Multiobjective Genetic Fuzzy Systems
- Accurate and Interpretable Fuzzy Rule-Based Classifier Design -

Hisao Ishibuchi
Osaka Prefecture University, Japan
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Application Areas of Fuzzy Systems

- Fuzzy Control
- Fuzzy Clustering
- Fuzzy Classification

Control and clustering are well-known application areas!

Question: Is “fuzzy classification” popular?
Application Areas of Fuzzy Systems

- Fuzzy Control
- Fuzzy Clustering
- Fuzzy Classification

Control and clustering are well-known application areas!

Question: Is “fuzzy classification” popular?
Citation Report: Topic=(Fuzzy) AND Topic=(Control) Timespan=All Years, Databases=SCI-EXPANDED.

This report reflects citations to source items indexed within Web of Science. Perform a Cited Reference Search to include citations to items not indexed within Web of Science.

Published Items in Each Year

Citations in Each Year

The latest 20 years are displayed.

View a graph with all years.

Results: 9,421

9421 Fuzzy Control Papers

Use the checkboxes to remove individual items from this Citation Report or restrict to items processed between 1984 and 2010.

1. Title: FUZZY IDENTIFICATION OF SYSTEMS AND ITS APPLICATIONS TO MODELING AND CONTROL
 Author(s): TAKAGI T, SUGENO M
 Source: IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS Volume: 15 Issue: 1 Pages: 116-132 Published: 1985

Web of Science
Application Areas of Fuzzy Systems

Fuzzy Control: Well-Known Application Area

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
<th>Source</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Published</th>
<th>Citation Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Squares Learning</td>
<td>Wang LX, Mendel JM</td>
<td>IEEE Transactions on Neural Networks</td>
<td>3</td>
<td>5</td>
<td>807-814</td>
<td>SEP 1992</td>
<td>737</td>
</tr>
</tbody>
</table>
Application Areas of Fuzzy Systems

Fuzzy Clustering: Well-Known Application Area

Citation Report

Topic=(Fuzzy) AND Topic=(Clustering)
Timespan=All Years. Databases=SCI-EXPANDED.

This report reflects citations to source items indexed within Web of Science. Perform a Cited Reference Search to include citations to items not indexed within Web of Science.

Results found: 2,968

2,968 Fuzzy Clustering Papers

Use the checkboxes to remove individual items from this Citation Report or restrict to items processed between 1984 and 2010.

1. Title: A REVIEW ON IMAGE SEGMENTATION TECHNIQUES
 Author(s): PAL NR, PAL SK
 Source: PATTERN RECOGNITION Volume: 26 Issue: 9 Pages: 1277-1294 Published: SEP 1993

Web of Science
Application Areas of Fuzzy Systems

Fuzzy Clustering: Well-Known Application Area

1. Title: A REVIEW ON IMAGE SEGMENTATION TECHNIQUES
Author(s): PAL NR, PAL SK
Source: PATTERN RECOGNITION
Volume: 26 Issue: 9 Pages: 1277-1294 Published: SEP 1993

2. Title: UNSUPERVISED OPTIMAL FUZZY CLUSTERING
Author(s): GATH I, GEVA AB
Source: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Volume: 11 Issue: 7 Pages: 773-781 Published: JUL 1989

3. Title: A VALIDITY MEASURE FOR FUZZY CLUSTERING
Author(s): XIE XLL, BENI G
Source: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
Volume: 13 Issue: 8 Pages: 841-847 Published: AUG 1991

4. Title: FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM
Author(s): BEZDEK JC, EHRlich R, FULL W
Source: COMPUTERS & GEOSCIENCES
Volume: 10 Issue: 2-3 Pages: 191-203 Published: 1984

5. Title: ON CLUSTER VALIDITY FOR THE FUZZY C-MEANS MODEL
Author(s): PAL NR, BEZDEK JC
Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume: 3 Issue: 3 Pages: 370-379 Published: AUG 1995

6. Title: An on-line self-construction neural fuzzy inference network and its applications
Author(s): Juang CF, Lin CT
Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume: 6 Issue: 1 Pages: 12-32 Published: FEB 1998

7. Title: Color image segmentation: advances and prospects
Author(s): Cheng HD, Jiang XH, Sun Y, et al.
Source: PATTERN RECOGNITION
Volume: 34 Issue: 12 Pages: 2259-2281 Published: DEC 2001

Web of Science
Application Areas of Fuzzy Systems

Fuzzy Classification: Well-Known?

Citation Report

[Image with graphs showing published items and citations by year]

Results: 4,144 4144 Fuzzy Classification Papers

<table>
<thead>
<tr>
<th>Year</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>Total</th>
<th>Average Citations per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4618</td>
<td>5795</td>
<td>7949</td>
<td>7635</td>
<td>0</td>
<td>43,485</td>
<td>1672.50</td>
</tr>
</tbody>
</table>

1. Title: Status of land cover classification accuracy assessment
 Author(s): Foody GM
 Source: REMOTE SENSING OF ENVIRONMENT Volume: 80 Issue: 1 Pages: 185-201
 Published: APR 2002
Application Areas of Fuzzy Systems

Fuzzy Classification: Well-Known?

1. **Title:** Status of land cover classification accuracy assessment
 Author(s): Foody GM
 Source: REMOTE SENSING OF ENVIRONMENT
 Volume: 80
 Issue: 1
 Pages: 185-201
 Published: APR 2002

2. **Title:** ROUGH FUZZY-SETS AND FUZZY ROUGH SETS
 Author(s): Dubois D, Prade H
 Source: INTERNATIONAL JOURNAL OF GENERAL SYSTEMS
 Volume: 17
 Issue: 2-3
 Pages: 191-209
 Published: 1990

3. **Title:** FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS
 Author(s): Dubois D, Prade H
 Source: FUZZY SETS AND SYSTEMS
 Volume: 40
 Issue: 1
 Pages: 143-202
 Published: MAR 5 1991

4. **Title:** FUZZY MIN MAX NEURAL NETWORKS .1. CLASSIFICATION
 Author(s): Simpson PK
 Source: IEEE TRANSACTIONS ON NEURAL NETWORKS
 Volume: 3
 Issue: 5
 Pages: 776-786
 Published: SEP 1992

5. **Title:** Color image segmentation: advances and prospects
 Author(s): Cheng HD, Jiang XH, Sun Y, et al.
 Source: PATTERN RECOGNITION
 Volume: 34
 Issue: 12
 Pages: 2259-2281
 Published: DEC 2001

6. **Title:** SELECTING FUZZY IF-THEN RULES FOR CLASSIFICATION PROBLEMS USING GENETIC ALGORITHMS
 Author(s): Ishibuchi H, Nozaki K, Yamamoto N, et al.
 Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS
 Volume: 3
 Issue: 3
 Pages: 260-270
 Published: AUG 1995

7. **Title:** Decision templates for multiple classifier fusion: an experimental comparison
 Author(s): Kancheva IJ, Bezdek JC, Duin RPW
 Source: PATTERN RECOGNITION
 Volume: 34
 Issue: 2
 Pages: 299-314
 Published: FEB 2001

Dubois D, Prade H
Fuzzy If-Then Rules
Fuzzy Min-Max NN
Web of Science
Application Areas of Fuzzy Systems
Control, Clustering, and Classification

Results found: 9,421
Sum of the Times Cited [?] : 90,485
Average Citations per Item [?] : 9.60
h-index [?] : 94

9421 (Fuzzy Control)

Results found: 2,968
Sum of the Times Cited [?] : 32,977
Average Citations per Item [?] : 11.11
h-index [?] : 71

2968 (Fuzzy Clustering)

Results found: 4,144
Sum of the Times Cited [?] : 43,485
Average Citations per Item [?] : 10.49
h-index [?] : 80

4144 (Fuzzy Classification)
Web of Science
Application Areas of Fuzzy Systems
Control, Clustering, and Classification

Published Items in Each Year
FUZZ-IEEE 1992
IEEE Trans FS 1993

Citations in Each Year
FUZZ-IEEE 1992
IEEE Trans FS 1993

9421 (Fuzzy Control)
Results found: 9,421
Sum of the Times Cited [?] : 90,485
View Citing Articles
View without self-citations
Average Citations per Item [?] : 9.60
h-index [?] : 94

2968 (Fuzzy Clustering)
Results found: 2,968
Sum of the Times Cited [?] : 32,977
View Citing Articles
View without self-citations
Average Citations per Item [?] : 11.11
h-index [?] : 71

4144 (Fuzzy Classification)
Web of Science
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Maximization
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
This Presentation: Accurate and Interpretable Fuzzy Rule-Based Classifier Design

1. Title: Status of land cover classification accuracy assessment
 Author(s): Foody GM
 Source: REMOTE SENSING OF ENVIRONMENT Volume: 80 Issue: 1 Pages: 185-201
 Published: APR 2002

2. Title: ROUGH FUZZY-SETS AND FUZZY ROUGH SETS
 Author(s): DUBOIS D, PRADE H
 Source: INTERNATIONAL JOURNAL OF GENERAL SYSTEMS Volume: 17 Issue: 2-3
 Pages: 191-209 Published: 1990

3. Title: FUZZY-SETS IN APPROXIMATE REASONING .1. INFERENCE WITH POSSIBILITY DISTRIBUTIONS
 Author(s): DUBOIS D, PRADE H
 Source: FUZZY SETS AND SYSTEMS Volume: 40 Issue: 1 Pages: 143-202 Published: MAR 5 1991

4. Title: FUZZY MIN MAX NEURAL NETWORKS .1. CLASSIFICATION
 Author(s): SIMPSON PK
 Source: IEEE TRANSACTIONS ON NEURAL NETWORKS Volume: 3 Issue: 5 Pages: 776-786 Published: SEP 1992

5. Title: Color image segmentation: advances and prospects
 Author(s): Cheng HD, Jiang XH, Sun Y, et al.
 Source: PATTERN RECOGNITION Volume: 34 Issue: 12 Pages: 2259-2281 Published: DEC 2001

6. Title: SELECTING FUZZY IF-THEN RULES FOR CLASSIFICATION PROBLEMS USING GENETIC ALGORITHMS
 Author(s): ISHIBUCHI H, NOZAKI K, YAMAMOTO N, et al.
 Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS Volume: 3 Issue: 3 Pages: 260-270 Published: AUG 1995

7. Title: Decision templates for multiple classifier fusion: an experimental comparison
 Author(s): Kuncheva LI, Bezdek JC, Duin RPW
 Source: PATTERN RECOGNITION Volume: 34 Issue: 2 Pages: 299-314 Published: FEB 2001
Fitness Function

\[w_1 \text{Accuracy}(S) - w_2 \text{Complexity}(S) \]

Accuracy Maximization and Complexity Minimization
The number of selected fuzzy rules

\[w_1 \text{Accuracy}(S) - w_2 \text{Complexity}(S) \]

The number of correctly classified training patterns
Fuzzy Rules for Classification
Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form
If x_1 is small and x_2 is small then Class 2
Fuzzy Rules for Classification
Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form
If x_1 is small and x_2 is small then Class 2
If x_1 is small and x_2 is medium then Class 2
Fuzzy Rules for Classification
Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form
If \(x_1 \) is small and \(x_2 \) is small then Class 2
If \(x_1 \) is small and \(x_2 \) is medium then Class 2
If \(x_1 \) is small and \(x_2 \) is large then Class 1
Fuzzy Rules for Classification

Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form

If \(x_1 \) is *small* and \(x_2 \) is *small* then Class 2

If \(x_1 \) is *small* and \(x_2 \) is *medium* then Class 2

If \(x_1 \) is *small* and \(x_2 \) is *large* then Class 1

\[\ldots \]

If \(x_1 \) is *large* and \(x_2 \) is *large* then Class 3

High Interpretability

Easy to Understand!
Classification Boundary
Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form
If x_1 is small and x_2 is small
then Class 2

If x_1 is small and x_2 is medium
then Class 2

If x_1 is small and x_2 is large
then Class 1

...

If x_1 is large and x_2 is large
then Class 3

High Interpretability
Easy to Understand!
Fuzzy Rules for Classification
Basic form does not always have high accuracy

Basic Form
If x_1 is *small* and x_2 is *small* then Class 2
If x_1 is *small* and x_2 is *medium* then Class 2
If x_1 is *small* and x_2 is *large* then Class 1
...
If x_1 is *large* and x_2 is *large* then Class 3

High Interpretability
Low Accuracy
Fuzzy Rules for Classification
Another form has a rule weight (certainty)

Basic Form
If x_1 is *small* and x_2 is *medium* then Class 2

Rule Weight Version
If x_1 is *small* and x_2 is *medium* then Class 2 with 0.158
Classification Boundary
Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form
If x_1 is small and x_2 is medium then Class 2

Rule Weight Version
If x_1 is small and x_2 is medium then Class 2 with 0.158
Fuzzy Rules with Rule Weights

Accurate and Interpretable Fuzzy Rule-Based Classifier Design

Basic Form

If x_1 is small and x_2 is medium then Class 2

Rule Weight Version

If x_1 is small and x_2 is medium then Class 2 with 0.158

Title: DISTRIBUTED REPRESENTATION OF FUZZY RULES AND ITS APPLICATION TO PATTERN-CLASSIFICATION

Author(s): ISHIBUCHI H, NOZAKI K, TANAKA H

Source: FUZZY SETS AND SYSTEMS Volume: 52 Issue: 1 Pages: 21-32 Published: NOV 25 1992

Fuzzy Rules in This Presentation

Fuzzy Rules with Rule Weights

1.0

Class 1 Class 2 Class 3

Basic Form
If x_1 is *small* and x_2 is *medium* then Class 2

Rule Weight Version
If x_1 is *small* and x_2 is *medium* then Class 2 with 0.158

Use of Rule Weights: Controversial Issue

(1) Rule weight adjustment can be replaced with membership learning.

Neuro-fuzzy systems have recently gained a lot of interest in research and application. These are approaches that learn fuzzy systems from data. Many of them use rule weights for this task. In this paper we discuss the influence ...

Fuzzy Rules in This Presentation

Fuzzy Rules with Rule Weights

1.0

Class 1 Class 2 Class 3

Basic Form
If \(x_1 \) is small and \(x_2 \) is medium then Class 2

Rule Weight Version
If \(x_1 \) is small and \(x_2 \) is medium then Class 2 with 0.158

Use of Rule Weights: Controversial Issue

(2) Membership learning can be partially replaced with weight adjustment.

[PDF] Effect of rule weights in fuzzy rule-based classification systems
H Ishibuchi, T Nakashima - algorithms - Citeseer
... Hisao Ishibuchi, Member, IEEE, and Tomoharu Nakashima, Member, IEEE ... Hisao Ishibuchi, Member, IEEE, and Tomoharu Nakashima, Member, IEEE ... Google Scholar
Cited by 170

Fuzzy Rules for Classification

Another Form: Multiple Consequents

Basic Form
If x_1 is small and x_2 is medium then Class 2

Rule Weight Version
If x_1 is small and x_2 is medium then Class 2 with 0.158

Multiple Consequents
If x_1 is small and x_2 is medium then Class 1 with 0.579, Class 2 with 0.421, Class 3 with 0.000
Fuzzy Rules for Classification

Another Form: Multiple Consequents

Basic Form
If \(x_1 \) is small and \(x_2 \) is medium then Class 2

Rule Weight Version
If \(x_1 \) is small and \(x_2 \) is medium then Class 2 with 0.158

Multiple Consequents

Fuzzy Rule-Based Systems have been successfully applied to pattern classification problems. In this type of classification systems, the classical Fuzzy Reasoning Method (FRM) classifies a new example with the consequent of the rule with ...

Cited by 127 - Related articles - BL Direct O. Cordon et al., IJAR (2001)

Google Scholar
Other Forms of Fuzzy Rules
Handling of Classification as Function Approximation

Integer Consequent
If x_1 is small and x_1 is large then $y = 1$
If x_1 is large and x_2 is large then $y = 3$

Binary Consequent
If x_1 is small and x_1 is large then $(y_1, y_2, y_3) = (1, 0, 0)$
If x_1 is large and x_2 is large then $(y_1, y_2, y_3) = (0, 0, 1)$
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Accuracy Improvement
Use of Fine Fuzzy Partition

Class 1 Class 2 Class 3

Classifications:
- SML
- LM
- MS
- SN
- IN
- TIN
- T
Accuracy Improvement
How to choose an appropriate partition?

Too Fine Fuzzy Partition

==> Over-Fitting
(Poor Generalization Ability)
Accuracy Improvement
How to choose an appropriate partition?

One Idea: Use of All Partitions (Multiple Fuzzy Grid Approach)

Title: DISTRIBUTED REPRESENTATION OF FUZZY RULES AND ITS APPLICATION TO PATTERN-CLASSIFICATION
Author(s): ISHIBUCHI H, NOZAKI K, TANAKA H
Source: FUZZY SETS AND SYSTEMS Volume: 52 Issue: 1 Pages: 21-32 Published: NOV 25 1992

Web of Science
Ishibuchi et al., Fuzzy Sets and Systems (1992)
Accuracy Improvement
Learning of Membership Functions

Class 1
Class 2
Class 3

Accuracy Improvement Diagram showing data points for Class 1, Class 2, and Class 3.
Various learning methods such as neuro-fuzzy and genetic-fuzzy methods are available.

Title: A neuro-fuzzy method to learn fuzzy classification rules from data
Author(s): Nauck D, Kruse R
Source: FUZZY SETS AND SYSTEMS Volume: 89
Issue: 3 Pages: 277-288 Published: AUG 1 1997

Various learning methods such as neuro-fuzzy and genetic-fuzzy methods are available.

Interpretability is degraded.

Title: A neuro-fuzzy method to learn fuzzy classification rules from data
Author(s): Nauck D, Kruse R
Source: FUZZY SETS AND SYSTEMS Volume: 89 Issue: 3 Pages: 277-288 Published: AUG 1 1997

Each fuzzy rule can be generated and adjusted independently from other rules. ==> High Accuracy

Membership functions can be heavily overlapping.

==> Poor Interpretability
Each fuzzy rule can be generated and adjusted independently from other rules. ==> High Accuracy

Membership functions can be heavily overlapping.

==> Poor Interpretability

S. Abe and M. S. Lan, IEEE Tras. on FS (1995)
Accuracy Improvement

Use of Multi-Dimensional Membership Functions

If x is \mathbf{A} then Class 2

\mathbf{A}: Multi-dimensional Fuzzy Set
(Membership Function)
If \(x \) is \(A \) then Class 2

A: Multi-dimensional Fuzzy Set
(Membership Function)

Fuzzy rules are flexibility.

\[\Rightarrow \text{High Accuracy} \]

Each membership function is multi-dimensional.

\[\Rightarrow \text{Poor Interpretability} \]
Accuracy Improvement
Use of Multi-Dimensional Membership Functions

If \(x \) is \(A \) then Class 2

\(A \): Multi-dimensional Fuzzy Set (Membership Function)

Title: Feature selection by analyzing class regions approximated by ellipsoids
Author(s): Abe S, Thawonmas R, Kobayashi Y
Source: IEEE Transactions on Systems Man and Cybernetics, Part C: Applications and Reviews
 Volume: 28 Issue: 2 Pages: 282-287 Published: MAY 1998

Title: A fuzzy classifier with ellipsoidal regions for diagnosis problems
Author(s): Abe S, Thawonmas R, Kayama M
Source: IEEE Transactions on Systems Man and Cybernetics, Part C: Applications and Reviews
 Volume: 29 Issue: 1 Pages: 140-149 Published: FEB 1999

S. Abe et al., IEEE TSMC-C (1998)

S. Abe et al., IEEE TSMC-C (1999)

Web of Science
Accuracy Improvement
Use of Tree-Type Fuzzy Partitions

If x_1 is small then Class 2.
If x_1 is large and x_2 is small then Class 3.
If x_1 is large and x_2 is large then Class 1.
Accuracy Improvement
Use of Tree-Type Fuzzy Partitions

Title: **INDUCTION OF FUZZY DECISION TREES**
Author(s): YUAN YF, SHAW MJ
Source: **FUZZY SETS AND SYSTEMS** Volume: 69
Issue: 2 Pages: 125-139 Published: JAN 27 1995

Title: **Fuzzy decision trees: Issues and methods**
Author(s): Janikow CZ
Source: **IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS** Volume: 28
Issue: 1 Pages: 1-14 Published: FEB 1998

![Diagram]

\[x_1 \text{ is small} \]
\[x_1 \text{ is large} \]
\[x_2 \text{ is small} \]
\[x_2 \text{ is large} \]
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Difficulty of High-Dimensional Problems
Exponential Increase of Fuzzy Rules

Basic Form
If x_1 is \textit{small} and x_2 is \textit{small} then Class 2
If x_1 is \textit{small} and x_2 is \textit{medium} then Class 2
\ldots
If x_1 is \textit{large} and x_2 is \textit{large} then Class 3

Number of Fuzzy Rules:
2-D Problem: 3×3
3-D Problem: $3 \times 3 \times 3$
4-D Problem: $3 \times 3 \times 3 \times 3$
5-D Problem: $3 \times 3 \times 3 \times 3 \times 3$
Scalability Improvement
Use of Independent Membership Functions

Fuzzy rules are generated in the multi-dimensional space. => No Exponential Increase
If x is A then Class 2

A: Multi-dimensional Fuzzy Set
(Member of Function)

Fuzzy rules are generated in the multi-dimensional space.
=> No Exponential Increase
An appropriate stopping condition prevents the exponential increase in the number of fuzzy rules.
Scalability Improvement
Hierarchical Fuzzy Systems

Diagram:
- Top level: subsystem
- Second level:
 - Left: subsystem
 - Center: subsystem
 - Right: subsystem
- Bottom level:
 - Left: x_1, x_2
 - Center: x_3, x_4
 - Right: x_5
Scalability Improvement
Hierarchical Fuzzy Systems

Title: SELF-TUNING FUZZY MODELING WITH ADAPTIVE MEMBERSHIP FUNCTION, RULES, AND HIERARCHICAL STRUCTURE-BASED ON GENETIC ALGORITHM
Author(s): SHIMOJIMA K, FUKUDA T, HASEGAWA Y
Source: FUZZY SETS AND SYSTEMS Volume: 71 Issue: 3 Pages: 295-309 Published: MAY 12 1995

Accuracy & Scalability Improvement

==> Poor Interpretability

- Use of Fine Fuzzy Partition (Accuracy)
- Use of Rule Weights (Accuracy)
- Membership Function Learning (Accuracy)
- Fuzzy Rules with Independent Membership Functions (Accuracy and Scalability)
- Multi-Dimensional Fuzzy Systems (Accuracy and Scalability)
- Tree-Type Fuzzy Partitions (Accuracy and Scalability)
- Hierarchical Fuzzy Systems (Accuracy and Scalability)
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Complexity Minimization
Fuzzy Rule Selection

Rule Selection (Nine Rules ==> Four Rules)

Nine Rules

Four Rules
Rule Selection (Nine Rules ==> Four Rules)
The same classification boundaries are generated.
Rule Selection (Nine Rules ==> Four Rules)
The same classification boundaries are generated.

Title: SELECTING FUZZY IF-THEN RULES FOR CLASSIFICATION PROBLEMS USING GENETIC ALGORITHMS
Author(s): ISHIBUCHI H, NOZAKI K, YAMAMOTO N, et al.
Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS
Published: AUG 1995

Use of “Don’t Care” Conditions

Nine Rules ==> Seven Rules (If x_1 is large then Class 3)
Complexity Minimization
Use of “Don’t Care” Conditions

Nine Rules ==> Seven Rules (If x_1 is large then Class 3)
Slightly different classification boundaries are obtained.

Nine Rules

Seven Rules
Nine Rules ==> Seven Rules (If x_1 is large then Class 3)

Slightly different classification boundaries are obtained.

Complexity Minimization
Use of "Don’t Care" Conditions

The use of “Don’t Care” conditions can be viewed as an scalability improvement method. If x_1 is small and x_{10} is ...

Complexity Minimization
Use of “Don’t Care” Conditions

The use of “Don’t Care” conditions can be also viewed as input selection for each rule (rule-wise input selection).

[PDF] Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems with continuous attributes. In our method, each fuzzy if–then rule is handled... Google Scholar

Complexity Minimization
Merging Similar Membership Functions
Complexity Minimization
Merging Similar Membership Functions

Similar Membership Functions
Complexity Minimization
Merging Similar Membership Functions

Similar Membership Functions
=> One Membership Function
Complexity Minimization
Merging Similar Membership Functions

Class 1 Class 2 Class 3

Similar Membership Functions
==> One Membership Function

[PDF] ▶ Similarity measures in fuzzy rule base simplification
M Setnes, R Babuska, U Kaymak, HR van ... - IEEE Transactions on Systems, Man, repository.tudelft.nl

Abstract—In fuzzy rule-based models acquired from numerical data, redundancy may be present in the form of similar fuzzy sets that represent compatible concepts. This results in an unnecessarily complex and less transparent ...

Cited by 259 - Related articles - View as HTML - BL Direct - All 8 versions

Complexity Minimization
Merging Similar Membership Functions

Class 1 Class 2 Class 3

Similar Membership Functions
==> One Membership Function

- Interpretability is improved.
- Accuracy is degraded.
Complexity Minimization
Merging Similar Membership Functions

Similar Membership Functions
=> One Membership Function

- Interpretability is improved.
- Accuracy is degraded.

Interpretability-Accuracy Tradeoff
Complexity Minimization
Projection of Multi-Dimensional Fuzzy Sets

Change of Fuzzy Rule Form

If \(x \) is \(A_q \) then ...

If \(x_1 \) is \(A_{q1} \) and \(x_2 \) is \(A_{q2} \) then

- Interpretability is improved.
- Accuracy is degraded.

Interpretability-Accuracy Tradeoff
Interpretability-Accuracy Tradeoff
(Accuracy-Simplicity Tradeoff)

- Interpretable fuzzy system
- Accurate fuzzy system

Error: Large vs. Small
Complexity: Simple vs. Complicated

Graph showing the tradeoff between interpretability and accuracy/simplicity.
Accuracy Maximization
Main Research Direction Since the Early 1990s

- Fuzzy Neuro Learning
- Genetic Fuzzy Optimization
Possible Difficulties

Accuracy Maximization

- Poor Interpretability
- Overfitting to Training Data
Possible Difficulties

Accuracy Maximization

- Poor Interpretability
- Overfitting to Training Data
Difficulty in Accuracy Maximization

Accuracy maximization → Overfitting

Test data accuracy

Training data accuracy

Error

Complexity

S^*
Accuracy-Complexity Tradeoff

Curve Fitting

Error

Feasible Area

Complexity
Accuracy-Complexity Tradeoff

Curve Fitting

![Graph showing the tradeoff between accuracy and complexity](image-url)
Accuracy-Complexity Tradeoff

Curve Fitting

Error vs. Complexity

Graph showing a tradeoff curve with error on the y-axis and complexity on the x-axis.
Accuracy-Complexity Tradeoff

Curve Fitting

Error vs. Complexity

Error vs. x

y vs. x
Accuracy-Complexity Tradeoff

Curve Fitting

Error

Complexity

\[x \]

\[y \]
Accuracy-Complexity Tradeoff

Curve Fitting

Error

Test Data Error

Training Data Error

Complexity

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
Accuracy-Complexity Tradeoff

Curve Fitting

Test Data Error

Training Data Error
Possible Difficulties

Accuracy Maximization

- Poor Interpretability
- Overfitting to Training Data

In the design of fuzzy systems, emphasis should be placed on their linguistic interpretability.

Interpretability maintenance while maximizing the accuracy.
Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)
Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s

Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some Ideas
- Aggregated Objective Function: To combine the error minimization and the complexity minimization into a single scalar fitness function
Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some Ideas
- Aggregated Objective Function: To combine the error minimization and the complexity minimization into a single scalar fitness function
- Constraint Condition: To use constraint conditions on the position and the shape of membership functions
Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Some Ideas

- Aggregated Objective Function: To combine the error minimization and the complexity minimization into a single scalar fitness function
- Constraint Condition: To use constraint conditions on the position and the shape of membership functions
Accuracy and Interpretability Maximization
Active Research Direction Since the Late 1990s

Accuracy Maximization and Complexity Minimization

[PDF] GA-fuzzy modeling and classification: complexity and performance
Manuscript received (...); revised (...). This work was supported in part by the
Research Council of Norway. The authors are with the Delft University of
Technology, Faculty of Information Technology and Systems, Control ...
Cited by 253 - Related articles - View as HTML - BL Direct - All 10 versions

[PDF] Compact and transparent fuzzy models and classifiers
Abstract—In our previous work we showed that genetic algo-
rithms (GAs) provide a powerful tool to increase the accuracy of fuzzy models for both
systems modeling and classification. In addi-
tion to these results, we ...
Cited by 146 - Related articles - View as HTML - BL Direct - All 3 versions

[BOOK] Interpretability issues in fuzzy modeling
J Casillas, O Cordón, F Herrera, L Magdalena, 2003 - books.google.com
Dr. Jorge Casillas Dr. Luis Magdalena E-mail: casillas@decsai. ugr. es E-mail:
Ilayos@ mat. upm. es Dr. Oscar Cord< 5n Dpto. Matematicas Aplicadas E-mail:
ocordon@ decsai. ugr. es a las Tecnologias de la Information Dr. Francisco ...
Cited by 167 - Related articles - All 2 versions
Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Basic Idea

- **Aggregated Objective Function:** To combine the error minimization and the complexity minimization into a single scalar fitness function
- **Constraint Condition:** To use constraint conditions on the position and the shape of membership functions
- **Two-Step Fuzzy System Design:** 1st Step: Search for accurate and complicated fuzzy rule-based systems. 2nd Step: Simplification of obtained fuzzy rule-based systems.
Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Aggregated Objective Function
- To combine the error minimization and the complexity minimization into a single scalar objective function
Compromise between Accuracy and Complexity
(Search for a good accuracy-complexity tradeoff)

Aggregated Objective Function
- To combine the error minimization and the complexity minimization into a single scalar objective function

Example: Combination of the average error rate and the number of fuzzy rules

Example of a scalar objective function: Weighted sum

\[f(S) = w_1 \cdot f_{\text{Error}}(S) + w_2 \cdot f_{\text{Complexity}}(S) \]
Fuzzy systems were automatically generated, trained, and simplified.
Sensitivity to the weight vector:

The obtained system strongly depends on the specification of the weight vector.
Minimize \(w_1 \cdot \text{Error} + w_2 \cdot \text{Complexity} \)

When the weight for the complexity minimization is large:

- A simple system is obtained.

The graph shows the trade-off between error and complexity, with the objective of minimizing the weighted sum. The point \(S^* \) indicates a balance where both error and complexity are minimized, leading to an optimal system.
Minimize \(w_1 \cdot \text{Error} + w_2 \cdot \text{Complexity} \)

When the weight for the error minimization is large:

- A complicated system is obtained.

![Graph showing error and complexity with a minimum point labeled \(S^* \).]
Difficulty in Weighted Sum Approach

Minimize \[w_1 \cdot \text{Error} + w_2 \cdot \text{Complexity} \]

When the two weights are appropriately specified:

A good system is obtained. But the best complexity is not always found.

Test data accuracy

Training data accuracy
Multiobjective Fuzzy System Design
Currently An Active Research Issue

Basic Idea
To search for a number of non-dominated fuzzy systems with respect to the accuracy maximization and the interpretability maximization (instead of searching for a single fuzzy system).

Aggregation Approach

\[f(S) = w_1 \cdot f_{Error}(S) + w_2 \cdot f_{Complexity}(S) \]

Multiobjective Approach

Minimize \{f_{Error}(S), f_{Complexity}(S)\}
Multiobjective Fuzzy System Design
Currently An Active Research Issue

Basic Idea
To search for a number of non-dominated fuzzy systems with respect to the accuracy maximization and the interpretability maximization (instead of searching for a single fuzzy system).

Aggregation Approach

\[f(S) = w_1 \cdot f_{Error}(S) + w_2 \cdot f_{Complexity}(S) \]

Multiobjective Approach

Minimize \(\{ f_{Error}(S), f_{Complexity}(S) \} \)

Search for Pareto Optimal Fuzzy Rule-Based Systems
Multiobjective Fuzzy System Design
Currently An Active Research Issue

Interpretable fuzzy system
Accurate fuzzy system
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
The Evolutionary Multiobjective Optimization of Fuzzy Rule-Based Systems Bibliography Page

Abstract

Since pioneering works by Prof. Hisao Ishibuchi in middle nineties, Pareto-based Evolutionary Multiobjective Optimization (EMO) of Fuzzy Rule-Based Systems (FRBSs) is nowadays a well-established research area. It is a branch of the more general Evolutionary/Genetic Fuzzy Systems (see F. Herrera, "Genetic Fuzzy systems: Taxonomy, current research trends and
Abstract

Since pioneering works by Prof. Hisao Ishibuchi in middle nineties, Pareto-based Evolutionary Multiobjective Optimization (EMO) of Fuzzy Rule-Based Systems (FRBSs) is nowadays a well-established research area. It is a branch of the more general Evolutionary/Genetic Fuzzy Systems (see F. Herrera, "Genetic Fuzzy systems: Taxonomy, current research trends and
Since pioneering works by Prof. Hisao Ishibuchi in middle nineties, Pareto-based Evolutionary Multiobjective Optimization (EMO) of Fuzzy Rule-Based Systems (FRBSs) is nowadays a well-established research area. It is a branch of the more general Evolutionary/Genetic Fuzzy Systems (see F. Herrera, "Genetic Fuzzy systems: Taxonomy, current research trends and prospects", Evo. Intel. (2008), 1:27-46 and this bibliography page on recent publications on the topic, maintained by R. Alcalá and M. J. Gacto). In Pareto-based evolutionary optimization the set of objectives used are not aggregated in order to reconduct the problem to a single objective optimization problem. This page is intended to collect as many references as possible to papers dealing with Pareto-based EMO of FRBSs. (Pareto-based) EMOs of FRBSs are special cases of Multiobjective Evolutionary Fuzzy Systems (MEFSs), which include the class of Multiobjective Genetic Fuzzy Systems (MGFSs). For a review on the last topic,
Since pioneering works by Prof. Hisao Ishibuchi in middle nineties, Pareto-based Evolutionary Multiobjective Optimization (EMO) of Fuzzy Rule-Based Systems (FRBSs) is nowadays a well-established research area. It is a branch of the more general Evolutionary/Genetic Fuzzy Systems (see F. Herrera, "Genetic Fuzzy systems: Taxonomy, current research trends and prospects", Evo. Intel. (2008), 1:27-46 and this bibliography page on recent publications on the topic, maintained by R. Alcalá and M. J. Gacto). In Pareto-based evolutionary optimization the set of objectives used are not aggregated in order to reconduct the problem to a single objective optimization problem. This page is intended to collect as many references as possible to papers dealing with Pareto-based EMO of FRBSs. (Pareto-based) EMOs of FRBSs are special cases of Multiobjective Evolutionary Fuzzy Systems (MEFSs), which include the class of Multiobjective Genetic Fuzzy Systems (MGFSs). For a review on the last topic,
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Year</th>
<th>Journal/Proceedings</th>
<th>Reftype</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>Title</td>
<td>Year</td>
<td>Journal/Proceedings</td>
<td>Reftype</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------</td>
<td>--</td>
<td>---------------</td>
</tr>
</tbody>
</table>
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Multi-Objective Fuzzy Rule-Based Systems

(Fuzzy Rule* OR Fuzzy Rule-Based System*) AND (Multi-Objective OR Multiobjective OR Two-Objective OR Three-Objective OR Multiple Criteria)

Multi-Objective Fuzzy Rule Selection for Fuzzy Rule-Based Classifier Design

Two Objectives:
- The number of correctly classified training patterns
- The number of selected fuzzy rules
<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Author(s)</th>
<th>Source</th>
<th>Volume</th>
<th>Issue</th>
<th>Page Range</th>
<th>Year</th>
<th>Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Three-objective genetics-based machine learning for linguistic rule extraction</td>
<td>Ishibuchi H, Nakashima T, Murata T</td>
<td>INFORMATION SCIENCES</td>
<td>136</td>
<td>1-4</td>
<td>109-133</td>
<td>AUG 2001</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining</td>
<td>Ishibuchi H, Yamamoto T</td>
<td>FUZZY SETS AND SYSTEMS</td>
<td>141</td>
<td>1</td>
<td>59-88</td>
<td>JAN 2004</td>
<td>82</td>
</tr>
<tr>
<td>5</td>
<td>Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation</td>
<td>Gonzalez J, Rojas I, Ortega J, et al.</td>
<td>IEEE TRANSACTIONS ON NEURAL NETWORKS</td>
<td>14</td>
<td>6</td>
<td>1478-1495</td>
<td>NOV 2003</td>
<td>52</td>
</tr>
<tr>
<td>7</td>
<td>Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization</td>
<td>Abonyi J, Roubos JA, Szeifert F</td>
<td>INTERNATIONAL JOURNAL OF APPROXIMATE REASONING</td>
<td>32</td>
<td>1</td>
<td>1-21</td>
<td>JAN 2003</td>
<td>41</td>
</tr>
</tbody>
</table>
Multi-Objective Fuzzy Rule Selection for Fuzzy Rule-Based Classifier Design

Two Objectives:
- The number of correctly classified training patterns
- The number of selected fuzzy rules

Three Objectives:
- The number of correctly classified training patterns
- The number of selected fuzzy rules
- Total number of antecedent conditions (Total rule length)
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Source</th>
<th>Page Range</th>
<th>Published Date</th>
<th>Impact Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three-objective genetics-based machine learning for linguistic rule extraction</td>
<td>Ishibuchi H, Nakashima T, Murata T</td>
<td>INFORMATION SCIENCES</td>
<td>109-133</td>
<td>AUG 2001</td>
<td>18</td>
</tr>
<tr>
<td>Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining</td>
<td>Ishibuchi H, Yamamoto T</td>
<td>FUZZY SETS AND SYSTEMS</td>
<td>59-88</td>
<td>JAN 1 2004</td>
<td>14</td>
</tr>
<tr>
<td>Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation</td>
<td>Gonzalez J, Rojas I, Ortega J, et al.</td>
<td>IEEE TRANSACTIONS ON NEURAL NETWORKS</td>
<td>1478-1495</td>
<td>NOV 2003</td>
<td>7</td>
</tr>
<tr>
<td>Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization</td>
<td>Abonyi J, Roubos JA, Szeifert F</td>
<td>INTERNATIONAL JOURNAL OF APPROXIMATE REASONING</td>
<td>1-21</td>
<td>JAN 2003</td>
<td>4</td>
</tr>
<tr>
<td>An optimal fuzzy PID controller</td>
<td>Tang KS, Man KF, Chen GR, et al.</td>
<td>IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS</td>
<td>757-765</td>
<td>AUG 2001</td>
<td>4</td>
</tr>
</tbody>
</table>
Title: Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
Author(s): Gonzalez J, Rojas I, Ortega J, et al.
Source: IEEE TRANSACTIONS ON NEURAL NETWORKS
Volume: 14 Issue: 6 Pages: 1478-1495
Published: NOV 2003
Multi-Objective RBF Function Design for Function Approximation Problems

Title: Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation

Author(s): Gonzalez J, Rojas I, Ortega J, et al.

Source: IEEE TRANSACTIONS ON NEURAL NETWORKS Volume: 14 Issue: 6 Pages: 1478-1495 Published: NOV 2003

Multi-Objective Neural Network Design and Learning
Multiobjective Neural Networks

Error

0

Complexity
Multiobjective Decision Trees (GP)
Multi-Objective Fuzzy Rule-Based Systems

(Fuzzy Rule* OR Fuzzy Rule-Based Systems) AND (Multi-Objective OR Multiobjective OR Two-Objective OR Three-Objective OR Multiple Criteria)
Abstract: Fuzzy logic control (FLC) technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. We will illustrate some of our efforts in FLC technology transfer, covering projects in turboshift aircraft engine control, steam turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variables in a rolling mill stand.

We will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLC's in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit tradeoff criteria used to manage multiple control strategies.
Paper Title: Industrial Applications of Fuzzy-Logic at General-Electric

Author(s): BONISSONE PP, BADAMI V, CHIANG KH, KHEDKAR PS, MARCELLE KW, SCHUTTEN MJ

Times Cited: 39 References: 28 Citation Map

Abstract: Fuzzy logic control (FLC) technology has drastically reduced the development time and deployment cost for the synthesis of nonlinear controllers for dynamic systems. As a result we have experienced an increased number of FLC applications. We will illustrate some of our efforts in FLC technology transfer, covering projects in turboshaft aircraft engine control, steam turbine startup, steam turbine cycling optimization, resonant converter power supply control, and data-induced modeling of the nonlinear relationship between process variables in a rolling mill stand.

We will compare these applications in a cost/complexity framework, and examine the driving factors that led to the use of FLC's in each application. We will emphasize the role of fuzzy logic in developing supervisory controllers and in maintaining explicit tradeoff criteria used to manage multiple control strategies.

Web of Science
Recent Publications on Multi-Objective Fuzzy System Design

1. Title: A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems
 Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS
 Volume: 17 Issue: 5 Pages: 1106-1122
 Published: OCT 2009

2. Title: Optimum energy management of a photovoltaic water pumping system
 Author(s): Sallem S, Chaabene M, Kamoun MBA
 Source: ENERGY CONVERSION AND MANAGEMENT
 Volume: 50 Issue: 11 Pages: 2728-2731 Published: NOV 2009

3. Title: Energy management algorithm for an optimum control of a photovoltaic water pumping system
 Author(s): Sallem S, Chaabene M, Kamoun MBA
 Source: APPLIED ENERGY
 Volume: 86 Issue: 12 Pages: 2671-2680 Published: DEC 2009

4. Title: Reactive power dispatch considering voltage stability with seeker optimization algorithm
 Author(s): Dai CH, Chen WR, Zhu YF, et al.
 Source: ELECTRIC POWER SYSTEMS RESEARCH
 Volume: 79 Issue: 10 Pages: 1462-1471 Published: OCT 2009

5. Title: Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework
 Author(s): Antonelli M, Ducange P, Lazzerini B, et al.
 Source: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING
 Volume: 50 Issue: 7 Pages: 1066-1080 Published: JUL 2009
Recent Publications on Multi-Objective Fuzzy System Design

1. Title: A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems
Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS Volume: 17 Issue: 5 Pages: 1106-1122 Published: OCT 2009

2. Title: Optimum energy management of a photovoltaic water pumping system
Author(s): Sallem S, Chaabene M, Kamoun MBA
Source: ENERGY CONVERSION AND MANAGEMENT Volume: 50 Issue: 11 Pages: 2728-2731 Published: NOV 2009

3. Title: Energy management algorithm for an optimum control of a photovoltaic water pumping system
Author(s): Sallem S, Chaabene M, Kamoun MBA
Source: APPLIED ENERGY Volume: 86 Issue: 12 Pages: 2671-2680 Published: DEC 2009

4. Title: Reactive power dispatch considering voltage stability with seeker optimization algorithm
Author(s): Dai CH, Chen WR, Zhu YF, et al.
Source: ELECTRIC POWER SYSTEMS RESEARCH Volume: 79 Issue: 10 Pages: 1462-1471 Published: OCT 2009

5. Title: Learning concurrently partition granularities and rule bases of Mamdani fuzzy systems in a multi-objective evolutionary framework
Author(s): Antonelli M, Ducange P, Lazzerini B, et al.
Source: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING Volume: 50 Issue: 7 Pages: 1066-1080 Published: JUL 2009
Paper Title: A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems

Author(s): Alcala R (Alcala, Rafael)¹, Ducange P (Ducange, Pietro)², Herrera F (Herrera, Francisco)¹, Lazzerini B (Lazzerini, Beatrice)², Marcelloni F (Marcelloni, Francesco)²

Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS Volume: 17 Issue: 5 Pages: 1106-1122 Published: OCT 2009

Times Cited: 0 References: 52

Abstract: In this paper, we propose the use of a multiobjective evolutionary approach to generate a set of linguistic fuzzy-rule-based systems with different tradeoffs between accuracy and interpretability in regression problems. Accuracy and interpretability are measured in terms of approximation error and rule base (RB) complexity, respectively. The proposed approach is based on concurrently learning RBs and parameters of the membership functions of the associated linguistic labels. To manage the size of the search space, we have integrated the linguistic two-tuple representation model, which allows the symbolic translation of a label by only considering one parameter, with an efficient
Paper Title: A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems

Author(s): Alcala R (Alcala, Rafael)\(^1\), Ducange P (Ducange, Pietro)\(^2\), Herrera F (Herrera, Francisco)\(^1\), Lazzerini B (Lazzerini, Beatrice)\(^2\), Marcelloni F (Marcelloni, Francesco)\(^2\)

Source: IEEE TRANSACTIONS ON FUZZY SYSTEMS Volume: 17 Issue: 5 Pages: 1106-1122 Published: OCT 2009

Abstract: In this paper, we propose the use of a multiobjective evolutionary approach to generate a set of linguistic fuzzy-rule-based systems with different tradeoffs between accuracy and interpretability in regression problems. Accuracy and interpretability are measured in terms of approximation error and rule base (RB) complexity, respectively. The proposed approach is based on concurrently learning RBs and parameters of the membership functions of the associated linguistic labels. To manage the size of the search space, we have integrated the linguistic two-tuple representation model, which allows the symbolic translation of a label by only considering one parameter, with an efficient
Abstract: In this paper, we propose the use of a multiobjective evolutionary approach to generate a set of linguistic fuzzy-rule-based systems with different tradeoffs between accuracy and interpretability in regression problems. Accuracy and interpretability are measured in terms of approximation error and rule base (RB) complexity, respectively. The proposed approach is based on concurrently learning RBs and parameters of the membership functions of the associated linguistic labels. To manage the size of the search space, we have integrated the linguistic two-tuple representation model, which allows the symbolic translation of a label by only considering one parameter, with an efficient
Abstract: In this paper we propose a multi-objective evolutionary algorithm to generate Mamdani fuzzy rule-based systems with different good trade-offs between complexity and accuracy. The main novelty of the algorithm is that both rule base and granularity of the uniform partitions defined on the input and output variables are learned concurrently. To this aim, we introduce the concepts of virtual and concrete rule bases: the former is defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets, while the latter takes into account, for each variable, a number of fuzzy sets as determined by the specific partition granularity of that variable. We exploit a chromosome composed of
Abstract: In this paper we propose a multi-objective evolutionary algorithm to generate Mamdani fuzzy rule-based systems with different good trade-offs between complexity and accuracy. The main novelty of the algorithm is that both rule base and granularity of the uniform partitions defined on the input and output variables are learned concurrently. To this aim, we introduce the concepts of virtual and concrete rule bases: the former is defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets, while the latter takes into account, for each variable, a number of fuzzy sets as determined by the specific partition granularity of that variable. We exploit a chromosome composed of
Abstract: In this paper we propose a multi-objective evolutionary algorithm to generate Mamdani fuzzy rule-based systems with different good trade-offs between complexity and accuracy. The main novelty of the algorithm is that both rule base and granularity of the uniform partitions defined on the input and output variables are learned concurrently. To this aim, we introduce the concepts of virtual and concrete rule bases: the former is defined on linguistic variables, all partitioned with a fixed maximum number of fuzzy sets, while the latter takes into account, for each variable, a number of fuzzy sets as determined by the specific partition granularity of that variable. We exploit a chromosome composed of
Multi-Objective Fuzzy System Design Research
Active Geographical Regions
Multi-Objective Fuzzy System Design Research
Active Geographical Regions

Google Maps
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Many non-dominated fuzzy systems can be obtained along the tradeoff surface by a single run of an EMO algorithm.

EMO: Evolutionary Multi-Objective Optimization
The obtained non-dominated fuzzy systems show the tradeoff between the complexity and the training data accuracy (not the tradeoff between the complexity and the test data accuracy).
The obtained non-dominated fuzzy systems show the tradeoff between the complexity and the training data accuracy (not the tradeoff between the complexity and the test data accuracy).

- Tradeoff for test data accuracy should be examined.
- This can be done since we have many fuzzy systems.
Example: Obtained Rule Sets (Heart C)

Obtained rule sets help us to find the optimal complexity of fuzzy systems. (Rule sets with six, seven and eight rules may be good)
A rule set with High-Generalization Ability

A rule set with eight fuzzy rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>x_1</th>
<th>x_3</th>
<th>x_4</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
<th>x_{10}</th>
<th>x_{11}</th>
<th>x_{12}</th>
<th>Consequent</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>Class 1 (0.46)</td>
</tr>
<tr>
<td>R_2</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>Class 1 (0.23)</td>
<td></td>
</tr>
<tr>
<td>R_3</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>Class 1 (0.81)</td>
</tr>
<tr>
<td>R_4</td>
<td>△</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>Class 2 (0.63)</td>
</tr>
<tr>
<td>R_5</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>Class 2 (0.20)</td>
</tr>
<tr>
<td>R_6</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>Class 2 (1.00)</td>
</tr>
<tr>
<td>R_7</td>
<td>△</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>△</td>
<td>Class 3 (0.35)</td>
</tr>
<tr>
<td>R_8</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>DC</td>
<td>DC</td>
<td>△</td>
<td>△</td>
<td>Class 3 (0.24)</td>
</tr>
</tbody>
</table>

Some human users may prefer simpler rule sets.
A very simple rule set with only two fuzzy rules

<table>
<thead>
<tr>
<th>Number of rules</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
</tbody>
</table>

Consequent

<table>
<thead>
<tr>
<th>Class 1</th>
<th>Class 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.26)</td>
<td>(1.00)</td>
</tr>
</tbody>
</table>

Rules

- R_1: x_{10} \(\square\) x_{11} \(\triangle\) Class 1
- R_2: x_{10} \(\square\) x_{11} \(\square\) Class 2
Contents of This Presentation

1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Why is the fuzzy system design difficult?

1. Large Search Space: Difficulty in Search

The search space exponentially increases with the number of attributes (i.e., with the dimensionality of the pattern space).
Basic Form

If x_1 is *small* and x_2 is *small* then Class 2

If x_1 is *small* and x_2 is *medium* then Class 2

...

If x_1 is *large* and x_2 is *large* then Class 3

Number of Fuzzy Rules:

- 2-D Problem: 3×3
- 3-D Problem: $3 \times 3 \times 3$
- 4-D Problem: $3 \times 3 \times 3 \times 3$
- 5-D Problem: $3 \times 3 \times 3 \times 3 \times 3$
Use of Don’t Care

If x_1 is small and x_2 is small
then Class 2

If x_1 is small and x_2 is medium
then Class 2

...

If x_1 is large and x_2 is don’t care
then Class 3

Number of Fuzzy Rules:
2-D Problem: $(3+1) \times (3+1)$
3-D Problem: $(3+1)^3$
4-D Problem: $(3+1)^4$
5-D Problem: $(3+1)^5$
Number of Fuzzy Rules and Number of Rule Sets

Search Space Size: Large

Example: Classification problem with 50 attributes and 3 linguistic values for each attribute

The total number of fuzzy rules (i.e., antecedent condition combinations):

\[(3+1) \times \ldots \times (3+1) = 4^{50} = 2^{100}\]

The total number of fuzzy rule sets with 20 rules (i.e., combinations of 20 fuzzy rules):

\[N^{C_{20}} \approx 2^{2000} \text{ where } N = 2^{100}\]
Number of Fuzzy Rules and Number of Rule Sets

Search Space Size: Large

Example: Classification problem with 50 attributes and 1-7 fuzzy partition for each attribute

The total number of fuzzy rules (i.e., antecedent condition combinations):

\[(1+2+ \ldots 7) \times \ldots = 28^{50} > 2^{400}\]

The total number of fuzzy rule sets with 20 rules (i.e., combinations of 20 fuzzy rules):

\[\binom{N}{20} \sim 2^{8000} \text{ where } N > 2^{400}\]
1. Large Search Space: Difficulty in Search

The search space exponentially increases with the number of attributes (i.e., with the dimensionality of the pattern space). It is likely that the entire tradeoff curve cannot be covered well by the obtained non-dominated fuzzy rule-based systems.
1. Large Search Space: Difficulty in Search
 The search space exponentially increases with the number of attributes (i.e., with the dimensionality of the pattern space). It is likely that the entire tradeoff curve cannot be covered well by the obtained non-dominated fuzzy rule-based systems.

2. Possibility of Over-Fitting: Difficulty in Learning
 The improvement in the training data accuracy does not always mean the improvement in the test data accuracy.
Why is the fuzzy system design difficult?

1. Large Search Space: Difficulty in Search
The search space exponentially increases with the number of attributes (i.e., with the dimensionality of the pattern space). It is likely that the entire tradeoff curve cannot be covered well by the obtained non-dominated fuzzy rule-based systems.

2. Possibility of Over-Fitting: Difficulty in Learning
The improvement in the training data accuracy does not always mean the improvement in the test data accuracy. This means that the fitness function improvement does not always lead to better fuzzy rule-based classifiers (when the training data accuracy is used in the fitness function).
Why is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always mean the improvement in the test data accuracy.
Why is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always mean the improvement in the test data accuracy.

![Diagram showing the relationship between error, complexity, training data accuracy, and test data accuracy. The diagram illustrates poor diversity and diversity improvement.](image-url)
Why is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always mean the improvement in the test data accuracy.
Why is the fuzzy system design difficult?

2. Possibility of Over-Fitting: Difficulty in Learning

The improvement in the training data accuracy does not always mean the improvement in the test data accuracy.
Recent Studies: Improvement in training data accuracy leads to Improvement in test data accuracy.

Our Experimental Results

MoFGBML Algorithm (Framework: NSGA-II)

Multi-Objective Fuzzy Genetics-Based Machine Learning

Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based learning
H Ishibuchi, Y Nojima - International Journal of Approximate Reasoning, 2007 - Elsevier
This paper examines the interpretability-accuracy tradeoff in fuzzy rule-based classifiers using a multiobjective fuzzy genetics-based machine learning (GBML) algorithm. Our GBML algorithm is a hybrid version of Michigan and ...
Ishibuchi & Nojima, IJAR 2007

NSGA-II Basic Setting
- Population size: 200 individuals
- Termination Condition: 2000 generations
- Multiple Fuzzy Partitions: Granularities 1-5

Three Variants of MoFGBML Setting
- Diversity Improvement Method (Mating, EJOR 2008)
- Termination Condition: 20000 generations
- Multiple Fuzzy Partitions: Granularities 7
Experimental Results (Glass)

<table>
<thead>
<tr>
<th>Number of fuzzy rules</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training Data</td>
</tr>
<tr>
<td></td>
<td>Test Data</td>
</tr>
</tbody>
</table>

NSGA-II Basic Setting

Training Data
Accuracy Improvement
Experimental Results (Glass)

<table>
<thead>
<tr>
<th>Number of fuzzy rules</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Test Data</td>
</tr>
<tr>
<td></td>
<td>Training Data</td>
</tr>
</tbody>
</table>

NSGA-II Basic Setting

NSGA-II with Mating
Experimental Results (Glass)

- **NSGA-II Basic Setting**
- **NSGA-II with Mating**
Experimental Results (Glass)

NSGA-II 20,000 Generations

NSGA-II with Mating
Experimental Results (Glass)

![Graphs showing error rate against number of fuzzy rules for different granularities.](#)

- **NSGA-II Granularities 1-7**
- **NSGA-II with Mating**
Our Experimental Results
Simple Changes of Objectives (GEFS 2010, Spain)

Original Formulation
f1(S): Error Rate (%)
f2(S): Number of Fuzzy Rules

Simple Modification
\[g1(S) = f1(S) - \alpha f2(S) \]
\[g2(S) = f2(S) + \alpha f1(S) \]
Our Experimental Results
Simple Changes of Objectives (GEFS 2010, Spain)

(a) Glass data.
(b) Diabetes data.
Our Experimental Results
Simple Changes of Objectives (GEFS 2010, Spain)

Original Formulation

\[
f_1(S): \text{Error Rate (\%)}
\]

\[
f_2(S): \text{Number of Fuzzy Rules}
\]

Simple Modification

\[
g_1(S) = f_1(S) - \alpha f_2(S)
\]

\[
g_2(S) = f_2(S) + \alpha f_1(S)
\]

Four-Objective

\[
g_1(S) = f_1(S) - \alpha f_2(S)
\]

\[
g_2(S) = f_1(S) + \alpha f_2(S)
\]

\[
g_3(S) = f_2(S) - \alpha f_1(S)
\]

\[
g_4(S) = f_2(S) + \alpha f_1(S)
\]
Our Experimental Results
Four-Objective Formulation (GEFS 2010, Spain)

(a) Glass data. (b) Diabetes data.
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Handling of Interpretability in Our Former Studies

Interpretability Maximization = Complexity Minimization
- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions
Interpretability of Fuzzy Systems

Interpretability Maximization = Complexity Minimization
- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions
Interpretability of Fuzzy Systems

Interpretability Maximization = Complexity Minimization
- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions

Many other factors are related to the interpretability
Interpretability of Fuzzy Systems

Interpretability Maximization = Complexity Minimization
- Minimization of the number of fuzzy rules
- Minimization of the number of antecedent conditions

Many other factors are related to the interpretability

Special Sessions and Many Related Papers
- IFSA 2009 Conference
- ISDA 2009 Conference (4 Papers with Interpretability in Their Titles)
- FUZZ-IEEE 2010 Conference
1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Another Issue in Interpretability
Explanation of Classification Results

Explanation Ability

The ability of fuzzy rule-based systems to explain why a new pattern is classified as a particular class.

Example: Classification of a pattern $\diamond: x_A = (0.05, 0.05)$
Comparison between Rule Sets 1 and 2

Classification of $\diamond : x_A = (0.05, 0.05)$

(1) Rule Set 1: Nine Rules

(2) Rule Set 2: Four Rules
Comparison in Explanation Capability
Responsible Rules for Classification

R₁: If \(x₁ \) is small and \(x₂ \) is small then Class 2

R₅: If \(x₁ \) is medium and \(x₂ \) is medium then Class 2
R₁ seems to be a better explanation for the classification of x_A.

R₁: If x_1 is small and x_2 is small then Class 2

R₅: If x_1 is medium and x_2 is medium then Class 2
Comparison between Rule Sets 1 and 2

Rule Set 1 seems to have higher explanation ability while Rule Set 2 is simpler than Rule Set 1.

(1) Rule Set 1: Nine Rules

(2) Rule Set 2: Four Rules
Comparison between Rule Sets 1 and 4

Classification of $\diamond: \quad x_A = (0.05, 0.05)$

(1) Rule Set 1: Nine Rules

(4) Rule Set 4: Three Rules
Comparison in Explanation Capability
Responsible Rules for Classification

R_1: If x_1 is small and x_2 is small then Class 2

R_{1234}: If x_1 is small or medium and x_2 is small or medium then Class 2
Comparison in Explanation Capability

Responsible Rules for Classification

R_1 seems to be a better explanation for the classification of x_A.

R_1: If x_1 is small and x_2 is small then Class 2

R_{1234}: If x_1 is small or medium and x_2 is small or medium then Class 2
Comparison between Rule Sets (1) and (4)

Rule Set 1 seems to have higher explanation ability while Rule Set 4 is simpler than Rule Set 1.
Classification Capability
Another Example $x_B = (0.95, 0.50)$

Classification of \diamondsuit: $x_B = (0.95, 0.50)$
Comparison between Rule Sets 1 and 3

Classification of $\diamond : x_B = (0.95, 0.50)$

(1) Rule Set 1: Nine Rules

(3) Rule Set 3: Seven Rules
Comparison in Explanation Capability

Responsible Rules for Classification

\[R_8: \text{If } x_1 \text{ is large and } x_2 \text{ is medium then Class 3} \]

\[R_{789}: \text{If } x_1 \text{ is large then Class 3} \]
Comparison in Explanation Capability
Responsible Rules for Classification

Which is a better explanation for the classification of x_B between R_8 and R_{789}?

R_8: If x_1 is large and x_2 is medium then Class 3

R_{789}: If x_1 is large then Class 3
Comparison in Explanation Capability
Responsible Rules for Classification

Which is a better explanation for the classification of \(x_B \) between R_8 and R_789? It is a very difficult question for me to answer.

R_8: If \(x_1 \) is large and \(x_2 \) is medium then Class 3

R_789: If \(x_1 \) is large then Class 3
Contents of This Presentation

1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
We have a lot of different types of classification problems where fuzzy rule-based classifiers have not been well-utilized and have a large potential usefulness:

1. Imbalanced Data
2. Semi-Supervised Learning
3. Active Learning
4. On-Line Learning
5. . . .
6. . . .
Eyke HÜLLERMEIER is with the Department of Mathematics and Computer Science at Marburg University (Germany), where he holds an appointment as a Full Professor and heads the Knowledge Engineering & Bioinformatics Lab. He holds M.Sc. degrees in mathematics and business computing, a Ph.D. in computer science, and a Habilitation degree, all from the University of Paderborn (Germany). His research interests are focused on machine learning and data mining, fuzzy set theory, uncertainty and approximate reasoning, and applications in bioinformatics. He has published numerous research papers on these topics in leading journals and major international conferences. He is on the editorial board of several journals, including Fuzzy Sets and Systems, Soft Computing, and the International Journal of Data Mining, Modeling and Management. Moreover, he is a board member of the European Society for Fuzzy Logic and Technology (EUSFLAT), a coordinator of the EUSFLAT working group on Learning and Data Mining, and head of the IEEE CIS Task Force on Machine Learning.
The purpose of this talk is twofold. First, it is intended to convey an idea of the state-of-the-art in fuzzy logic-based machine learning, to be understood as the application of formal concepts, methods, and techniques from fuzzy set theory and fuzzy logic in the field of machine learning and related research areas, such as data mining and knowledge discovery. In this regard, potential contributions that fuzzy logic can make to machine learning will be especially highlighted, though some deficiencies of this line of research will also be pointed out. Second, some promising directions of future research in this field shall be sketched and promoted, including problems of ranking and preference learning, the representation of uncertainty in model induction and prediction, and the use of fuzzy modeling techniques for feature generation.
Fuzzy Classifiers on Various Problems

ISDA 2009 Invited Talk by Hisao Ishibuchi

Machine Learning

Fuzzy

MoML

MoFuzzy

Basic

Advanced
Conclusions

1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Conclusions

1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems It is not always high.
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...
Conclusions

1. Introduction to Fuzzy Rule-Based Classification
 - Is Fuzzy Rule-Based Classification a Popular Research Area?

2. Fuzzy Rule-Based Classifier Design
 - Accuracy Improvement
 - Scalability to High-Dimensional Problems
 - Complexity Minimization

3. Multiobjective Fuzzy Rule-Based Classifier Design
 - Formulation of Multi-objective Problems
 - Accuracy-Complexity Tradeoff Analysis
 - Maximization of Generalization Ability

4. Current Hot Issues and Future Research Directions
 - Search Ability of EMO for Fuzzy System Design
 - Definition of Interpretability of Fuzzy Systems
 - Explanation Ability of Fuzzy Rule-Based Systems
 - Various Classification Problems: Imbalanced, Online, ...

 We have still a lot of interesting research issues.
Appendix: Comparison of the Two Approaches

Two-objective maximization problem

Experimental results of a single run of each approach

EMO Approach

Weighted Sum Approach
Appendix: Two-Dimensional Antecedent Fuzzy Sets

(a) A two-dimensional fuzzy vector. (b) An ellipsoidal antecedent fuzzy set.
Appendix: Interval Rules vs Fuzzy Rules

(a) Interval Rules

(b) Fuzzy Rules
Appendix: Interval Rules vs Fuzzy Rules

(a) Interval Rules

(b) Fuzzy Rules