
UNIVERSITY OF GRANADA

Dept. of Computer Science and Artificial
Intelligence

C.P. 18071, Granada, Spain

Imputation of Missing Values

Methods’ Description

Julián Luengo

Salvador Garćıa
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1 Introduction

Many existing, industrial and research data sets contain Missing Values.
They are introduced due to various reasons, such as manual data entry pro-
cedures, equipment errors and incorrect measurements. The simplest way of
dealing with missing values is to discard the examples that contain the miss-
ing values. However, this method is practical only when the data contains
relatively small number of examples with missing values and when analysis
of the complete examples will not lead to serious bias during the inference.

Missing data treatment should be carefully thought, otherwise bias might
be introduced into the knowledge induced. Depending on the way MVs
have been produced, our approach to handle them will be different. Several
methods have been proposed in the literature to treat missing data [1, 2].
The treatment of missing data can be handled in three different ways [4]:

• The first approach is to discard the examples with missing data in their
attributes. Therefore deleting attributes with elevated levels of missing
data are enclosed in this category too.

• Other approach is the use of maximum likelihood procedures, where
the parameters of a model for the complete data are estimated, and
used later for impute by means of sampling.

• Finally, the imputation of MVs is a class of procedures that aims to fill
in the MVs with estimated ones. In most cases, data sets attributes
are not independent from each other. Thus, through the identification
of relationships among attributes, MVs can be determined. This is the
most used approach.

In this document we focus our attention on the imputation methods. A
fundamental advantage of this approach is that the missing data treatment
is independent of the learning algorithm used. For this reason, the user can
select the most appropriate method for each situation he faces. There is a
wide family of imputation methods, from mean imputation to those which
analyze the relationships between attributes.

The extended descriptions of the methods follow in the next Sections.
Please refers to the reference papers to obtain the full citations and references
which come along such descriptions. Each method’s notations have been
maintained as close to the original as possible.
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2 Global Most Common Attribute Value for Symbolic
Attributes, and Global Average Value for Numerical
Attributes (MC)

This method [7] is very simple: given an instance yi, if the attribute h of
such example, that is yih, contains a MV, we use two possible methods. If the
attribute is numerical, then yih is estimated by the average of all observed
values of such attribute:

ŷih =

∑
j∈Iih

yjh

|Iih| , (2.1)

where Iih is the index set of all examples with attribute h observed, and if
yjh is missing the j-th attribute is excluded from Iih.

If h refers to a nominal attribute, then we substitute by the mode of such
attribute:

ŷih = max
j∈Iih

{count(yjh)} (2.2)

3 Concept Most Common Attribute Value for Sym-
bolic Attributes, and Concept Average Value for
Numerical Attributes (CMC)

As stated in MC, in this method [7] we replace the MV by the most
repeated one if nominal or the mean value if numerical, but considering only
the instances with same class as the reference instance. So if the attribute is
numerical, then yih is estimated by:

ŷih =

∑
j∈Iih

yjh

|Iih| , (3.1)

where Iih is now the index set of all examples with attribute h observed and
same class than yi, and if yjh is missing the j-th attribute is excluded from
Iih. If h refers to a nominal attribute, then we substitute by the mode of
such attribute:

ŷih = max
j∈Iih

{count(yjh)} (3.2)

4 Imputation with K-Nearest Neighbour (KNNI)

In order to estimate a missing value yih in the i-th example vector yi by
KNN imputation[2], we first select K examples whose attribute values are
similar to yi . Next, the missing value is estimated as the average of the
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corresponding entries in the selected K expression vectors. When there are
other missing values in yi and/or yj , their treatment requires some heuristics.
The missing entry yih is estimated as average:

ŷih =

∑
j∈IKih

yjh

|IKih| , (4.1)

where IKih is now the index set of K-nearest neighbor examples of the i-th
example, and if yjh is missing the j-th attribute is excluded from IKih. Note
that KNNI has no theoretical criteria for selecting the best K-value and the
K-value has to be determined empirically.

5 Weighted imputation with K-Nearest Neighbour (WKNNI)

The Weighted K-Nearest Neighbour method[11] selects the instances with
similar values (in terms of distance) to a considered one, so it can impute
as KNNI does. However, the estimated value now takes into account the
different distances to the neighbours, using a weighted mean or the most
repeated value according to a similarity measure. The similarity measure
si(yj) between two examples yi and yj is defined by the reciprocal of the
Euclidian distance calculated over observed attributes in yi. Following we
define the measure as follows:

1/si =
∑

hi∈Oi
⋂

Oj

(yih − yjh)
2, (5.1)

where Oi = {h| the h-th component of yi is observed}.
The missing entry yih is estimated as average weighted by the similarity

measure:

ŷih =

∑
j∈IKih

si(yj)yjh∑
j∈IKih

si(yj)
, (5.2)

where IKih is the index set of K-nearest neighbor examples of the i-th ex-
ample, and if yjh is missing the j-th attribute is excluded from IKih. Note
that KNNI has no theoretical criteria for selecting the best K-value and the
K-value has to be determined empirically.

6 K-means Clustering Imputation (KMI)

In K-means clustering[4], the intra-cluster dissimilarity is measured by the
summation of distances between the objects and the centroid of the cluster
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they are assigned to. A cluster centroid represents the mean value of the
objects in the cluster.

Given a set of N objects X = x1, x2, ..., xN where each object has S
attributes, we use xij(1 ≤ i ≤ N and 1 ≤ j ≤ S) to denote the value of
attribute j in object xi. Object xi is called a complete object, if {xij 6=
φ|∀1 ≤ j ≤ S}, and and an incomplete object, if {xij = φ|∃1 ≤ j ≤ S}, and
we say object xi has a missing value on attribute j. For any incomplete object
xi, we use R = {j|xij 6= φ, 1 ≤ j ≤ S} to denote the set of attributes whose
values are available, and these attributes are called reference attributes. Our
objective is to obtain the values of non-reference attributes for the incomplete
objects. By K-means clustering method, we divide data set X into K clusters,
and each cluster is represented by the centroid of the set of objects in the
cluster. Let V = v1, . . . , vk be the set of K clusters, where vk(1 ≤ k ≤ K)
represents the centroid of cluster k. Note that vk is also a vector in a S-
dimensiona space. We use d(vk, xi) to denote the distance between centroid
vk and object xi.

The algorithm for missing data imputation with K-means clustering method
can be divided into three processes. First, randomly select K complete data
objects as K centroids. Second, iteratively modify the partition to reduce the
sum of the distances for each object from the centroid of the cluster to which
the object belongs. The process terminates once the summation of distances
is less than a user-specified threshold ε = 100, or no change on the centroids
were made in last iteration. The last process is to fill in all the non-reference
attributes for each incomplete object based on the cluster information. Data
objects that belong to the same cluster are taken as nearest neighbors of each
other, and we apply a nearest neighbor algorithm to replace missing data.
We take as distance measure the Euclidean distance.

7 Imputation with Fuzzy K-means Clustering (FKMI)

Now we want to extend the original K-means clustering method to a fuzzy
version to impute missing data[1, 4]. The reason for applying fuzzy approach
is that fuzzy clustering provides a better description tool when the clusters
are not well-separated, as is the case in missing data imputation. Moreover,
the original K-means clustering may be trapped in a local minimum status if
the initial points are not selected properly. However, continuous membership
values in fuzzy clustering make the resulting algorithms less susceptible to
get stuck in local minimum situation.

In fuzzy clustering, each data object xi has a membership function which
describes the degree that this data object belongs to certain cluster vk. The
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membership function is defined in the next equation

U(vk, xi) =
d(vk, xi)

−27(m−1)

∑K
j=1 d(vj, xi)−2/(m−1)

(7.1)

where m > 1 is the fuzzifier, and
∑K

j=1 U(vj, xi) = 1 for any data object
xi(1 ≤ i ≤ N). Now we can not simply compute the cluster centroids by
the mean values. Instead, we need to consider the membership degree of
each data object. Equation (7.2) provides the formula for cluster centroid
computation:

vk =

∑N
i=1 U(vk, xi)× xi∑N

i=1 U(vk, xi)
(7.2)

Since there are unavailable data in incomplete objects, we use only reference
attributes to compute the cluster centroids.

The algorithm for missing data imputation with fuzzy K-means clustering
method also has three processes. Note that in the initialization process, we
pick K centroids which are evenly distributed to avoid local minimum situa-
tion. In the second process, we iteratively update membership functions and
centroids until the overall distance meets the user-specified distance thresh-
old ε. In this process, we cannot assign the data object to a concrete cluster
represented by a cluster centroid (as did in the basic K-mean clustering al-
gorithm), because each data object belongs to all K clusters with different
membership degrees. Finally, we impute non-reference attributes for each
incomplete object. We replace non-reference attributes for each incomplete
data object xi based on the information about membership degrees and the
values of cluster centroids, as shown in next equation:

xi,j =
K∑

k=1

U(xi, vk)× vk,j, for any non-reference attribute j /∈ R (7.3)

8 Support Vector Machines Imputation (SVMI)

Support Vector (SV) machines comprise a new class of learning algo-
rithms, motivated by the results of the statistical learning theory. SV regres-
sion estimation seeks to estimate functions

f(x) = (wx) + b, w, x ∈ Rn, b ∈ R (8.1)

based on data
(x1, y1), . . . , (xl, yl) ∈ R× R (8.2)
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by minimizing the regularized risk functional

‖ W ‖2 /2 + C •Rε
emp (8.3)

where C is a constant determining the trade-off between minimizing the
training error, or empirical risk

Rε
emp =

1

l

l∑
i=1

|yi − f(xi)|ε (8.4)

and the model complexity term ‖ W ‖2. Here, we use the so-called ε-
insensitive loss function

|y − f(x)|ε = max{0, |y − f(x)| − ε} (8.5)

The main insight of the statistical learning theory is that in order to obtain
a small risk, one needs to control both training error and model complexity,
i.e. explain the data with a simple model. The minimization of Eq. 8.5 is
equivalent to the following constrained optimization problem[12]: minimize

τ(w, ξ(∗)) =
1

2
‖ w ‖2 +C

1

l

l∑
i=1

(ξi + ξ∗i ) (8.6)

subject to the following constraints

((w • xi) + b)− yi ≤ ε + ξi (8.7)

yi − ((w • xi) + b) ≤ ε + ξ∗i (8.8)

ξ
(∗)
i ≥ 0, ε ≥ 0 (8.9)

As mentioned above, at each point xi we allow an error of magnitude ε.
Errors above ε are captured by the slack variables ξ∗ (see constraints 8.7
and 8.8). They are penalized in the objective function via the regularization
parameter C chosen a priori.

In the ν-SVM the size of ε is not defined a priori but is itself a variable.
Its value is traded off against model complexity and slack variables via a
constant ν ∈ (0, 1] minimize

τ(W, ξ(∗), ε) =
1

2
‖ W ‖2 +C • (νε +

1

l

l∑
i=1

(ξi + ξ∗i )) (8.10)

subject to the constraints 8.7 to 8.9. Using Lagrange multipliers techniques,
one can show [12] that the minimization of Eq. 8.6 under the constraints 8.7
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to 8.9 results in a convex optimization problem with a global minimum. The
same is true for the optimization problem 8.10 under the constraints 8.7 to
8.9. At the optimum, the regression estimate can be shown to take the form

f(x) =
l∑

i=1

(α∗i − αi)(xi • x) + b (8.11)

In most cases, only a subset of the coefficients (α∗i −αi) will be nonzero. The
corresponding examples xi are termed support vectors (SVs). The coefficients
and the SVs, as well as the offset b; are computed by the ν-SVM algorithm.
In order to move from linear (as in eq. 8.11) to nonlinear functions the
following generalization can be done: we map the input vectors xi into a high-
dimensional feature space Z through some nonlinear mapping Φ : Xi → Zi

chosen a priori. We then solve the optimization problem 8.10 in the feature
space Z. In that case, the inner product of the input vectors (xi • x) in Eq.
8.11 is replaced by the inner product of their icons in feature space Z, (Φ(xi)•
Φ(x)). The calculation of the inner product in a high-dimensional space
is computationally very expensive. Nevertheless, under general conditions
(see [12] and references therein) these expensive calculations can be reduced
significantly by using a suitable function k such that

(Φ(xi) • Φ(x)) = k(xi • x), (8.12)

leading to nonlinear regressions functions of the form:

f(x) =
l∑

i=1

(α∗i − αi)k(xi, x) + b (8.13)

The nonlinear function k is called a kernel[12]. In our work we use a Gaussian
kernel

k(x, y) ² exp(− ‖ x− y ‖2 /(2σ2
kernel)) (8.14)

We can use SVM regression[6] to predict the missing condition attribute
values. In order to do that, first we select the examples in which there are
no missing attribute values. In the next step we set one of the condition
attributes (input attribute), some of those values are missing, as the decision
attribute (output attribute), and the decision attributes as the condition at-
tributes by contraries. Finally, we use SVM regression to predict the decision
attribute values.
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9 Event Covering (EC)

Based on the work of Wong et al.[13], a mixed-mode probability model is
approximated by a discrete one. First, we discretize the continuous compo-
nents using a minimum loss of information criterion. Treating a mixed-mode
feature n-tuple as a discrete-valued one, the authors propose a new statisti-
cal approach for synthesis of knowledge based on cluster analysis. As main
advantage, this method does not require neither scale normalization nor or-
dering of discrete values. By synthesis of the data into statistical knowledge,
they refer to the following processes: 1) synthesize and detect from data
inherent patterns which indicate statistical interdependency; 2) group the
given data into inherent clusters based on these detected interdependency;
and 3) interpret the underlying patterns for each clusters identified. The
method of synthesis is based on author’s event–covering approach. With the
developed inference method, we are able to estimate the MVs in the data.

In order to discretize the continuous values, we have used the Fayyad al-
gorithm [5]. After discretization, we can apply the cluster analysis algorithm
on incomplete mixed-mode data. In the next processes we only take into
account the complete examples from the data set.

The cluster initiation process involver the analysis of the nearest neigh-
bour distance distribution on a subset of samples, the selection of which is
based on a mean probability criterion. Let X = (X1, X2, . . . , Xn) be a ran-
dom n-tuple of related variables and x = (x1, x2, . . . , xn) be its realization.
Then a sample can be represented as x. Let S be an ensemble of observed
samples represented as n-tuples. The nearest-neighbour distance of a sample
xi to a set of examples S is defined as:

D(xi, S) = minxj∈Sxi 6=xj
d(xi, xj) (9.1)

where d(xi, xj) is a distance measure. Since we are using discrete values, we
have adopted the Hamming distance. Let C be a set of examples forming
a simple cluster. We define the maximum within-cluster nearest-neighbour
distance as

D∗
c = maxxi∈CD(xi, C) (9.2)

D∗
c reflects an interesting characteristic of the cluster configuration: that is,

the smaller the D∗
c , the denser the cluster. If the cluster in S are unknown, we

do not know the value of D∗
c . However, we can estimate D∗

c with the following
analysis. The estimation will depend on our conception of a cluster, which
is as follows:

• If all the clusters Ci in an ensemble S have the same degree of denseness,
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then D∗
c is the same for all Ci in S and also the same as the maximum

of all the D(x, S) values.

• If the clusters in S have different degrees of denseness, then when all
D(x, S) values are projected to a real axis, distinct groups will result.
An isolated sample x which does not belong to any cluster (an outlier)
will have a relatively large D(x, S) value. Thus one way to characterize
the denseness of all distinct clusters is by the maximum value of D(x, S)
for all x in S after the large values associated with isolated examples
are removed. We represent this value as D∗.

Using a mean probability criterion to select a similar subset of examples, the
isolated samples can be easily detected by observing the wide gaps in the
nearest-neighbour distance space. The probability distribution from which
the criterion is derived for the samples can be estimated using a second-order
probability estimation. An estimation of P (x) known as the dependence tree
product approximation can be expressed as:

P̂ (x) =
n∏

j=1

P (xmj|xmk(j)
), 0 < k(j) < 1 (9.3)

where (1) the index set m1,m2, . . . ,mn is a permutation of the integer set
1, 2, . . . , n, (2) the ordered pairs xmj, xmk(j)

are so chosen that they represent
the set of branches of a spanning tree defined on X with their summed mutual
information maximized, and (3) P (xm1|xm0) = P (xm1). The probability
defined above is known to be the best second-order aproximation of the
high-order probability distribution. Then corresponding to each x in the
ensemble, a probability P (x) can be estimated.

In general, it is more likely for samples of relatively high probability to
form clusters. By introducing the mean probability as below, samples can be
divided into two subsets: those above the mean and those below. Samples
above the mean will be considered first for cluster initiation.

Let S = x. The mean probability is defined as

µs =
∑
x∈S

P (x)/|S| (9.4)

where |S| is the number of samples in S. For more details in the probability
estimation with dependence tree product approximation, please refer to [3].

When distance is considered for cluster initiation, we can use the following
criteria in assigning a sample x to a cluster.

1. If there exists more than one cluster, say Ck|k = 1, 2, . . ., such that
D(x,Ck) ≤ D∗ for all k, then all these clusters together can be merged.



9 Event Covering (EC) 10

2. If there exists exactly one cluster Ck, such that D(x,Ck) ≤ D∗, then x
can be grouped into Ck.

3. If D(x,CK) > D∗ for all clusters Ck, then x may not belong to any
cluster.

We use the mean probability to control this merging process at each
iteration in the algorithm outlined below:

1. Calculate P (x) for all x in S.

2. Set K = 0, t = 0

3. Let C0 be a dummy subgroup representing samples of unknown cluster.
Initially C0 is empty.

4. If |S| > T then P ′ = µs else P ′ = 0. (T is a size threshold indicating
the smallest size of a cluster).

5. List all x ∈ S in a table L, if P (x) > P ′.

6. Calculate D(x, L) for all x in L.

7. D∗ = maxx∈L D(x, L) and assume that x is not isolated.

8. For all x ∈ L do the following

(a) Find x such that P (x) is the highest.

(b) If D(x,Ck) ≤ D∗ for more than one cluster, say Ck, i = 1, 2, . . .
then do

i. if one of the cluster, say Cki, is found at a previous iteration,
i.e. ki < K, then C0 = C0 ∪ {x};

ii. else all the clusters Cki, i = 1, 2, . . . are merged.

(c) If D(x,Ck) ≤ D∗ for exactly one cluster Ck, then Ck = {x} ∪ Ck.

(d) If D(x,Ck) > D∗ for all clusters Ck, k = 1, 2, . . . , t then t = t + 1
and Ct = {x}.

(e) Remove x from L and S.

9. K = t

10. Go to (4) until S = 0

11. For k = 1 to t do the following.

If |Ck| < T , then C0 = C0 ∪ Ck.
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To avoid including distance calculation of outlier, we use a simple method
suggested in [13] which assigns D∗ the maximum value of all nearest-neighbour
distances in L provided there is a sample in L having a nearest-neighbour
distance value of D∗ − 1 (with the distance values rounded to the nearest
integer value). The value of T could be assumed to be

T = A× max
j=1,...,n

L2
j ,

but as stated in [13], the sample size allows to choose a smaller value of T
based on some initial trials of the experiments.

After finding the initial clusters along with their membership, the re-
grouping process is thus essentially an inference process for estimating the
cluster label of a sample. The event-covering method can be conceptualized
as a mapping which maps events onto a binary decision state which indicates
whether or not they are relevant for clustering. Let C = ac1, ac2, . . . , acq be
the set of labels for all possible clusters to which x can be assigned. Initially,
C is the set of cluster labels found after the initiation process. Since each
x in S is a realization of X = (X1, . . . , Xn) and also associates with a value
in C, C can be considered as an additional variable associated with X. The
information of significant events associated with the cluster configuration
is obtained by analyzing the frequency of events observed in the ensemble
through the use of a contingency table. For Xk in X, we can form a contin-
gency table between Xk and C. Let aks and acj be possible outcomes of Xk

and C respectively, and let obs(aks and obsacj be the respectively marginal
frequencies of their observed occurrences. The expected relative frequency
of (aks, acj) is expressed as:

exp(aks, acj) =
obs(aks)× obs(acj)

|S| (9.5)

Let obs(aks, acj) represent the actual observed frequency of (aks, acj) in S.
The expression

D =

q∑
j=1

(obsks − exp(aks, acj))
2

exp(aks, acj)
(9.6)

summing over the outcomes of C in the contingency table, possesses an
asymptotic chi-square property with (q− 1) degrees of freedom. D can then
be used in a criterion for testing the statistical dependency between aks, and
C at a presumed significant level as described below. For this purpose, we
define a mapping

hc
k(aks, C) =

{
1, if D > χ2(q − 1);
0, otherwise.

(9.7)



9 Event Covering (EC) 12

where χ2(q − 1) is the tabulated chi-square value. The subset of selected
events of Xk, which has statistical interdependency with C, is defined as

Ec
k = {aks|hc

k(aks, C) = 1} (9.8)

We call Ec
k the covered event subset of Xk with respect to C. Likewise, the

covered event subset Ek
c of C with respect to Xk can be defined.

After finding the covered event subsets of Ek
c and Ec

k between a variable
pair (C, Xk), information measures can be used to detect the statistical pat-
tern of these subsets. These information measures are based on an incomplete
probability scheme defined over the subset of significant events in the out-
come space of the variables. Let Xc

k and Ck represent the restricted variables
of the covered event subsets Ek

c and Ec
k respectively. An interdependence

redundancy measure between Xc
k and Ck can be defined as

R(Xc
k, C

k) =
I(Xc

k, C
k)

H(Xc
k, C

k)
(9.9)

where I(Xc
k, C

k) is the expected mutual information and H(Xc
k, C

k) is the
Shannon’s entropy defined respectively on Xc

k and Ck. Mathematically, they
are expressed as

I(Xc
k, C

k) =
∑

acu∈Ek
c

∑
aks∈Ec

k

P (acu, aks) log
P (acu, aks)

P (acu)P (aks)
(9.10)

and
H(Xc

k, C
k) = −

∑

acu∈Ek
c

∑
aks∈Ec

k

P (acu, aks) log P (acu, aks) (9.11)

The interdependence redundancy measure has a chi-square distribution:

I(Xc
k, C

k)
χ2

df

2|S|H(xc
k, C

k)
(9.12)

where df is the corresponding degree of freedom having the value (|Ek
c | −

1)(|Ec
k|−1). A chi-square test is then used to select interdependent variables

in X at a presumed significant level.
For a data set with low-noise leve, analysis based on the marginal proba-

bility distribution of the first-order events (events of a single variable) may be
adequate. However, for data with higher noise level, the second order prob-
ability distribution, defined on the joint events corresponding to a variable
pair, may be needed. We call these joint events of a variable pair the second-
order events. The second-order events are of particular importance because
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1) reliable probability estimates can be obtained in an ensemble of a reason-
able size and 2) random noise which may affect the outcome of one variable is
less likely to simultaneously affect the joint outcome of two variables. Thus,
during the clustering process, it is desirable that only second-order events
are included.

When selecting joint events for clustering purposes, those reflecting inter-
dependency usually contain more information. In other words, their observed
frequency should deviate significantly from the expected marginal relative
frequency derived from its first-order event. Thus the second-order event
corresponding to (Xk, Xi) must be in Ei

k ×Ek
i , if they contain additional in-

formation as compared to the marginal events. Hence, we accept only these
second-order events for further testing while the others are disregarded. Since
only a subset of second-order events is now involved, the number of events
for analysis during regrouping phase is substantially reduced.

Now, a new variable corresponding to a variable-pair (Xk, Xi) in X can
be used to associate with the second order events in the outcome space of
Ei

k × Ek
i . For samples represented as X = (X1, . . . , Xn), we can construct

a new representation Xe = (X1, . . . , XN). Xe consists of all the variables in
X as well as those representing all the possible combination of the variable-
pairs. Thus, N has the value n + n(n− 1)/2. We call Xe the extended tuple
of X. We can then extend the selection of significant events and variables
for clustering as described before to Xe.

Since not all the components in a sample are statistically relevant for clus-
tering purposes, components (first- and second-order events) of a sample x are
chosen based on the subset of events selected in the event-covering process.
The component os a sample is selected if it has significant interdependency
with the hypothesized cluster label. Let x′(acj) = {x′1, . . . , x′m}(m > 0) be
the set of selected components of xe in estimating the cluster label as acj. The
event xk in the set x′(acj) is chosen if the following conditions are satisfied.

1. The value of xk is not a second-order event that is disregarded.

2. The value of xk is in Ec
k and acj is in Ek

c .

3. R(Xc
k, C

k) is significant.

The cluster regrouping process uses an information measure to regroup
data iteratively. Wong et al. have proposed an information measure called
normalized surprisal (NS) to indicate significant of joint information. Using
this measure, the information conditioned by an observed event xk is weighted
according to R(Xc

k, C
K), their measure of interdependency with the cluster

label variable. Therefore, the higher the interdependency of a conditioning
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event, the more relevant the event is. NS measures the joint information of
a hypothesized value baed on the selected set of significant components. It
is defined as

NS(acj|x′(acj)) =
I(acj|x′(acj))

m (
∑m

k=1 R(Xc
k, C

k))
(9.13)

where I(acj|x′(acj)) is the summation of the weighted conditional information
defined on the incomplete probability distribution scheme as

I(acj|x′(acj)) =
m∑

k=1

R(Xc
k, C

k)I(acj|xk))

=
m∑

k=1

R(Xc
k, C

k)

(
−log

P (acj|xk)∑
acu∈Ek

c
P (acu|xk)

)
(9.14)

In rendering a meaningful calculation in the incomplete probability scheme
formulation, xk is selected if

∑

acu∈Ek
c

P (acu|xk) > T (9.15)

where T ≥ 0 is a size threshold for meaningful estimation. NS can be used
in a decision rule in the regrouping process. Let C = {ac1, . . . , acq} be the
set of possible cluster labels. We assign acj to xe if

NS(acj|x′(acj)) = min
acu∈C

NS(acu|x′(acu)).

If no component is selected with respect to all hypothesized cluster labels,
or if there are more than one label associated with the same minimum NS,
then the sample is assigned a dummy label, indicating that the estimated
cluster label is still uncertain. Also, zero probability may be encountered in
the probability estimation, an unbiased probability based on Entropy min-
imax. In the regrouping algorithm, the cluster label for each sample is es-
timated iteratively until a stable set of label assignments is attained. The
cluster regrouping algorithm is outlined as follows.

1. Construct xe from x in the ensemble

2. Identify {Ec
k}, {Ek

c } and compute the finite probability schemes based
on the current cluster labels C.

3. Set number of change = 0

4. For each xe in the ensemble do the following.
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(a) If estimation is uncertain, then assign the dummy label acj.

(b) Otherwise assign xe to cluster acj if

NS(acj|x′(acj))) min
acu∈C

NS(acu|x′(acu)).

(c) if acj 6= previous cluster label then do the following.

i. Set number of change = number of change + 1.

ii. Update cluster label for xe.

5. If number of change > 0 then goto (2), else stop.

Once the clusters are stable, we take the examples with MVs. Now we
use the distance D(xi, S) = minxj∈Sxi 6=xj

d(xi, xj) to find the nearest cluster

Ci to such instance. From this cluster we compute the centroid x‘ such that

D(x′, Ci) < D(xi, Ci) (9.16)

for all instances xi of the cluster Ci. Once attained the centroid, the MV of
the example is imputed with the value of the proper attribute of xi.

10 Regularized Expectation-Maximization (EM)

The EM algorithm and the methods that will be derived from it in sub-
sequent sections are only applicable to data sets in which the missing values
are missing at random (MAR). The probability distribution of multivariate
Gaussian data can be parameterized by the mean and the covariance matrix
(i.e., the mean and the covariance matrix are sufficient statistics of the Gaus-
sian distribution). In an iteration of the EM algorithm for Gaussian data,
estimates of the mean and of the covariance matrix are revised in three steps.
First, for each record with missing values, the regression parameters of the
variables with missing values on the variables with available values are com-
puted from the estimates of the mean and of the covariance matrix. Second,
the missing values in a record are filled in with their conditional expecta-
tion values given the available values and the estimates of the mean and of
the covariance matrix, the conditional expectation values being the product
of the available values and the estimated regression coefficients. Third, the
mean and the covariance matrix are re-estimated, the mean as the sample
mean of the completed dataset and the covariance matrix as the sum of the
sample covariance matrix of the completed dataset and the contributions of
the conditional covariance matrices of the imputation errors in the records
with imputed values. The EM algorithm starts with initial estimates of the
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mean and of the covariance matrix and cycles through these steps until the
imputed values and the estimates of the mean and of the covariance matrix
stop changing appreciably from one iteration to the next.

For the following formal description of the EM algorithm [10], let X ∈
Rn×p be a data matrix with n records consisting of p variables, with the
values of some of the variables missing in some records. In the conventional
EM algorithm, the number n of records is assumed to be much greater than
the number p of variables, so that the sample covariance matrix of the data
set completed with imputed values is positive definite.

From the incomplete data set, the mean µ ∈ R1×p of the records and
the covariance matrix Σ ∈ Rp×p of the variables are to be estimated. For a
given record x = Xi with missing values, let the vector xa ∈ R1×pa consist of
the pa variables for which, in the given record, the values are available, and
let the vector xm ∈ R1×pm consist of the remaining pm variables for which,
in the given record, the values are missing. Let the mean be partitioned
correspondingly into a part µa ∈ R1×pa with the mean values of the variables
for which, in the given record, the values are available, and a part µm ∈ R1×pm

with the mean values of the variables for which, in the given record, the values
are missing. For each record x = Xi, (i = 1, . . . , n) with missing values, the
relationship between the variables with missing values and the variables with
available values is modeled by a linear regression model

xm = µm + (xa − µa)B + e (10.1)

The matrix B ∈ Rpa×pm is a matrix of regression coefficients,and the residual
e ∈ R1×pm is assumed to be a random vector with mean zero and unknown
covariance matrix C ∈ Rpm×pm . In each iteration of the EM algorithm, es-
timates of the mean µ and of the covariance matrix Σ are taken as given,
and from these estimates, the conditional maximum likelihood estimates of
the matrix of regression coefficients B and of the covariance matrix C of the
residual are computed for each record with missing values. With the esti-
mated regression model for each record, the missing values are then filled in
with imputed values, and new estimates of the mean µ and of the covariance
matrix Σ are computed from the completed data set and from the estimates
of the residual covariance matrices C.

Let µ̂(t) and Σ̂(t) denote the estimates of the mean and of the covariance
matrix in the tth iteration of the EM algorithm. (The hat accent Â desig-
nates an estimate of a quantity A.) The estimates of the mean and of the
covariance matrix are either the result of the preceding EM iteration or, in
the first EM iteration, they may be the sample mean and the sample co-
variance matrix of the dataset with initial guesses filled in for the missing
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values. For a given record x = Xi with missing values, let the covariance
matrix estimate Σ̂(t) be partitioned corresponding to the partitioning of the
given record into variables with available values and variables with missing
values: let the submatrix Σ̂aa of the estimated covariance matrix Σ̂(t) consist
of the estimated variances and covariances of the variables for which, in the
given record, the values are available; let the submatrix Σ̂mm consist of the
estimated variances and covariances of the variables for which, in the given
record, the values are missing; and let the two submatrices Σ̂am and Σ̂ma

with Σ̂am = Σ̂T
ma consist of the estimated cross-covariances of the variables

for which, in the given record, the values are available with the variables for
which, in the given record, the values are missing. Given the partitioned
estimate of the covariance matrix Σ̂(t), the conditional maximum likelihood
estimate of the regression coefficients can be written as

B̂ = Σ̂−1
aa Σ̂am (10.2)

From the structure of the regression model (10.1) follows that, given an

estimate B̂ of the regression coefficients and the partitioned estimate of the
covariance matrix Σ̂(t), an estimate of the residual covariance matrix takes
the generic form

Ĉ = Σ̂mm + B̂T Σ̂aaB̂ − B̂T Σ̂am − Σ̂maB̂ (10.3)

Upon substitution of the conditional maximum likelihood estimate (10.2) of
the regression coefficients, the conditional maximum likelihood estimate of
the residual covariance matrix turns out to be the Schur complement

Ĉ = Σ̂mm − Σ̂maΣ̂
−1
aa Σ̂am (10.4)

of the submatrix Σ̂aa in the covariance matrix estimate Σ̂(t). As a Schur
complement of a positive definite matrix Σ̂(t), the residual covariance ma-
trix Ĉ is assured to be positive definite. The conditional expectation value
x̂m ≡ E(xm|xa; µ̂

(t)) of the missing values in a given record follows from the

estimated regression coefficients B̂ and the available values xa as

x̂m = µ̂m + (xa − µ̂a)B̂, (10.5)

where the vector µ̂a is that part of the mean estimate µ̂(t) that belongs to
the variables for which, in the given record, the values are available, and the
vector µ̂m is that part of the mean estimate µ̂(t) that belongs to the variables
for which, in the given record, the values are missing.
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After the missing values in all records x = Xi(i = 1, . . . , n) have thus
been filled in with imputed values xm, the sample mean

µ̂(t+1) =
1

n

n∑
i=1

Xi (10.6)

of the completed data set is a new estimate of the mean of the records. A new
estimate of the covariance matrix follows from the conditional expectation of
the cross-products Ŝ

(t)
i ≡ E(XT

i Xi|xa; µ̂
(t), Σ̂(t)) as

Σ̂(t+1) =
1

ñ

n∑
i=1

[
Ŝ

(t)
i − (µ̂(t+1))µ̂(t+1)

]
, (10.7)

where, for each record x = Xi, the conditional expectation Ŝ
(t)
i of the cross-

products is composed of three parts. The two parts that involve the available
values in the record,

E(xT
a xa|xa; µ̂

(t), Σ̂(t)) = xT
a xa (10.8)

and
E(xT

mxm|xa; µ̂
(t), Σ̂(t)) = x̂T

mx̂m + Ĉ, (10.9)

is the sum of the cross-product of the imputed values and the residual co-
variance matrix Ĉ = Cov(xm, xm|xa; µ̂

(t), Σ̂(t)), the conditional covariance
matrix of the imputation error. The normalization constant ñ of the co-
variance matrix estimate (10.7) is the number of degrees of freedom of the
sample covariance matrix of the completed data set. If, as above, one mean
vector µ is estimated, the number of degrees of freedom is ñ = n − 1. The
covariance matrix (10.7) is computed with the factor 1

ñ
in place of the factor

1
n

with which a maximum likelihood estimate would be computed, in order
to correct the bias of the maximum likelihood estimate in a manner that
parallels the bias-correction in the case of a complete data set. Thus, the
new estimate (10.7) of the covariance matrix is computed in the same way
as the sample covariance matrix of the completed data set, except that, for
each record with missing values, the estimated residual covariance matrix Ĉ
is added to the cross-products x̂T

mx̂m of the imputed values.
The next iteration of the EM algorithm is carried out with the updated

estimates µ̂(t+1) and Σ̂(t+1) of the mean and of the covariance matrix. The
iterations are stopped when the algorithm has converged, that is, when the
estimates µ̂(t) and Σ̂(t) and the imputed values x̂m stop changing appreciably.
The change is measured by the value rdXmis

defined as:

rdXmis
=

dXmis

nXmisPre

(10.10)
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where

dXmis
=

‖ x̂
(t)
m − x̂

(t−1)
m ‖

|pm ∈ X|

nXmisPre
=

‖ x̂
(t−1)
m + µ(t−1) ‖
|pm ∈ X| .

The value rdXmis
is used as stagnation control for the algorithm.

The EM algorithm converges monotonically in that the likelihood of the
available data increases monotonically from iteration to iteration. However,
the EM algorithm converges only linearly, with a rate of convergence that
depends on the fraction of values that are missing in the data set, and so it
may need many iterations to converge.

If, for any record, the number pa of variables with available values is
greater than the number ñ of degrees of freedom available for the estimation
of the covariance matrix, the submatrix Σ̂aa of the covariance matrix estimate
Σ̂(t) is singular and the conditional maximum likelihood estimate (10.2) of

the matrix of regression coefficients B is not defined. The submatrix Σ̂aa

of the covariance matrix estimate may already be poorly conditioned if the
number ñ of degrees of freedom only marginally exceeds the number pa of
available values in a record. In such ill-posed or ill-conditioned cases, it is
necessary to regularize the estimate (10.2) of the regression coefficients.

The regularized EM algorithm[10] consists of the same steps as the EM
algorithm, with the exception that, in each iteration and for each record with
missing values, the inverse matrix Σ̂−1

aa in the estimate (10.2) of the regression
coefficients is replaced with a regularized inverse

Σ̂−1
aa ← (Σ̂aa + h2D̂)−1, (10.11)

where D̂ = Diag(Σ̂aa) is the diagonal matrix consisting of the diagonal ele-
ments of the covariance matrix and the scalar h is a regularization parameter.
That is, the ill-defined or ill-conditioned inverse Σ̂−1

aa is replaced with the in-

verse of the matrix that results from the covariance matrix Σ̂aa when the
diagonal elements are inflated by the factor 1 + h2. This method of regu-
larizing the inverse of a matrix, in which a regularized inverse is formed as
the inverse of the sum of the matrix and a multiple of a positive definite
matrix, is called ridge regression in the statistics literature and Tikhonov
regularization in the literature on numerical linear algebra.

First, we will develop a representation of the regularized estimates of
the regression parameters that makes some properties of ridge regression
manifest and leads to a procedure for computing the regression parameters
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in the regularized EM algorithm. Second, we will describe a criterion for
the choice of the regularization parameter h. Third, we will juxtapose two
variants of ridge regression, both of which can be used in the regularized EM
algorithm.

a. Ridge Regression
In terms of the correlation matrix

Σ̂′
aa ≡ D̂−1/2Σ̂aaD̂

1/2

and the scaled cross-covariance matrix

Σ̂′
am ≡ D̂−1/2Σ̂am,

the regularized estimate of the regression coefficients can be written as

B̂h = D̂−1/2B̂′
h (10.12)

where
B̂′

h ≡ (Σ̂′
aa + h2I)−1Σ̂′

am (10.13)

is termed the standard form of the estimate. The fact that the correlation
matrix Σ̂′

aa and the scaled cross-covariance matrix Σ̂′
am can be factored in

similar ways can be exploited to cast the problem of estimating the regres-
sion coefficients from scaled submatrices Σ̂′

aa and Σ̂′
am of a given covariance

matrix estimate Σ̂(t) into the more conventional form of estimating regres-
sion coefficients from given data matrices. This recasting of the estimation
problem will lead to a representation of the regularized regression coefficients
that makes some properties of ridge regression manifest and translates into
a procedure for computing the regression coefficients in the regularized EM
algorithm.

The correlation matrix Σ̂′
aa, the scaled cross-covariance matrix Σ̂′

am, and

the submatrix Σ̂mm of the covariance matrix estimate Σ̂(t) can be decomposed
into factors Xa ∈ Rñ×pa and Xm ∈ Rñ×pm , such that

Σ̂′
aa = XT

a Xa/ñ, Σ̂′
am = XT

a Xm/ñ (10.14)

and
Σ̂mm = XT

mXm/ñ. (10.15)

The factors Xa and Xm can be viewed as analogues of data matrices whose
second moment matrices XT

a Xa/ñ, XT
a Xm/ñ, and XT

mXm/ñ are the scaled

submatrices (10.14,10.15) of the covariance matrix estimate Σ̂(t).

The sampling error of the covariance matrix estimate Σ̂(t) contributes to
the error of the imputed values and hence will play a role in determining
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the regularization parameter h. Let us assume that the sampling error of
the covariance matrix estimate is equal to the sampling error that would be
expected if the data set were complete and if the covariance matrix estimate
Σ̂(t) were the sample covariance matrix. The distribution of the sampling
error of a sample covariance matrix is a function of the number ñ of degrees
of freedom available for the estimation of the covariance matrix, and so, in
order for the assumed sampling error of the scaled submatrices (10.14 and
10.15) to be equal to the sampling error that would be expected for second
moment matrices of actual data matrices Xa and Xm, it is necessary that
the number of rows of the factors Xa and Xm be equal to the number ñ of
degrees of freedom. That is, the factors Xa and Xm must have ñ = n − 1
rows if one mean vector is estimated from the data set X and ñ = n − S
rows if mean vectors of S groups of records are estimated.

The factorization (10.14 and 10.15) of the scaled submatrices can, for

instance, be obtained from an eigendecomposition Σ̂(t) = TΦ2T T of the co-
variance matrix estimate, with a matrix T ∈ Rp×ñ containing as its columns
the mutually orthogonal eigenvectors of the covariance matrix estimate Σ̂(t)

and with a diagonal matrix Φ2 = Diag(φ2
j)of eigenvalues φ2

j(j = 1, . . . , ñ).
Let the submatrix Ta ∈ Rpa×ñ consist of those rows of the eigenvector matrix
T that belong to the variables for which, in the record under consideration,
the values are available, and let the submatrix Tm ∈ Rpm×ñ consist of the
remaining rows of the eigenvector matrix T that belong to the variables for
which, in the record under consideration, the values are missing. In terms of
the partitioned eigendecomposition of the covariance matrix estimate Σ̂(t),
the factors Xa and Xm can be written as

Xa =
√

ñΦT T
a D̂−1/2andXm =

√
ñΦT T

m, (10.16)

which shows that a factorization of the form (13) exists. If the number p
of variables is greater than or equal to the number ñ of degrees of freedom
available for the estimation of the covariance matrix, the number ñ of degrees
of freedom is just the number of nonzero eigenvalues φ2

j of the covariance

matrix estimate Σ̂(t). If the number p of variables is less than the number
ñ of degrees of freedom, the number of nonzero eigenvalues φ2

j is less than
the number ñ of degrees of freedom. In this latter case, the factors Xa and
Xm could be a product of the above form (10.16), provided that the matrix
Φ with the square roots of the eigenvalues φ2

j is completed with zeros to
have ñ rows. However, the form of the factors is irrelevant for the present
argument. What is relevant is that a factorization (10.14 and 10.15) of the

scaled submatrices of the covariance matrix estimate Σ̂(t) exists.
The factors Xa and Xm can be interpreted as the data matrices in the
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linear regression model
Xm = XaB

′ + E, (10.17)

where E ∈ Rñ×pm is a matrix of residuals. From the factorization (10.14

and 10.15) of the scaled submatrices Σ̂′
aa and Σ̂′

am of the covariance matrix

estimate Σ̂(t) follows that estimating the regression coefficients B′ of the
regression model (10.17) from given data matrices Xa and Xm is equivalent to

estimating the standard form B′ = D̂1/2B of the regression coefficients of the
model (10.1) from a given covariance matrix estimate Σ̂(t). The standard form

B̂′
h = (Σ̂′

aa +h2I)−1Σ̂′
am of the regularized regression coefficients expressed in

terms of the submatrices of the covariance matrix estimate Σ̂(t) is identical to
the standard form B̂′

h = (XT
a Xa+ñh2I)−1XT

a Xm of the regularized regression
coefficients expressed in terms of the data matrices Xa and Xm. Moreover,
for any estimate B̂′ of the standard form regression coefficients B′, the second
moment matrix ÊT Ê/ñ of the estimated residuals

Ê = Xm −XaB̂
′

is identical to the generic estimate (10.3) of the residual covariance matrix C
of the regression model (10.1). Hence, estimating the regression coefficients
and the residual second moment matrix of the regression model (10.17) from
given data matrices Xa and Xm is equivalent to estimating the regression
coefficients and the residual covariance matrix of the regression model (10.1)

from a given covariance matrix estimate Σ̂(t). Since, under the above as-
sumptions on the sampling error of the covariance matrix estimate Σ̂(t), the
expected sampling errors of the estimated parameters also coincide, estimat-
ing the parameters of the regression model (10.1) from a given estimate Σ̂(t)

of the covariance matrix is equivalent to estimating the parameters of the
regression model (10.17) from given data matrices Xa and Xm. This equiv-
alence makes it possible to apply standard methods for the regularization of
conventional regression models (10.17) to the regression model (10.1) figuring
in the EM algorithm.

A revealing representation of the ridge regression coefficients results from
a singular value decomposition of the matrix Xa. Let us rescale the fac-
tors Xa = Xa/

√
ñ and Xm = Xm/

√
ñ such that in the factorization of the

correlation matrix Σ̂′
aa = X

T

a Xa and of the scaled cross-covariance matrix

Σ̂′
am = X

T

a Xm the number ñ of degrees of freedom no longer appears explic-
itly. Whatever form is ascribed to the rescaled factor Xa, it has a singular
value decomposition Xa =

⋃∧∨t, where
⋃

and ∨ are orthogonal matri-
ces and ∧ = Diag(λj) is the diagonal matrix of singular values λj. In the
basis of the singular value decomposition, the correlation matrix becomes
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Σ̂′
aa = ∨ ∧2 ∨T , which implies that the squared singular values λ2

j are the

eigenvalues of the correlation matrix Σ̂′
aa and that the right singular vec-

tors ∨:j, the columns of the matrix ∨, are the corresponding eigenvectors.
Substituting the factorization (10.14 and 10.15) and the singular value de-
composition of the rescaled factor Xa into the standard form estimate (10.13)
yields the representation

B̂′
h = ∨Diag

(
λj

λ2
j + h2

)
F (10.18)

of the regression coefficients. The elements of the matrix F ≡ ⋃T Xm are
called Fourier coefficients, in analogy to inverse problems in which the coun-
terpart of the matrix Xa is a convolution operator whose singular value
decomposition is equivalent to a Fourier expansion.

The representation (10.18) of the regression coefficients shows that, in the

standard form, the columns of the regression coefficient matrix B̂′
h are linear

combinations of the eigenvectors ∨:j of the correlation matrix Σ̂′
aa. Only

the eigenvectors ∨:j belonging to nonzero eigenvalues λ2
j contribute to the

regression coefficients. The weights of the eigenvectors ∨:j are given by the
products of the scalars λj/(λ

2
j + h2) and the Fourier coefficients Fj:, which

implies that only those rows Fj: of the Fourier coefficient matrix that belong
to nonzero eigenvalues λ2

j contribute to the regression coefficients.
The Fourier coefficients can be expressed in terms of the scaled cross-

covariance matrix Σ̂′
am and of the nonzero eigenvalues and corresponding

eigenvectors of the correlation matrix Σ̂′
aa. Since, in terms of the singular

value decomposition of the rescaled factor Xa, the scaled cross-covariance

matrix Σ̂′
am = X

T

a Xm can be written as Σ̂′
am = (∨ ∧ ⋃T )Xm = ∨ ∧ F , we

can take
F = ∧+ ∨T Σ̂′

am (10.19)

as the matrix of Fourier coefficients, the diagonal matrix ∧+ = Diag(λ+
j )

being the pseudoinverse of the singular value matrix ∧; that is, the diagonal
elements of the pseudoinverse ∧+ are λ+

j = 1/λj if λj > 0 and λ+
j = 0 if

λj = 0. [In actual computations, an element λ+
j of the pseudoinverse should

be set to zero if the singular value λj is smaller than a threshold value ε that
depends on the machine precision.] If the jth eigenvalue λ2

j of the correlation

matrix Σ̂′
aa is zero, the jth row Fj: of the Fourier coefficient matrix (10.19)

consists of zeros and might thus differ from the jth row of the matrix
⋃T Xm

that was originally defined to be the matrix of Fourier coefficients. But since
all other rows of these matrices-the rows belonging to nonzero eigenvalues
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λ2
j - agree, the differences in the rows belonging to zero eigenvalues do not

affect the estimate (10.18) of the regression coefficients.

Thus, we can compute the regression coefficients B̂′
h from the partitioned

covariance matrix estimate Σ̂(t) as a product (10.18) that involves the nonzero

eigenvalues and corresponding eigenvectors of the correlation matrix Σ̂′
aa

and the Fourier coefficients (10.19). If there are ñ degrees of freedom for
the estimation of the covariance matrix Σ and pa available values in the
record for which the regression parameters are estimated, the number r of
nonzero eigenvalues of the correlation matrix is at most ñ or pa , whichever
is smaller. Henceforth, we let the eigenvalue matrix ∧2 ∈ Rr×r and the
eigenvector matrix ∨ ∈ Rpa×r contain only the r nonzero eigenvalues and
corresponding eigenvectors, and we similarly restrict the Fourier coefficient
matrix F ∈ Rr×pm to the r relevant rows. The expression (10.18) for the
standard form estimate of the regression coefficients remains valid with these
restricted matrices.

The covariance matrix of the residuals, which, in updating the covariance
matrix estimate at the end of each EM iteration, is added to the cross-
products (9) of the completed data matrix, can also be represented in a

factored form. Substituting the estimate B̂h = D̂−1/2B̂′
h of the regression co-

efficients into the generic expression (10.3) for the residual covariance matrix
yields the estimate

Ĉh = Ĉ0 + F T Diag

(
h4

(λ2
j + h2)2

)
F. (10.20)

The term
Ĉ0 ≡ Σ̂mm − F T F,

which is independent of the regularization parameter h, vanishes if the re-
gression coefficients are not overdetermined, which is the case if the number
ñ of degrees of freedom for the estimation of the covariance matrix Σ is less
than or equal to the number pa of variables with available values. Since
the residual covariance matrix depends on the regularization method and
on the regularization parameter, both of which cannot usually be chosen a
priori, without reference to the data set under consideration, the residual
covariance matrix is not, as in the well-posed case, the conditional covari-
ance matrix of the imputation error. The uncertainties about the adequacy
of the regularization method and the regularization parameter contribute to
the conditional imputation error given the estimates of the mean and of the
covariance matrix, but the residual covariance matrix does not account for
these uncertainties. Nevertheless, substituting the residual covariance ma-
trix (10.20) for the conditional covariance matrix of the imputation error in
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updating the covariance matrix estimate at the end of each EM iteration
seems a plausible heuristic.

The representation (10.18) makes manifest the way in which ridge re-
gression regularizes the regression coefficients, that is, the way in which the
noise, the high-frequency or small-scale components of the data, is filtered
out. Both the regression coefficients regularized by a truncated principal
component analysis of the correlation matrix Σ̂′

aa and the regression coeffi-
cients regularized by ridge regression can be written as

B̂′
h = ∨Diag(fj) ∧+ F

where what are called the filter factors fj depend on the regularization
method. For principal component regression, the filter factors of the retained
principal component vectors (EOFs) ∨:j are unity, and the filter factors of
the discarded principal component vectors are zero. Thus, regularization
by a truncated principal component analysis of the correlation matrix Σ̂′

aa,
which is what applied mathematicians call regularization by truncated singu-
lar value decomposition, corresponds to filtering with a step function filter.
For ridge regression, the filter factors are

fj =
λ2

j

λ2
j + h2

. (10.21)

This filter function is structurally identical to the Wiener filter. The
eigenvalues λ2

j are the correlate of the spectral density of what is called the
signal in Wiener filtering, and the squared regularization parameter h2 is
the correlate of the spectral density of what is called the noise in Wiener
filtering. The filter function of ridge regression decays more slowly with de-
creasing eigenvalues λ2

j than the step function filter of principal component
regression. Principal component vectors with eigenvalues λ2

j much greater
than the squared regularization parameter h2 are unaffected by the filter-
ing. Principal component vectors with eigenvalues λ2

j much smaller than the
squared regularization parameter h2 are effectively filtered out.

For typical data, which do not have an evident gap in the eigenvalue
spectrum and whose samples are so small that only a few principal compo-
nents can be retained in a truncated principal component analysis, leaving
only a small choice of possible truncation parameters, the smoother filter-
ing afforded by ridge regression and the greater flexibility of a continuous
regularization parameter could offer advantages over principal component
regression. The structural parallels between the ridge regression filter and
the optimal Wiener filter moreover suggest that ridge regression might sup-
press noise in the data in a more robust way and with less loss of relevant
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information than principal component regression. Indeed, ridge regression
also arises as a regularization method when the observational error in the
available data, which is ignored in the regression model (10.1), is explicitly
taken into account. In the regression model (10.1), the available values xa

in a record are taken as known and observational errors are neglected, but
ridge regression in the form presented here is still an adequate regularization
method if the available values are affected by a non-negligible observational
error whose relative variance- the variance of the observational error relative
to the variance of the observed variable- is homogeneous throughout the data
set. By choosing a regularized inverse (10.11) with a different matrix D̂′ ,

one that, in contrast to the matrix D̂ above, does not consist of the diago-
nal elements of the covariance matrix Σ̂aa, other variance structures of the
observational error can be accommodated in ridge regression. To be sure,
observational errors are also taken into account in a regularization method
known as truncated total least squares, in which regression coefficients are
computed in a truncated basis of principal components of the overall covari-
ance matrix Σ̂(t) instead of the scaled submatrix Σ̂′

aa. But the continuous
regularization parameter of ridge regression might still offer advantages over
a truncated principal component analysis when there is only a small choice
of possible truncation parameters.

b. Generalized cross-validation
In the regularized EM algorithm, the estimated regression coefficients are

not of interest in their own right but only as intermediaries in the imputation
of missing values. As a criterion for the choice of the regularization parameter
h, it is therefore suitable to require that the error of the imputed values be as
small as possible. As the regularization parameter tends to zero, the imputed
values are increasingly affected by noise, implying an increasing sampling
error. Conversely, as the regularization parameter tends to infinity, the ridge
regression coefficients tend to zero and the imputed values (10.5) tend to the
estimated mean values, implying an increasing regularization error. A good
choice of regularization parameter, in between the limiting cases of zero and
infinity, should minimize the total imputation error, the sum of the sampling
error and the regularization error.

The author argued that the regularization parameter h that minimizes the
expected mean squared error of predictions with an estimated linear regres-
sion model (10.17) is approximately equal to the minimizer of the generalized
cross-validation (GCV) function

G(h) ≡ ñ
‖ XaB̂

′
h −Xm ‖2

F

tr(I −XaX
†
a)2

(10.22)

an object function that resembles the object function of ordinary cross-
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validation but is, in contrast to the latter, invariant under orthogonal trans-
formations of the data. The notations ‖ A ‖F and trA indicate the Frobenius
norm and the trace of a matrix R, and the matrix

X†
a ≡ (XT

a Xa + ñh2I)−1XT
a (10.23)

in the denominator of the GCV function is the regularized pseudoinverse of
the data matrix Xa. With the regularized pseudoinverse X†

a of the data ma-
trix Xa, the regularized regression coefficients of the model (10.17) can be

written as B̂′
h = X†

aXm, which, if the data matrices Xa and Xm are again
regarded as the factors in the decomposition (10.14 and 10.15) of the corre-

lation matrix Σ̂′
aa and of the scaled cross-covariance matrix Σ̂′

am, is identical
to the standard form (10.13) of the regularized regression coefficients. Under
the assumptions of section (a) on the sampling error of the correlation matrix

Σ̂′
aa and of the scaled cross-covariance matrix Σ̂′

am, the sampling error of the
regularized regression coefficients is equal to the sampling error that would
be expected if the regularized regression coefficients were estimated from ac-
tual data matrices Xa and Xm with ñ records, so that the regularization
parameter h that minimizes the expected mean squared error of the imputed
values is likewise approximately equal to the minimizer of the GCV function
(10.22). Therefore, in each iteration of the regularized EM algorithm, the
regularization parameter h for each record with missing values is chosen as
the minimizer of the GCV function (10.22).

An alternative form of the GCV function follows from the eigendecom-
position of the correlation matrix Σ̂′

aa and the derived representations of
the regression coefficients and of the residual covariance matrix. Since the
squared Frobenius norm of a matrix is equal to the trace of the product of
the matrix and its transpose, ‖ A ‖2

F = tr(AT A), the squared Frobenius norm

‖ XaB̂
′
h − Xm ‖2

F in the numerator of the GCV function is proportional to

the trace of the residual covariance matrix Ĉh = ÊT Ê/ñ. Hence, the GCV
function can be written as

G(h) =
ñ2

T 2(h)
trĈh

where
T (h) = tr(I −XaX

†
a),

an effective number of degrees of freedom for the estimation of the residual
covariance matrix Ĉh, can be expressed in terms of the filter factors (10.21)
as

T (h) = ñ−
r∑

j=1

fj. (10.24)
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For a given regularization parameter h, evaluating both the trace trĈh of the
residual covariance matrix from the factored representation (10.20) and the
effective number of degrees of freedom T (h) from the filter factors (10.21)
requires O(r) operations, where r is the number of nonzero eigenvalues of the

correlation matrix Σ̂′
aa. That is, if the ridge regression is computed via an

eigendecomposition of the correlation matrix Σ̂′
aa, only a small additional ef-

fort is required to find, with one of the common scalar optimization methods,
the regularization parameter h that minimizes the GCV function.

With the regularization parameter determined by generalized cross-validation,
the regularized estimates of the imputed values are usually reliable, even
when the noise in the data, which might be a result of observational errors,
is not Gaussian and has an inhomogeneous variance structure. Since with
small but nonzero probability the GCV function has a minimum near zero,
generalized cross-validation occasionally leads to a regularization parameter
near zero when, in fact, a greater regularization parameter would be more
appropriate. Choosing too small a regularization parameter in such cases can
be avoided by constructing a lower bound for the regularization parameter
from a priori guesses of the magnitude of the imputation error.

c. Multiple and individual ridge regressions
If ridge regression with generalized cross-validation is used in the regu-

larized EM algorithm as described above, the regularization of the regression
coefficients is controlled by one regularization parameter per record with
missing values. For each record, the regression coefficients of all variables
with missing values are estimated jointly by multiple ridge regression. With
generalized cross-validation, the regularization parameter is chosen such as
to minimize, approximately, the expected mean squared error of the imputed
values.

However, with the above methods, it is also possible to estimate individ-
ually regularized regression coefficients for each missing value. The matrix of
regression coefficients (10.12) can be computed columnwise with an individ-
ual regularization parameter for each column. Instead of only one regular-
ization parameter per record in multiple ridge regressions, in individual ridge
regressions we can, for a record with pm missing values, adjust pm regular-
ization parameters. Choosing the regularization parameter for each column
of the regression coefficient matrix by generalized cross-validation approxi-
mately minimizes not only the expected average error of the imputed values
in the record, but also the expected error of each individual imputed value.

The computation of individual ridge regressions is similar to the compu-
tation of a multiple ridge regression. If the ridge regression is computed via
an eigendecomposition of the correlation matrix Σ̂′

aa, one obtains the stan-
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dard form estimate (10.18) of the regression coefficients columnwise from the
columns of the Fourier coefficient matrix (10.19), with an individual regu-
larization parameter hj(j = 1, . . . , pm) for each column. The regularization
parameters hj are determined as the minimizers of the GCV function (10.22),
where the numerator of the GCV function reduces from the squared Frobe-
nius norm of a residual matrix to the squared Euclidean norm of a residual
vector. Generalizing the factored representation (10.20) of the residual co-
variance matrix from the case of a multiple ridge regression to that of in-
dividual ridge regressions, one finds that the residual covariance matrix of
individual ridge regressions consists of the elements

(Ĉh)kl = (Ĉ0)kl + (F:k)
T Γ(k)Γ(l)F:l (10.25)

where Γ(j) ≡ h2
j(∧2 +h2

jI)−1 is a diagonal matrix and hj is the regularization
parameter for the jth column of the matrix of regression coefficients. In
a regularized EM algorithm with individual ridge regressions, this residual
covariance matrix is added to the cross-products x̂T

mx̂m of the imputed values
when a new estimate of the covariance matrix (10.7) is assembled.

Thus, the additional computational expense of individual ridge regres-
sions in place of a multiple ridge regression is merely that which is required
to minimize the GCV function pm times for pm residual vectors, compared
with minimizing it once for one residual matrix with pm column vectors. As
long as the greater number of regularization parameters to be estimated does
not lead to the estimated regularization parameters becoming unreliable, the
greater accuracy of the imputed values that can be expected with individ-
ual ridge regressions suggests the use of individual ridge regressions in the
regularized EM algorithm whenever computationally feasible.

In our case, we have used multiple ridge regression due the computa-
tional cost for some data sets. The regularization parameter h is such that
minimizes the GCV function. We have set an iteration limit besides the
stagnation tolerance. If the algorithm reach the maximum iterations or ei-
ther the value rdXmis

falls below of the stagnation tolerance the procedure
stops with the current imputation used as solution. The inflation factor for
the Covariance matrix is set to 1, that is, we do not inflate the Covariance
matrix at all.

11 Singular Value Decomposition Imputation (SVDI)

In this method, we employ singular value decomposition (11.1) to obtain a
set of mutually orthogonal expression patterns that can be linearly combined
to approximate the values of all attributes in the data set[11]. These patterns,
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which in this case are identical to the principle components of the data values’
matrix, are further referred to as eigenvalues.

Am×m = Um×mΣm×nV T
n×n. (11.1)

Matrix V T now contains eigenvalues, whose contribution to the expression
in the eigenspace is quantified by corresponding eigenvalues on the diagonal
of matrix Σ. We then identify the most significant eigenvalues by sorting the
eigenvalues based on their corresponding eigenvalue. Although it has been
shown that several significant eigenvalues are sufficient to describe most of
the expression data, the exact fraction of eigenvalues best for estimation
needs to be determined empirically.

Once k most significant eigenvalues from V T are selected, we estimate a
missing value j in example i by first regressing this attribute value against
the k eigenvalues and then use the coefficients of the regression to reconstruct
j from a linear combination of the k eigenvalues. The jth value of example
i and the jth values of the k eigenvalues are not used in determining these
regression coefficients. It should be noted that SVD can only be performed
on complete matrices; therefore we originally substitute row average for all
missing values in matrix A, obtaining A′. We then utilize an Regularized
Expectation-Maximization method to arrive at the final estimate, as follows.
Each missing value in A′ is estimated using the above algorithm, and then the
procedure is repeated on the newly obtained matrix, until the total change
in the matrix falls below the empirically determined (by the authors [11])
threshold of 0.01 (noted as stagnation tolerance in the EM algorithm). The
other parameters of the EM algorithm are the same for both algorithms.

12 Bayesian Principal Component Analysis (BPCA)

The missing value estimation method based on BPCA[9] consists of three
elementary processes. They are (1) principal component (PC) regression, (2)
Bayesian estimation, and (3) an expectation-maximization (EM)-like repet-
itive algorithm. Below, we describe each of these processes.

a. PC regression
For the time being, we consider a situation where there is no missing

value. PCA represents the variation of D-dimensional example vectors y as
a linear combination of principal axis vectors wl(1 ≤ l ≤ K) whose number
is relatively small (K < D):

y =
K∑

l=1

xlwl + ε (12.1)
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The linear coefficients xl(1 ≤ l ≤ K) are called factor scores. ε denotes the
residual error. Using a specifically determined number K, PCA obtains xl

and wl such that the sum of squared error ‖ ε ‖2 over the whole data set Y
is minimized.

When there is no missing value, xl and wl are calculated as follows. A
covariance matrix S for the example vectors yi(1 ≤ i ≤ N) is given by

S =
1

N

N∑
i=1

(yi − µ)(yi − µ)T , (12.2)

where µ is the mean vector of y: µ = (1/N)
∑N

i=1 yi. T denotes the transpose
of a vector or a matrix. For description convenience, Y is assumed to be
row-wisely normalized by a preprocess, so that µ = 0 holds. With this
normalization, the result by PCA is identical to that by SVD.

Let λ1 ≥ λ2 ≥ . . . ≥ λD and u1, u2, . . . , uD denote the eigenvalues and
the corresponding eigenvectors, respectively, of S. We also define the l-th
principal axis vector by wl =

√
λlul .With these notations, the l-th factor

score for an example vector y is given by xl = (wl/λl)
T y. Now we assume the

existence of missing values. In PC regression, the missing part ymiss in the
expression vector y is estimated from the observed part yobs by using the PCA
result. Let wobs

l and wmiss
l be parts of each principal axis wl, corresponding

to the observed and missing parts, respectively, in y. Similarly, let W =
(W obs,Wmiss) where W obs or Wmiss denotes a matrix whose column vectors
are wobs

1 , . . . , wobs
K or wmiss

1 , . . . , wmiss
K , respectively.

Factor scores x = (x1, . . . , xK) for the example vector y are obtained by
minimization of the residual error

err =‖ yobs −W obsx ‖2 .

This is a well-known regression problem, and the least square solution is
given by

x = (W obsT W obs)−1W obsT yobs.

Using x, the missing part is estimated as

ymiss = Wmissx (12.3)

In the PC regression above, W should be known beforehand. Later, we will
discuss the way to determine the parameter.

b. Bayesian estimation
A parametric probabilistic model, which is called probabilistic PCA (PPCA),

has been proposed recently. The probabilistic model is based on the assump-
tion that the residual error ε and the factor scores xl(1 ≤ l ≤ K) in Equation
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(reflinearcomb) obey normal distributions:

p(x) = NK(x|0, IK),

p(ε) = ND(ε|0, (1/τ)ID),

where NK(x|µ, Σ) denotes a K-dimensional normal distribution for x, whose
mean and covariance are µ and Σ, respectively. IK is a (K × K) identity
matrix and τ is a scalar inverse variance of ε. In this PPCA model, a complete
log-likelihood function is written as:

ln p(y, x|θ) ≡ ln p(y, x|W,µ, τ)

= −τ

2
‖ y −Wx− τ ‖2 −1

2
‖ x ‖2 +

D

2
ln τ − K + D

2
ln2Π,

where θ ≡ W,µ, τ is the parameter set. Since the maximum likelihood (ML)
estimation of the PPCA is identical to PCA, PPCA is a natural extension
of PCA to a probabilistic model.

We present here a Bayesian estimation method for PPCA from the au-
thors. Bayesian estimation obtains the posterior distribution of θ and X,
according to the Bayes theorem:

p(θ, X|Y ) ∝ p(Y,X|θ)p(θ). (12.4)

p(θ) is called a prior distribution, which denotes a priori preference for pa-
rameter θ. The prior distribution is a part of the model and must be defined
before estimation. We assume conjugate priors for τ and µ, and a hierarchi-
cal prior for W , namely, the prior for W, p(W |τ, α), is parameterized by a
hyperparameter α ∈ RK .

p(θ|α) ≡ p(µ,W, τ |α) = p(µ|τ)p(τ)
K∏

j=1

p(wj|τ, αj),

p(µ|tau) = N (µ|µ0, (γ
τ
µ0

)−1Im),

p(wj|τ, αj) = N (wj|0, (αjτ)−1Im),

p(τ) = G(τ |τ 0, γτ0)

G(τ |τ , γτ ) denotes a Gamma distribution with hyperparameters τ and γτ :

G(τ |τ , γτ ) ≡ (γττ
−1)γτ

Γ(γτ )
exp

[−γττ
−1τ + (γτ − 1)lnτ

]

where Γ(·) is a Gamma function.
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The variables used in the above priors, γµ0, µ0, γτ0 and τ 0 are determin-
istic hyperparameters that define the prior. Their actual values should be
given before the estimation. We set γµ0 = γτ0 = 10−10, µ0 = 0 and τ 0 = 1,
which corresponds to an almost non-informative prior.

Assuming the priors and given a whole data set Y = y, the type-II
ML hyperparameter αML−II and the posterior distribution of the parame-
ter, q(θ) = p(θ|Y, αML−II), are obtained by Bayesian estimation.

The hierarchical prior p(W |α, τ), which is called an automatic relevance
determination (ARD) prior, has an important role in BPCA. The j-th prin-
cipal axis wj has a Gaussian prior, and its variance 1/(αjτ) is controlled by
a hyperparameter αj which is determined by type-II ML estimation from
the data. When the Euclidian norm of the principal axis, ‖ wj ‖, is small
relatively to the noise variance 1/τ , the hyperparameter αj gets large and
the principal axis wj shrinks nearly to be 0. Thus, redundant principal axes
are automatically suppressed.

c. EM-like repetitive algorithm
If we know the true parameter true, the posterior of the missing values is

given by
q(Y miss) = p(Y miss|Y obs, θtrue),

which produces equivalent estimation to the PC regression. Here, p(Y miss|Y obs, θtrue)
is obtained by marginalizing the likelihood (12.4) with respect to the observed
variables Y obs. If we have the parameter posterior q(θ) instead of the true
parameter, the posterior of the missing values is given by

q(Y miss) =

∫
dθq(θ)p(Y miss|Y obs, θ),

which corresponds to the Bayesian PC regression. Since we do not know the
true parameter naturally, we conduct the BPCA. Although the parameter
posterior q(θ) can be easily obtained by the Bayesian estimation when a
complete data set Y is available, we assume that only a part of Y , Y obs, is
observed and the rest Y miss is missing. In that situation, it is required to
obtain q(θ) and q(Y miss) simultaneously.

We use a variational Bayes (VB) algorithm, in order to execute Bayesian
estimation for both model parameter θ and missing values Y miss. Although
the VB algorithm resembles the EM algorithm that obtains ML estimators
for θ and Y miss, it obtains the posterior distributions for θ and Y miss, q(θ)
and q(Y miss), by a repetitive algorithm.

The VB algorithm is implemented as follows: (a) the posterior distri-
bution of missing values, q(Y miss), is initialized by imputing each of the
missing values to instance-wise average; (b) the posterior distribution of the
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parameter θ, q(θ), is estimated using the observed data Y obs and the current
posterior distribution of missing values, q(Y miss); (c) the posterior distri-
bution of the missing values, q(Y miss), is estimated using the current q(θ);
(d) the hyperparameter α is updated using both of the current q(θ) and the
current q(Y miss); (e) repeat (b)-(d) until convergence.

The VB algorithm has been proved to converge to a locally optimal so-
lution. Although the convergence to the global optimum is not guaranteed,
the VB algorithm for BPCA almost always converges to a single solution
practically. This is probably because the objective function of BPCA has a
simple landscape. As a consequence of the VB algorithm, therefore, q(θ) and
q(Y miss) are expected to approach the global optimal posteriors.

Then, the missing values in the expression matrix are imputed to the
expectation with respect to the estimated posterior distribution:

Ŷ miss =

∫
ymissq(Y miss)dY miss. (12.5)

In the implementation from the authors, no parameters are requested
from the user, since all of them are computed by the algorithm itself.

13 Local Least Squares Imputation (LLSI)

Throughout the paper, we will use G ∈ Rm×n to denote a gene expression
data matrix with m genes and n experiments, and assume m À n. In the
matrix G, a row gT

i ∈ R1×n represents expressions of the i-th gene in n
experiments:

G =




gT
1

...

gT
m


 ∈ Rm×n

A missing value in the l-th location of the i-th gene is denoted as α, i.e.

G(i, l) = gi(l) = α

For simplicity of algorithm description, all missing value estimation algo-
rithms mentioned in this paper are described first assuming there is a missing
value in the first position of the first gene, i.e.

G(1, 1) = g1(1) = α

then the general algorithms for the proposed missing value estimation meth-
ods for DNA microarray expression data are introduced.
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This formulation can be adapted to a data set’s format, by identifying
the m gene with the m instance, and the n experiment will represent the n
attribute.

A target gene that has missing values is represented as a linear combi-
nation of similar genes. Rather than using all available genes in the data,
since only similar genes based on a similarity measure are used, the method
is referred to as local least squares imputation (LLSimpute). As similarity
measures, L2-norm is used.

There are two steps in the local least squares imputation. The first step
is to select k genes by the L2-norm. The second step is regression and esti-
mation, regardless of how the k genes are selected. A heuristic k parameter
selection method is described.

13.1. Selecting genes

To recover a missing value α in the first location g1(1) of g1 in G ∈ Rm×n,
the k-nearest neighbor gene vectors for g1,

gT
Si
∈ R1×n, 1 ≤ i ≤ k,

are found for LLSimpute based on the L2-norm (LLSimpute). In this process
of finding the similar genes, the first component of each gene is ignored
following the fact that g1(1) is missing.

The LLSimpute based on the Pearson correlation coefficient to select the
k genes can be consulted in [8].

13.2. Gene-wise formulation of local least squares im-
putation

As imputation can be performed regardless of how the k-genes are se-
lected, we present only the imputation based on L2-norm for simplicity.
Based on these k-neighboring gene vectors, the matrix A ∈ Rk×(n−1) and
the two vectors b ∈ Rk×1 and w ∈ R(n−1)×1 are formed. The k rows of the
matrix A consist of the k-nearest neighbor genes gT

Si
∈ R1×n, 1 ≤ i ≤ k,

with their first values deleted, the elements of the vector b consists of the
first components of the k vectors gT

Si
, and the elements of the vector w are

the n− 1 elements of the gene vector g1 whose missing first item is deleted.
After the matrix A, and the vectors b and w are formed, the least squares
problem is formulated as

min
x
||ATx−w||2 (13.1)
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Then, the missing value α is estimated as a linear combination of first
values of genes

α = bTx = bT (AT )†w, (13.2)

where (AT )† is the pseudoinverse of AT .
For example, assume that the target gene g1 has a missing value in the

first position among the total of six experiments. If the missing value is to
be estimated by the k similar genes, the matrix A, and vectors b and w are
constructed as




gT
1

...

gT
m


 =

(
α wT

b A

)

=




α w1 w2 w3 w4 w5

b1 A1,1 A1,2 A1,3 A1,4 A1,5

...
...

...
...

...
...

bk Ak,1 Ak,2 Ak,3 Ak,4 Ak,5




where α is the missing value and gT
S1

, . . . ,gT
Sk

are genes similar to gT
1 .

From the second to the last components of the neighbor genes, aT
i , 1 ≤ i ≤ k,

form the i-th row vector of the matrix A. The vector w of the known elements
of target gene g1 can be represented as a linear combination

w ' x1a1 + x2a2 + . . . + xkak

where xi are the coefficients of the linear combination, found from the least
squares formulation (13.1). Accordingly, the missing value α in g1 can be
estimated by

α = bT x = b1x1 + b2x2 + . . . + bkxk

Now, we deal with the case in which there are more than one missing
values in a gene vector. In this case, to recover the total of q missing values
in any locations of the gene g1, first, the k-nearest neighbor gene vectors for
g1,

gT
Si
∈ R1×n, 1 ≤ i ≤ k,

are found. In this process of finding the similar genes, the q components of
each gene at the q locations of missing values in g1 are ignored. Then, based
on these k neighboring gene vectors, a matrix A ∈ Rk×(n−q) a matrix B ∈
Rk×q and a vector w ∈ R(n−q)×1 are formed. The i-th row vector aT

i of the
matrix A consists of the i-th nearest neighbor genes gT

Si
∈ R1×n, 1 ≤ i ≤ k,
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with its elements at the q missing locations of missing values of g1 excluded.
Each column vector of the matrix B consists of the values of the j-th location
of the missing values (1 ≤ j ≤ q) of the k vectors gT

Si
.The elements of the

vector w are the n− q elements of the gene vector g whose missing items are
deleted. After the matrices A and B and a vector w are formed, the least
squares problem is formulated as

min
x
||ATx−w||2 (13.3)

Then, the vector u = (α1, α2, . . . , αq)
T of q missing values can be esti-

mated as

u =




α1

...

αq


 = BTx = BT (AT )†w, (13.4)

where (AT )† is the pseudoinverse of AT .
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