
GNU Fuzzy

Detlef D. Nauck

Abstract- Neural networks and fuzzy systems are both part
of what we call soft computing or computational intelligence.
Both approaches can be applied to similar classes of problems.
Although fuzzy approaches have been successful in control
applications in the 1990s this success has not noticeably spread
to other domains. Neural networks in contrast enjoy a more
steady and widespread commercial success be it in credit card
fraud detection or as modules in almost every large data mining
software system. Fuzzy systems have not yet enjoyed widespread
success in the domain of business applications. It seems software
vendors lack incentive for implementing fuzzy software because
the benefits have not been made clear by the research commu-
nity and because fuzzy software is more difficult to implement
and use than, for example, neural networks. In order for fuzzy
systems to succeed in business applications I suggest to look
into building a fuzzy tool kit in a community process to provide
an open source reference implementation. This paper looks at
some of the key considerations that are important for building
a fuzzy tool kit that can support the take-up of fuzzy systems
in business applications.

I. INTRODUCTION

In the 1990s fuzzy systems enjoyed a brief high with their
success in control applications. Since early success stories
like the Danish cement kiln (1982) and the Sendai Subway
(1986) we have grown used to fuzzy features in appliances
and consumer electronics like fuzzy washing machines and
"fuzzy" cameras that amazingly produce crisp pictures.
The development of fuzzy controllers has been supported

by a number of tools like the Fuzzy Programming Lan-
guage FPL, the Fuzzy C-Compiler and the TIL Shell by
Togai InfraLogic, Inc. [1]. The latter was once marketed
as SIEFUZZY by Siemens. Other well-known tools are
the Fuzzy Inference Development Environment FIDE by
Aptronix [2] or fuzzyTECH by Inform [3]. There are the
the Fuzzy Logic Toolbox for Matlab [4] developed by the
ANFIS inventor Roger Jang [5] and a Fuzzy Logic add-on
for Mathematica [6]. Both offer functions like fuzzy systems
modeling, fuzzy control, and fuzzy c-means clustering.

In the middle of the 1990s other areas like data mining,
pattern recognition and cluster analysis became more preva-
lent in the fuzzy community than control and new approaches
like neuro-fuzzy combinations became fashionable research.
This led to another class of tools that were more general
purpose and not just focused on control application. The
DataEngine from MIT GmbH [7] offers neural networks and
fuzzy systems for data analysis tasks. The latest version of
the Fuzzy Logic Toolbox is still marketed by MathWorks in
the domain control system design and analysis, but actually

Detlef D. Nauck is with the Intelligent Systems Research Centre, Re-
search & Venturing, BT Group Orion ppl/12, BT Adastral Park, Ipswich,
l4 ;>c2t*WK54 0 ffi1; email: detlef.nauck@bt.com).

it is more versatile with its offering of the neuro-fuzzy
approach ANFIS and a fuzzy C-means implementation.

There are also many tools, programs and software frag-
ments provided by academic researchers. Some of them we
will mention in this paper. However, it is not the purpose
of this paper to provide an overview about available fuzzy
software implementations. Rather this paper considers the
lack thereof and suggests that if the fuzzy research com-
munity does not look into fuzzy software in anger, fuzzy
systems will not reach a satisfactory level of application in
the foreseeable future.

After the initial success of fuzzy controllers there has
been no major success of fuzzy approaches in applications
and fuzzy methods are still shunned by industry. The story
is quite different for neural networks. Not only are large
scale applications like the credit card fraud detection system
Falcon [8] well-established, we also see neural network
algorithms in major data mining or data analysis platform
provided by big names like, for example, SAS, IBM or
SPSS. Oracle Data Mining provides support vector machines
instead, but considers them a superset of neural networks [9].

I am convinced that fuzzy technology will not be picked
up by industry unless useful software is widely available.
The data mining hype helped transferring technologies like
machine learning and neural networks into business ap-
plications. Business intelligence and customer relationship
management systems have adapted these approaches because
data mining software demonstrated their effectiveness. No
such thing has happened for fuzzy approaches except for
fuzzy control, which can be considered a niche application.

In order to support technology transfer I suggest that
fuzzy system researchers engage in a community process and
develop a fuzzy tool kit (FTK) that serves as a library for
reference implementations of several fuzzy techniques.

II. CONTEXT CONSIDERATIONS

The type of fuzzy software that has been successful in
the past has been aimed at the rather technical audience of
control engineers. The software has a clearly defined benefit,
i.e. helping you designing a controller much easier and faster
than you used to be able to. The software actually enables
you to design controllers for domains where you have only
limited formal/mathematical knowledge of the controlled
system. This sort of approach is convincing because it
focuses on business value.
The success of fuzzy control was also helped by the

enthusiasm of the Japanese industry to try out this new
technology. A way of describing the development of a new
technology is to use the so called "hype cycle" as coined
by Gartner where a new technology after becoming visible

progresses from inflated expectation over disillusionment and
then enlightenment to productivity [10], [11]. In this sense
the fuzzy control boom was the peak of inflated expectation
and today fuzzy technology as a whole is probably still
traveling through the trough of disillusionment.

The promises fuzzy technology has delivered to control
applications have not been kept for other areas so far. In
order to leave the phase of disillusionment we have to
move fuzzy technology out of the engineering community
and develop easy to use software that addresses a more
generic decision support domain. With that I am referring
to systems that provide outputs that are taken into account
when making human-based or machine-based decisions. The
system itself would be based on knowledge representation
which is created manually, learned from data or a mixture
both. The system would be able to process different types of
data (e.g. numeric, symbolic, fuzzy) and not be restricted to a
particular technological domain. This is obviously so generic
that it also covers fuzzy control software. But the point is
that the software must be domain-independent in order to be
suitable for different business applications. To make it appeal
to developers and users of business applications it also needs
to be presented in a non-technical, benefit-oriented way and
underpinned by a number of domain-specific demonstrators.
We can ask ourselves why the research community should

get involved in software development. Isn't that something
software vendors should do, who, after all, will reap the
benefits; and didn't it work that way for technologies like
decision trees, neural networks or, recently, even for Bayesian
Networks in the domain of operational risk management?

Software manufacturers provide tools for solving business
problems, i.e. tools that have a clearly identified benefit.
Except for control applications, the research community has
not yet managed to express a convincing benefit for providing
fuzzy technology in business-oriented software. Approaches
like decision trees and neural networks found their way into
business software by riding the wave of the data mining
hype where the proposed business benefit was supposed
to be the valuable insight into your business you would
gain from mining your business data. Although oversold as
any new technology software vendors were quick to take
up decision trees and neural networks, because they are
essentially easily configurable algorithms that produce a good
solution most of the time. Fuzzy systems in contrast have a
lot of exposed parameters that are supposedly intuitive (rules,
fuzzy sets), but are actually difficult to configure for non-
experts. Currently, there is no technology wave in sight on
which fuzzy systems could be swept into applications on
a grander scale and beyond control applications. Therefore
there is no incentive for software vendors to look at fuzzy
systems.

I believe it is in the interest of our research community to
step in and initiate the creation of open source fuzzy software
as a reference implementation. This will not only facilitate
the application of fuzzy technology in businesses, but will

III. AVAILABLE FREE SOFTWARE

In this section we look at some of the freely available fuzzy
software that can be accessed on the Web. The large majority
has been produced by academics. The licenses range from
GNU open source software to packages with undisclosed
source code that are only free for research and education.

A. Libraries

Fuzzy software that is available as an open source library
would be ideal for both research and application, because
it could be conveniently extended and used for different
purposes. Unfortunately, there is not much around.

The Free Fuzzy Logic Library FFLL has been written
in C++ and has been used as the basis of a Fuzzy Logic
Editor by a company specialized on video game software
[12]. The library is free and the source code is available on

SourceForge, but FLLL has not been updated since 2003.
The FuzzyJ Toolkit [13] is a Java library developed by

Robert Orchard from the National Research Council of
Canada. FuzzyJ provides a rich API [14] and has grown out
of the work on FuzzyCLIPS [15] an extension to the CLIPS
expert system shell [16]. The toolkit has been used to extend
the Java Expert System Shell Jess [17] into FuzzyJess [18].
FuzzyJ is distributed without source code and is only free for
education and research purposes. Commercial use requires a

license. The FuzzyJ API provides 12 types of fuzzy sets,
3 types of fuzzy rules, fuzzy values, fuzzy variables and
linguistic modifiers.

B. Tools

The vast majority of free fuzzy software comes in the
shape of tools and demonstrators. This type of software is
typically of limited use and not fit for large scale business
applications. This is not surprising, because the tools have
been developed by small research groups and only a few of
them have enjoyed sustained development.

The author of this paper has himself developed several
neuro-fuzzy algorithms [19] that have resulted in a number
of neuro-fuzzy tools between 1995 and 2000. The tools
NEFCON, NEFCLASS and NEFPROX provide learning
algorithms for fuzzy control, fuzzy classifiers and fuzzy
function approximation. The latest NEFCON incarnation
[20] is available for Matlab and requires the Matlab Fuzzy
Toolbox. The most recent implementation of NEFLCASS
[21] has been written in Java, but the source code is not
available. The C++ and Pascal source code of earlier versions
is available, but out of date. NEFPROX [22] is available
with its C++ source code, but has only limited functionality.
The neuro-fuzzy software is available from Rudolf Kruse's
research group [23] and is free for research and educational
use. The focus of this software was always to demonstrate
neuro-fuzzy algorithms and therefore it is not very suitable
as the foundation of a new development process.

Fril [24], [25] is a for first-order predicate calculus that
includes Prolog and provides support for fuzzy sets. Fril is

also serve as a valuable research platform. free for educational, research or private use. It is distributed

without source code. A preliminary Java library is available
that allows using Fril within Java applications. The source
code of the library is also not available. The latest available
updates of Fril date back to 2003.

FuzzyClips [15], [26] is an extension to the expert System
shell CLIPS [16]. It allows to use fuzzy terms within rea-
soning processes and can handle uncertainty and fuzziness
concepts. The software is free for research purposes and the
source code is not available. The last update is from 2004.
XFuzzy 3.0 [27], [28] is a development environment for

fuzzy inference systems. It consists of number of tools for
inferencing, simulation, learning, graphical representation,
editing and program synthesis. The tools are based on a com-
mon specification language XFL3. Xfuzzy has been written
in Java and is free software under the GNU Public License
(GPL). XFuzzy is probably the most advanced free fuzzy
software package that is available today. A very appealing
feature of XFuzzy is that it can generate source code in
C, C++ and Java which means it can generate stand-alone
applications of fuzzy systems designed in XFuzzy. The last
update is from 2003 and it is not obvious from the team's
web site, if the development still continues. Because XFuzzy
is already quite an extensive toolkit, has been written in
Java and is published under the GPL it could serve as the
foundation of a larger community process. However, the
source code was not available at the download site.

IV. REQUIREMENT ANALYSIS

With the advent of Web 2.0 [29] and Web Services [30] it
is nowadays more common to think about software services
delivered via the network instead of using monolithic soft-
ware platforms sitting on a desktop computer. This is one
trend we should consider when assessing the requirements
of potentially successful fuzzy software in this age.

Because we want fuzzy software to serve as a driver
of technology transfer and encourage the use of fuzzy
technology in business applications we also must consider
how businesses use software. Traditionally, fuzzy software
was developed by technical experts for technical experts.
The focus was mainly on the algorithms and much less on
usability and extensibility.

In this section we look at selected requirements and con-
sider some implementation details for illustration purposes.

A. Core Fuzzy Engine

The core fuzzy engine must provide the central concepts
like fuzzy sets, fuzzy values, fuzzy variables, types of fuzzy
rules, fuzzy relations, linguistic hedges and a multitude of
operators (t-norms, s-norms, defuzzification etc). The core
should be designed for speed which means we have to
take implementation details of fuzzy sets and operators
into account. For example, a quick test in Java reveals
that computing the membership degree for an exponential
membership takes about 10 times longer than computing the
membership degree for trapezoidal or triangular membership
function. While the latter requires at most four comparisons,
two subtractions and a division the former requires a call to

the implementation of the exponential function. A test on a
fast modern PC required about 30 seconds for computing 108
membership degrees of a Gaussian membership function.

That sounds reasonably fast, but consider a situation where
we are going to learn a fuzzy system with 100 rules and 10
variables from 100.000 sample records. Assume further we
have to iterate a 1.000 times over the data set. That results
in 1011 computations of a membership degree (assuming we
don't optimize and stop evaluating a rule once we encounter
a membership degree of 0). In case of Gaussians we have an
overhead of 30.000 seconds, i.e. over 8 hours of computing
time just for membership computation alone. In case of trape-
zoidals we would require less than an hour. This problem
can be addressed by tabulating the exponential function for
the domain of a variable with sufficient density and select
the closest entry or if necessary interpolate between two
entries. Converting the argument of the function into an
array index would result in one array access, one subtraction,
two multiplications and one division bringing us close to a
the effort required for trapezoidals. Assume we have a bell-
shaped membership function centered at c:

((7

For this type of function we have

/(",)(x),u)H(o,1) ((x -c)/u)) and

,(o,1))(-x) =(0,1))(X)
We can therefore simply store n values of I(0,1)(x) in an
array as follows:

A[i] exp (- 2), for x C [0, s], where

We set I,(c,,)(x) = 0 for x , [c- s,c + su]. For
practical purposes it should be sufficient to select s = 3
because I(c,,) (c ± 3(X) - 10-4. This set-up allows us to
compute I(,u))(x) approximately by the following pseudo
code (example without interpolation):

pos = x -c; spread = s v;
if ((pos < -spread) or (pos > spread))

y = 0.0;
else if (pos == 0)

y= 1.0;
else{

if (pos < 0) pos -pos

i = trunc(n poslspread);
y = A[i];

}
This approach is about six times faster than using a call
to an exponential function. A test in Java reveals that for
n = 10.000 and testing values for U(1,2) (X) with x C [0, 1]the
maximum absolute error is about 0.00033 and the average

P (,,,) (x) = exp

absolute error is about 0.00013. That means we have at least
three significant digits for a membership degree.

It is probably not required for the fuzzy core to pro-
duce highly accurate membership degrees anyway. We may
want to question if it is appropriate to distinguish between
membership degrees of 0 and 0.001, for instance. Fuzzy
technologies may not be suitable for applications that require
that degree of accuracy. Therefore it should be possible to
further increase the speed of computation by refraining from
using floats and using integer arithmetic only.

B. Data Management

For any large-scale business application it is absolutely es-
sential to provide access to databases. Consider, for example,
a business with millions of individual customers that wants
to determine the propensity to churn for each customer. The
customer data will be stored in a database or data warehouse.
Expecting the user to export the data into a file for use with
the fuzzy software would pose a serious acceptability risk.
We also have to consider that many fuzzy applications will

not be fully knowledge-based, but will have to be derived
from data at least to some extent. That means we have to
implement learning algorithms (see below). That also means
that the software will have to loop over large data samples for
learning and will have to score possibly even larger samples
in an application mode. It is not realistic to restrict the
amount of data to the amount of main memory. The software
will have to provide efficient data management strategies
implemented on database connections.

Consider for example, that we want to select a number
of records from a large table where we test if a particular
attribute has a membership degree above a certain threshold.
It will be inefficient to load the table into memory, process
the attribute and delete records that don't meet the criterion.
It would also be inefficient to only load the column with
the attributes in question and then fetch all rows passing the
test via row identifiers or keys. Ideally we should be able to
create a bespoke database statement and retrieve a result set
containing only the records we need. Databases have been
built to be very efficient in scanning tables and retrieving
records. It would be too expensive to replicate this behavior
in the FTK. Assume that we have a connection to an SQL
database like MySQL or Oracle and that we want to test if
the membership of attribute x with a triangular membership
function with parameters left, center and right is above a
threshold 0. We can dynamically create and execute an SQL
statement like
SELECT * FROM MyTable
WHERE CASE WHEN x = center THEN 1.0

ELSE CASE WHEN x < left OR x > right
THEN 0.0
ELSE CASE WHEN x < center

THEN (x -left) I (center -left)
ELSE (right- x) I (right -center)
END

END
END > threshold

This approach can also be followed by storing parameters

tables and joining them via suitable conditions to data tables.
An objective should be to move as many simple operations on

large amounts of data as possible into a database system. If
an object/relational mapping (ORM) approach like Hibernate
for Java [31] is used the generation of SQL code can be done
automatically.
An alternative would be to consider an implementation

of a fuzzy query language like Fuzzy SQL [32], [33], [34]
that directly supports fuzzy terms in database queries. There
are some commercial [35] and free [36] implementations
of Fuzzy SQL available. However, in their common form
they don't seem to be suitable for inclusion into an FTK,
because they either are stand-alone applications or scripts
for particular database management systems. It appears to
be more likely that an FTK could serve as platform for a

generic Fuzzy SQL implementation.

C. Learning

As mentioned previously we have to assume that many

applications require generation of fuzzy systems from data.
That means fuzzy application software should provide a num-

ber of learning algorithm as they are known, for example,
from neuro-fuzzy systems [5], [19], fuzzy decision trees [37],
fuzzy cluster analysis [38] or genetic fuzzy systems [39].

Different learning algorithms have different requirements
on the representation of fuzzy systems. Many learning ap-

proaches manipulate parameters of membership functions
and generate or change fuzzy rules and therefore need access

to the implementation details of the fuzzy core engine.
This poses a problem, because the core should be as small

as possible and achieve a stable software version quickly.
Learning in fuzzy system is still and active research area

and we can expect that many researchers want to contribute
algorithms. They should not need to change the core in order
to integrate a new learning procedure. It would be more

efficient if a clean core API would be available that enables
fast and convenient implementation of learning algorithms.

For example, consider learning algorithms that use some

variation of backpropagation. They would compute an output
error, distribute it over the available fuzzy rules to compute
rule errors, which would be used to update parameters of
fuzzy sets. A core API could provide a number of methods
that allow changing fuzzy set parameters based on error

values. In backpropagation the change of a parameter p of a

membership function ,u is done by

5E 0
Ap rE d

6p 6P
where r is a learning rate, E is the overall error and d
is a product of a number of factors created by the chain
rule, typically involving computation of outputs and rule
fulfillments which depend on the particular type of fuzzy
system. The fuzzy core can provide implementations of

6p/lp for each type of fuzzy set to be used by implementers
of learning algorithms. Similarly this can be done for types

of fuzzy sets or discretised membership functions in database of fuzzy rules etc. It is also possible to provide simplified

modification methods like shift or scale to accommodate
learning algorithms that use simpler heuristics [19].

Fuzzy rule learning is easier to accommodate, because
it essentially means combining resources (fuzzy sets and
operators) provided by the fuzzy core. However, it must be
taken into account that different learning algorithms may
have different requirements for representing rules. Some
algorithms may expect that rules share a common set of
membership functions [19], while others may create fuzzy
sets on the fly while creating fuzzy rules [40]. The fuzzy
core should therefore provide a rule implementation that
accommodates both types of rule learning approaches.

Fuzzy clustering, which is a form of unsupervised learn-
ing, requires different services from the fuzzy core. Clus-
tering algorithms manipulate only matrices of membership
degrees and may require methods for transforming clusters
into rules by projection. To enable simple implementation
of clustering algorithms the core should provide suitable
methods for matrix representation and manipulation.

Providing resources for genetic fuzzy systems or any form
of evolutionary computation in order to create or optimize
fuzzy systems is a bigger challenge, because implementing
evolutionary algorithms as such is a big task. It may be
more appropriate to accommodate this type of approach
via interfaces and external APIs. A fuzzy system could
be transformed into a form that can be used by some
evolutionary software system and the core could provide an
API to execute a fuzzy system on test data to compute a
performance or fitness measure.

D. Interfaces
In order to be successful it is important for a fuzzy

software system to provide standard interfaces to existing
software, but without relying on the user having access to
any external commercial package. The Fuzzy Toolbox for
MATLAB is one obvious candidate. It should be possible
to import/export fuzzy systems from/into the Fuzzy Toolbox
format. The same approach could be taken for Mathematica.

However, these package are used mainly by the engineer-
ing and research community and are therefore of limited
reach if we want to address a larger business community
and enable them to use fuzzy software.
An important way of integrating into existing and future

business platforms are web services [30]. A fuzzy software
system should be Java EE compliant [41], [42] so it can
be deployed via an application server like BEA WebLogic,
JBoss, or Apache Tomcat etc [43]. This enables the develop-
ment of web applications and web services [44], but would
not prevent the use in stand-alone applications if required.

Another important interface standard to look at is PMML
- the Predictive Model Markup Language defined by the
Data Mining Group DMB [45]. The DMG is an independent,
vendor-led group that develops data mining standards. At
the moment the DMG works on the specification of PMML
3.2. The currently available PMML Version 3.1 does con-
tain, for example, neural networks and tree models, but no

implemented so far by IBM in its Intelligent Miner Software,
by SPSS in SPSS version 13 or later and in Clementine, by
SAS Enterprise Miner and by CART from Salford Systems
[46]. Some models described in PMML can also be read or

written by Oracle lOg Data Mining [9]. SAS and IBM, for
example, support PMML since 2004 [47].
We also should consider that a fuzzy system once created

by the toolkit should be able to integrate into application
without some type of runtime environment having to be
executed as a separate application. That means that it must
be possible that a fuzzy system is either exported as some

form of software library that applications can dynamically
link to or as a stand-alone executable (cf. XFuzzy [28]).

E. GUI

Traditionally, fuzzy software has been written within aca-

demic circles and the results were therefore mainly research
demonstrators with very technical user interfaces. All com-

mercial implementations the authors is aware of still have a

research flavor, which tends to put off business users.

An FTK will require some GUIs that allow the convenient
specification or viewing of fuzzy sets and fuzzy rules.
However we must also become creative and design interfaces
that appeal to non-technical users.

We cannot expect all users to provide fuzzy partitions for
variables, decide about types of membership functions and
select operators. Users should be offered support in making
this kind of decisions whenever possible. Where that is not
possible, e.g. because the user wants to represent knowledge,
the specification of parameters must be heavily supported
and simplified. For example, instead of drawing functions to
specify fuzzy sets we can use a dialog-based approach that
focuses on the linguistic terms used to describe knowledge.

It is likely that most fuzzy applications will be data
driven. This is simply due to the nature of fuzzy systems
like Mamdani or Takagi-Sugeno-Kang systems being essen-

tially function approximators. That means beyond control
applications they are typically suitable for classification or

regression and therefore interesting for areas typically de-
scribed as data mining, data analysis, business intelligence
or predictive analytics. In these areas parameters are derived
in some learning processes. Here we have the problem of
communicating the derived knowledge to the user. Fuzzy
systems still have a large deficit in this area and simply
plotting a membership function is not a suitable way of
conveying the meaning of a fuzzy term.

V. CONCLUSIONS
The purpose of this paper is to stimulate discussion around

an open source, community-based software development
process for a fuzzy tool kit. The context of a conference
paper does not provide enough room to discuss all aspects
sufficiently and so we have only looked at selected issues
like scalability, data management and interfaces. The most
popular types of fuzzy systems can only be used for modeling
rather simple domains, because they directly relate input and

fuzzy models. The DMG reports that PMML 2.1 has been output variables, typically via one step of fuzzy interpolation

[48]. We have not discussed support for chaining of fuzzy
systems or graphical models like possibilistic networks. This
will be required for supporting more complex applications.
We have also not looked at applications beyond function

approximation. A promising area for future growth of fuzzy
system research lies in text-based problems like text mining,
search engines and question answering systems and they
should also be supported by a future FTK.
The IEEE Computational Intelligence Society has initiated

a task force on Fuzzy Sets and Systems Software (FSSS)
chaired by Plamen Angelov. The web site of the task force
will be at http://www.fuzzysoftware.org and will hopefully
serve as a focus point of a future community process.

REFERENCES

[1] "Togai InfraLogic [online]," www.ortech-engr.com/fuzzy/togai.html,
1995, accessed 26 January 2007.

[2] "Aptronix [online]," http:llwww.aptronix.com, 2000, accessed 26 Jan-
uary 2007.

[3] Inform GmbH, "FuzzyTech [online]," http://www.fuzzytech.com,
2007, accessed 26 January 2007.

[4] The MathWorks, "Fuzzy toolbox 2.2.4 [online],"
http://www.mathworks.com/products/fuzzylogic, 2007, accessed
26 January 2007.

[5] J.-S. Jang, C. Sun, and E. Mizutani, Neuro Fuzzy and Soft Computing.
Upper Saddle River, NJ: Prentice Hall, 1997.

[6] Wolfram Research, "Mathematica Fuzzy Logic [online],"
http://www.wolfram.com/products/applications/fuzzylogic, 2007,
accessed 26 January 2007.

[7] MIT GmbH, "Dataengine [online]," http:llwww.dataengine.de, 2001,
accessed 26 January 2007.

[8] FairIsaac, "Falcon fraud manager [online],"
http://www.fairisaac.com/Fairisaac/Solutions/Product+Index/
Falcon+Fraud+Manager, 2007, accessed 02 February 2007.

[9] Oracle, "Oracle lOg Data Mining FAQ [online],"
http:llwww.oracle.com/technology/products/bi/odm/odm 1Og faq.html,
February 2005, accessed 02 February 2007.

[10] Gartner, "Understanding hype cycles [online],"
http://www.gartner.com/pages/story.php.id.8795.s.8.jsp, 2007,
accessed 05 February 2007.

[11] Wikepedia, "Hype cycle [online],"
http://en.wikipedia.org/wiki/Hype cycle, 29 January 2007, accessed
05 February 2007.

[12] "Free fuzzy logic library [online]," http://ffll.sourceforge.net/, 2003,
accessed 25 January 2007.

[13] R. A. Orchard, "FuzzyJ toolkit web site [online],"
http://www.iit.nrc.ca/IR public/fuzzy/fuzzyJToolkit.html, 2005,
accessed 25 January 2007.

[14] , NRC FuzzyJ Toolkit for the Java Platform User's Guide [on-
line], Institute for Information Technology, National Research Council
Canada, http://www.iit.nrc.ca/IR public/fuzzy/fuzzyJDocs, September
2006, accessed 23 January 2007.

[15] , FuzzyCLIPS Version 6.04A Users Guide, ERB-1054, National
Research Council Canada, 1998.

[16] G. Riley, "CLIPS 6.24: A tool for building expert systems [online],"
http://www.ghg.net/clips/CLIPS.html, 2006, accessed 25 January 2007.

[17] E. Friedman-Hill, "JESS - the rule engine for the java platform [on-
line]," http://herzberg.ca.sandia.gov/jess/, 2006, accessed 25 January
2007.

[18] R. A. Orchard, "Fuzzy reasoning in Jess: The Fuzzy J Toolkit and
Fuzzy Jess," in Proceedings of the Third International Conference on
Enterprise Information Systems (ICEIS 2001), Setubal, Portugal, July
2001, pp. 533-542.

[19] D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro-Fuzzy
Systems. Chichester: Wiley, 1997.

[20] A. Niirnberger, D. Nauck, and R. Kruse, "Neuro-fuzzy control based
on the NEFCON-model: Recent developments," Soft Computing,
vol. 2, no. 4, pp. 168-182, 1999.

[21] D. Nauck and R. Kruse, "NEFCLASS-J - a Java-based soft computing
tool," in Intelligent Systems and Soft Computing: Prospects, Tools and
Applications, ser. Lecture Notes in Artificial Intelligence, B. Azvine,
N. Azarmi, and D. Nauck, Eds. Berlin: Springer-Verlag, 2000, no.
1804, pp. 143-164.

[22] , "Neuro-fuzzy systems for function approximation," Fuzzy Sets
and Systems, vol. 101, pp. 261-271, 1999.

[23] R. Kruse, "Neural networks and fuzzy systems [online],"
http://fuzzy.cs.uni-magdeburg.de/, 2007, accessed 26 January 2007.

[24] J. Baldwin, T. Martin, and B. Pilsworth, Fril - Fuzzy and Evidential
Reasoning in Artificial Intelligence. Research Studies Press, 1995.

[25] T. P. Martin, "Fril resources [online],"
http://www.enm.bris.ac.uk/ai/martin/downloads/FrilResources.html,
2003, accessed 26 January 2007.

[26] R. A. Orchard, "Fuzzy extension to the CLIPS expert system
shell (FuzzyCLIPS)[online]," http:llwww.iit-iti.nrc-cnrc.gc.ca/projects-
projets/fuzzyclips e.html, 2004, accessed 26 January 2007.

[27] F. J. M. Velo, I. Baturone, S. S. Solano, and A. Barriga, "Rapid design
of fuzzy systems with XFuzzy," in Proc. IEEE Int. Conf. on Fuzzy
Systems 2003, vol. 1. St. Louis: IEEE, 2003, pp. 342-347.

[28] "XFuzzy 3.0 [online]," http://www.imse.cnm.es/Xfuzzy/, 2003, ac-
cessed 26 January 2007.

[29] T. O'Reilly, "What is web 2.0 - design patterns and
business models for the next generation of software [online],"
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html, Sept. 2005, accessed 26 January 2007.

[30] W3C, "Web services activity [online]," http://www.w3.org/2002/ws/,
Nov. 2006, accessed 26 January 2007.

[31] C. Bauer and G. King, Hibernate in Action, 2nd ed. Greenwich, CT:
Manning Publications Co., 2004.

[32] J. Galindo, J. Medina, 0. Pons, and J. Cubero, "A server for fuzzy
sql queries," in Flexible Query Answering Systems, ser. Lecture Notes
in Artificial Intelligence (LNAI), T. Andreasen, H. Christiansen, and
H. Larsen, Eds. Springer, 1998, no. 1495, pp. 164-174.

[33] E. Cox, "Fuzzy sql," Scianta Intelligence, http://scianta.com/pubs/AR-
PA-008.htm, Online article, 1999, published online, accessed 02 Febru-
ary 2007.

[34] J. Galindo, A. Urrutia, and P. M., Fuzzy Databases: Modeling, Design
and Implementation. Hershey, PA: Idea Group Publishing, 2006.

[35] E. Cox, "Fuzzy sql [online]," http://scianta.com/products/fuzzysql.htm,
2005, accessed 02 February 2007.

[36] J. Galindo, "FSQL (Fuzzy SQL) - a fuzzy query language [online],"
http:llwww.lcc.uma.es/-ppgg/FSQL.html, 2007, accessed 02 February
2007.

[37] C. Z. Janikow, "Fuzzy decision trees: Issues and methods," IEEE
Trans. Systems, Man & Cybernetics. Part B: Cybernetics, vol. 28,
no. 1, pp. 1-14, 1998.

[38] F. H6ppner, F. Klawonn, R. Kruse, and T. Runkler, Fuzzy Cluster
Analysis. Chichester: Wiley, 1999.

[39] 0. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic
Fuzzy Systems. Evolutionary Tuning and Learning ofFuzzy Knowledge
Bases. World Scientific, 2001, vol. 19.

[40] M. Berthold and K.-P. Huber, "Constructing fuzzy graphs from exam-
ples," International Computer Science Institute, Berkeley, Tech. Rep.,
1997.

[41] Sun Microsystems, Inc., "Java EE at a glance [online],"
http://java.sun.com/javaee, 2007, accessed 02 February 2007.

[42] K. Mukhar and C. Zelenak, Beginning Java EE 5. Berkeley, CA:
Apress, 2005.

[43] Wikepedia, "Application server [online],"
http://en.wikipedia.org/wiki/Application server, January 2007,
accessed 02 February 2007.

[44] Developing Java Web Services. Indianapolis, IN: Wiley Publishing,
Inc., 2003.

[45] Data Mining Group, "Data Mining Group [online],"
http://www.dmg.org, 2006, accessed 02 February 2007.

[46] , "PMML Products [online]," http://www.dmg.org/products.html,
2006, accessed 02 February 2007.

[47] SAS Institute Inc., "SAS and IBM demonstrate industry
leadership in data mining interoperability [online],"
http://www.sas.com/news/preleases/042704/news3.html, 27 April
2004, accessed 02 February 2007.

[48] R. Kruse, J. Gebhardt, and F. Klawonn, Foundations of Fuzzy Systems.
Chichester: Wiley, 1994.

