuition as to how a scientific impact index should behave. Also axioms C and D do not
seem to need any further justification. They express the desired sensitivity of an index against minor
changes in the citation record in a perfectly natural way.

Axiom B on the other hand is worthy of more comments. Consider, for instance, the researcher
John Forbes Nash who only published three vastly influential pieces in game theory before leaving
the field (the articles on equilibrium points in n-person games, on the bargaining problem, and on
two-person cooperative games). In 1994, John Nash was awarded the Nobel prize in Economics for
his contributions to game theory. The huge impact of Nash’s work in Economics is beyond discussion.
Hence it is not at all obvious that a single very successful publication should never allow one’s index
to take off, as axiom B imposes. We have two comments on this. First, researchers like John Nash are
exceptional cases and outliers. There is no universally perfect index (as Proposition 3.3 indicates), and
for every index therewill be examples onwhich it performs poorly. Secondly, the results of this article
(Theorem 4.3) demonstrate that without axiom B, we are promptly led to the unappealingmaximum-
index.

4. Axiomatic characterizations

Wewill analyze the h-index, the w-index, and the maximum-index in terms of the five axioms A1,
A2, B, C, and D. The proofs of all theorems can be found in Section 5.

Let us begin our discussionwith theHirsch-index: The h-index satisfies the four axiomsA1, B, C, and
D. Unfortunately, it violates the very natural axiom A2. For instance, the two vectors x = (5, 4, 3, 2, 1)
and y = (6, 5, 4, 3, 2, 1) with h(x) = h(y) = 3 collide with axiom A2. The main result of this article is
the following axiomatic characterization of the h-index in terms of three axioms.

Theorem 4.1. A scientific impact index f : X → N satisfies the three axioms A1,B, and D, if and only if it
is the h-index.

We remark that in the statement of Theorem 4.1, axiom D could actually be replaced by the
following weaker axiom D′: “If for some k ≥ 1 the vector x consists of exactly k articles with exactly k
citations, then f (x) = k.” In the proof of Theorem 4.1, we will actually only use the D′-part of axiom D.
On the other hand axiom D′ seems somewhat artificial, and we see little motivation why it should be
imposed explicitly.

Now let us turn to thew-index. Thew-index satisfies the four axiomsA2, B, C, D, andhence performs
better than the h-index with respect to axiom A2. With respect to axiom A1, however, the w-index
performsworse. The two vectors x = (6, 6, 1, 1, 1) and y = (6, 6, 3, 1, 1, 1)withw(x) = 3 < 4 = w(y)
illustrate that it violates axiom A1.

We have the following axiomatic characterization of the w-index.

Theorem 4.2. A scientific impact index f : X → N satisfies the axioms A2, B, and C, if and only if it is the
w-index.

Finally, the maximum-index fmax satisfies the four axioms A1, A2, C, and D, but violates axiom B.
This is illustrated, for instance, by the two vectors x = (1, 1, 1) and y = (9, 1, 1) with fmax(x) = 1 and
fmax(y) = 9. Here is an axiomatic characterization of the maximum-index.
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Theorem 4.3. A scientific impact index f : X → N satisfies the axioms A1, A2, and C, if and only if it is the
maximum-index fmax.

Let us reconsider our situation. We are working with a set of five axioms A1, A2, B, C, D. We
know that there is no index that would simultaneously satisfy all five of them. But if we are willing
to abandon one of these five axioms, then the above theorems show that sometimes we may find
compatible impact indices:

+ The w-index is the unique index that satisfies all axioms except A1.
+ The Hirsch-index is the unique index that satisfies all axioms except A2.
+ The maximum-index is the unique index that satisfies all axioms except B.
− No index can satisfy all axioms except C.
− No index can satisfy all axioms except D.

The two negative statements follow from Theorem 3.2 (and the second negative statement also
follows from Proposition 3.1). Furthermore, we claim that the three positive cases are tight in the
following sense: The characterizations in Theorems 4.1–4.3 yield that in each positive case, the
respective three characterizing axioms imply the fourth axiom. Theorem 4.4 shows that we cannot
drop any of the characterizing axioms, without losing the uniqueness conclusion.

Theorem 4.4. On the borderline to the h-index, there exist scientific impact indices that satisfy

(a) the axioms B,C,D, but not A1;
(b) the axioms A1,C,D, but not B;
(c) the axioms A1,B,C, but not D.

On the borderline to the w-index, there exist scientific impact indices that satisfy

(d) the axioms B,C,D, but not A2;
(e) the axioms A2,C,D, but not B;
(f) the axioms A2,B,D, but not C.

On the borderline to the maximum-index, there exist scientific impact indices that satisfy

(g) the axioms A2,C,D, but not A1;
(h) the axioms A1,C,D, but not A2;
(i) the axioms A1,A2,D, but not C.

5. Proofs of the theorems

In this section we will prove all theorems formulated in the preceding sections.
We start with the proof of Theorem 3.2. Suppose for the sake of contradiction that there exists a

scientific impact index f that satisfies all three axioms A1, A2, and B.Wewill first prove as an auxiliary
result that f (t) = 1 holds for all integers t ≥ 1. Definition 2.1 implies that the empty vector has
index 0, and then axiom A2 yields f (t) ≥ 1. Definition 2.1 implies that f (0) = 0, and then axiom B
yields f (t) ≤ 1. Putting things together, f (t) = 1 indeed holds for all integers t ≥ 1.

This auxiliary result yields f (1) = 1, and then A2 implies f (2, 1) > 1. The auxiliary result also
yields f (2) = 1, and then A1 and monotonicity imply f (2, 1) = 1. This contradiction completes the
proof of Theorem 3.2. �

We turn to the proof of Theorem4.1. One direction of the proof is straightforward, since theHirsch-
index clearly satisfies the axioms A1, B, and D. For the other direction of the proof, we consider an
arbitrary index f that satisfies axioms A1, B, and D. We will show that f is the h-index. Our argument
proceeds in three steps.

In the first step, we argue that any vector x with at most k non-zero components has f (x) ≤ k.
This follows by an easy inductive argument, starting fromDefinition 2.1 and then repeatedly applying
axiom B.

The second step considers for every k ≥ 0 the vector u[k] that consists of exactly k components of
value exactly k. We prove by induction on k ≥ 0 that f (u[k]) = k. The statement for k = 0 follows from
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Definition 2.1. In the inductive step, we derive from the inductive assumption and from axiom D that
f (u[k+1]) > f (u[k]) = k, whereas the statement in the first step yields f (u[k+1]) ≤ k + 1. This yields the
desired f (u[k+1]) = k + 1.

In the third step we establish f (x) ≡ h(x) for all x. Consider an arbitrary vector x = (x1, . . . , xn),
and let k := h(x). Let y = (x1, . . . , xk) denote the vector that consists of the first k components of x.
Since these components all are at least k, we get u[k]

� y. The monotonicity condition in Definition 2.1
implies f (u[k]) ≤ f (y). With this, the statement in the first step yields f (y) ≤ k and the statement in the
second step yields f (y) ≥ k; hence f (y) = k. Since vector x results from vector y by adding components
of values atmost k, repeated application of axiomA1andmonotonicity gives f (x) = f (y) = k. Therefore
f (x) = h(x), and the proof is complete. �

Now let us prove Theorem 4.2. Again, one direction of the proof is straightforward: The w-index
satisfies the axioms A2, B, and C. For the other direction, we investigate an arbitrary index function f
that satisfies axioms A2, B, and C. We will show that f coincides with the w-index. The argument goes
through four steps.

The first step is identical to the first step in the proof of Theorem 4.1: Any vector x with at most
k non-zero components satisfies f (x) ≤ k. The argument is an induction based on Definition 2.1 and
axiom B.

In the second step we consider for every k ≥ 0 the vector v[k]
= (k, k − 1, . . . , 2, 1, 0). We prove

by induction on k ≥ 0 that f (v[k]) = k: The case k = 0 is trivial. In the inductive step, the inductive
assumption and axiom A2 together yield that f (v[k+1]) > f (v[k]) = k, and the statement in the first step
yields f (v[k+1]) ≤ k + 1. We conclude that f (v[k+1]) = k + 1 holds indeed.

The third step proves the following statement by induction on k ≥ 0: If a vector x = (x1, . . . , xn) ∈ X
has some component xm that satisfies xm ≤ k − m + 1 for some k ≥ 0, then f (x) ≤ k. For k = 0, only
the case m = 1 is relevant. Then x = (0, 0, . . . , 0), and the statement follows from Definition 2.1. In
the inductive step, we consider a vector x that has a component xm with xm ≤ k − m + 2. We consider
two cases. In the first case xm = 0 holds. Then m ≤ k + 2, and vector x contains at most k + 1 non-
zero components. The first step yields the desired f (x) ≤ k + 1. In the second case xm ≥ 1 holds. We
decrease all non-zero components in x by 1, leave the zero components untouched, and denote the
resulting vector y = (y1, . . . , yn). Then ym = xm − 1 ≤ k − m + 1, and the inductive assumption yields
f (y) ≤ k. Axiom C gives f (x) ≤ f (y) + 1 ≤ k + 1.

In the fourth step we show f (x) ≡ w(x). Consider an arbitrary x = (x1, . . . , xn), and let k := w(x).
Then xm ≥ k − m + 1 holds for all m ≤ k, and at least one of these inequalities is an equality. The
equality case together with the third step result implies f (x) ≤ k. Since v[k]

� x, the monotonicity
condition and the second step imply f (x) ≥ k. This yields f (x) = k = w(x). The proof of Theorem 4.2 is
complete. �

Next, let us prove Theorem 4.3. Since the maximum-index fmax obviously satisfies the axioms A1,
A2, and C, one direction of the proof is immediate. For the other direction, we consider an arbitrary
index f that satisfies A1, A2, and C. We will show that f ≡ fmax. The argument proceeds in four steps.

In the first step, we argue that f (x) ≤ fmax(x) holds for all x ∈ X. The proof can be done via
straightforward induction, that starts from Definition 2.1 and then repeatedly applies axiom C.

The second step considers for every k ≥ 0 the vector v[k]
= (k, k − 1, . . . , 2, 1, 0). We prove by

induction on k ≥ 0 that f (v[k]) = k: The statement for k = 0 follows fromDefinition 2.1. In the inductive
step, we derive from the inductive assumption and from axiomA2 that f (v[k+1]) > f (v[k]) = k, whereas
the statement in the first step yields f (v[k+1]) ≤ k + 1. This yields the desired f (v[k+1]) = k + 1.

In the third step we establish f (k) ≥ k for every integer k ≥ 0. The proof is done by induction.
The case k = 0 is trivial. In the inductive step, the monotonicity condition in Definition 2.1 together
with the inductive assumption yields f (k + 1) ≥ f (k) ≥ k. Suppose for the sake of contradiction
that f (k + 1) = k. If we add one by one the components 0, 1, 2, . . . , k to the one-dimensional vector
(k + 1), we end up with vector v[k+1]. By axiom A1 these additions do not increase the index; hence
f (v[k+1]) ≤ f (k + 1) = k must hold. Since this blatantly contradicts the result derived in the second
step, we may conclude the desired f (k + 1) ≥ k + 1.

In the fourth step we establish f (x) ≡ fmax(x) for all x. Consider an arbitrary vector x = (x1, . . . , xn),
and let k := fmax(x). The first step implies f (x) ≤ k. Since (k) � x, the monotonicity condition and the
third step imply f (x) ≥ k. This shows f (x) = k = fmax(x), and completes the proof of Theorem 4.3. �
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Finally, we will prove Theorem 4.4. The w-index satisfies axioms A2, B, C, and D, but violates A1;
this settles statements (a) and (g). The maximum-index satisfies axioms A1, A2, C, and D, but violates
B; this settles statements (b) and (e). The h-index satisfies axioms A1, B, C, and D, but violates A2; this
settles statements (d) and (h). For the remaining three statements (c), (f), and (i), we introduce the
following indices.

• The zero-index assigns to every vector x the value 0. This trivial index satisfies the axioms A1, B, C,
violates A2 and D, and thus settles statement (c).

• Next, consider the index that assigns to every vector the number of non-zero components. This
index satisfies A2, B, D, violates A1 and C, and thus settles (f).

• Consider the scientific impact index that assigns to a vector x = (x1, . . . , xn) in X the value of the
smallest even integer greater or equal to x1. This index satisfies axioms A1, A2, D, but violates B
and C. Therefore, it settles statement (i).

This completes the proof of Theorem 4.4. �

6. Conclusions

In this article, we have given axiomatic characterizations for the Hirsch-index, the w-index, and
the maximum-index. Out of these three indices, the maximum-index is clearly the least interesting.
It is irrelevant for all practical purposes. Since it only measures the impact of a single publication, it
cannot provide any useful information on the productivity or cumulative impact of a researcher.

The usefulness of the Hirsch-index, on the other hand, is widely recognized. It is transparent,
unbiased and very hard to rig. Ball (2005) indicates that it might eventually be useful as an objective
criterion for election to bodies such as theUSANational Academy of Sciences or Britain’s Royal Society.
One weak point of the Hirsch-index is that it tends to cluster high numbers of scientists into the same
index value.

The w-index is a contribution of the current article. It is a kind of dual to the Hirsch-index, and
it fell out almost for free from our axiomatic investigations around the Hirsch-index. Similarly as
the Hirsch-index, the w-index tends to cluster many scientists into the same index value. However,
our Proposition 2.4 indicates that its range might be twice the range of the Hirsch-index. Therefore
the w-index should lead to a somewhat finer ranking than the Hirsch-index. (We have verified this
observation for a partial list of computer scienctists with high Hirsch-index according to Google
Scholar.) Another nice property of thew-index is that its underlying isosceles right-angled triangle (see
Fig. 1) seems to resemble one’s average citation curve more closely than the square that underlies the
Hirsch-index. All this makes us hope that thew-indexmight actually turn out to be useful for practical
purposes.
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