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Abstract The use of genetic algorithms for designing

fuzzy systems provides them with the learning and adap-

tation capabilities and is called genetic fuzzy systems

(GFSs). This topic has attracted considerable attention in

the Computation Intelligence community in the last few

years. This paper gives an overview of the field of GFSs,

being organized in the following four parts: (a) a taxonomy

proposal focused on the fuzzy system components involved

in the genetic learning process; (b) a quick snapshot of the

GFSs status paying attention to the pioneer GFSs contri-

butions, showing the GFSs visibility at ISI Web of Science

including the most cited papers and pointing out the

milestones covered by the books and the special issues in

the topic; (c) the current research lines together with a

discussion on critical considerations of the recent devel-

opments; and (d) some potential future research directions.
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1 Introduction

Computational Intelligence techniques such as artificial

neural networks [89], fuzzy logic [108], and genetic algo-

rithms (GAs) [45, 57] are popular research subjects, since

they can deal with complex engineering problems which

are difficult to solve by classical methods [73].

Hybrid approaches have attracted considerable attention

in the Computational Intelligence community. One of the

most popular approaches is the hybridization between

fuzzy logic and GAs leading to genetic fuzzy systems

(GFSs) [27]. A GFS is basically a fuzzy system augmented

by a learning process based on evolutionary computation,

which includes genetic algorithms, genetic programming,

and evolutionary strategies, among other evolutionary

algorithms (EAs) [40].

Fuzzy systems are one of the most important areas for

the application of the Fuzzy Set Theory. Usually it is

considered a model structure in the form of fuzzy rule

based systems (FRBSs). FRBSs constitute an extension to

classical rule-based systems, because they deal with ‘‘IF-

THEN’’ rules, whose antecedents and consequents are

composed of fuzzy logic statements, instead of classical

ones. They have demonstrated their ability for control

problems [85], modelling [87], classification or data min-

ing [64, 75] in a huge number of applications.

The automatic definition of an FRBS can be seen as an

optimization or search problem, and GAs are a well known

and widely used global search technique with the ability to

explore a large search space for suitable solutions only

requiring a performance measure. In addition to their

ability to find near optimal solutions in complex search

spaces, the generic code structure and independent per-

formance features of GAs make them suitable candidates to

incorporate a priori knowledge. In the case of FRBSs, this

a priori knowledge may be in the form of linguistic vari-

ables, fuzzy membership function parameters, fuzzy rules,

number of rules, etc. These capabilities extended the use

of GAs in the development of a wide range of approaches

for designing FRBSs over the last few years. Figure 1
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illustrates this idea, where the genetic process learns or

tunes different components of an FRBS.

In the last few years we observe the increase of pub-

lished papers in the topic due to the high potential of GFSs.

Contrary to neural networks, clustering, rule induction and

many other machine learning approaches, GAs provide a

means to encode and evolve rule antecedent aggregation

operators, different rule semantics, rule base aggregation

operators and defuzzification methods. Therefore, GAs

remain today as one of the fewest knowledge acquisition

schemes available to design and, in some sense, optimize

FRBSs with respect to the design decisions, allowing

decision makers to decide what components are fixed and

which ones evolve according to the performance measures.

The predominant type of GFS is that focused on FRBSs.

However other kinds of GFSs have been developed, with

successful results. They include genetic fuzzy neural net-

works and genetic fuzzy clustering algorithms. We will not

analyze them in this paper. Readers can find an extended

introduction to them in [27, Chap. 10].

In this paper we shortly introduce GFSs, propose a

taxonomy focused on the FRBS components and sketch our

vision of some hot current trends and prospects of GFSs.

The paper starts by briefly presenting FRBSs in Sect. 2.

Section 3 introduces a taxonomy of GFSs according to the

FRBS components involved in the genetic learning process

and taking into account which of them are encoded. Sec-

tion 4 presents an introduction to GFSs, paying attention to

the pioneer GFS contributions, the GFSs visibility at ISI

Web of Science including the most cited papers and

pointing out the milestones covered by the existing books

and special issues. Section 5 discusses in depth some cur-

rent trends and critical considerations on the recent

developments. Section 6 presents some suggestions of

potential future research directions. Finally, some con-

cluding remarks are pointed out in Sect. 7.

2 Preliminaries: fuzzy rule based systems

The essential part of FRBSs is a set of IF-THEN linguistic

rules, whose antecedents and consequents are composed of

fuzzy statements, related by the dual concepts of fuzzy

implication and the compositional rule of inference.

An FRBS is composed of a knowledge base (KB), that

includes the information in the form of IF-THEN fuzzy

rules;

IF a set of conditions are satisfied

THEN a set of consequents can be inferred

and an inference engine module that includes a fuzzifica-

tion interface, which has the effect of transforming crisp

data into fuzzy sets; an inference system, that uses them

together with the KB to make inference by means of a

reasoning method; and a defuzzification interface, that

translates the fuzzy rule action thus obtained to a real

action using a defuzzification method.

FRBSs can be broadly categorized into different fami-

lies. The first includes linguistic models based on

collections of IF-THEN rules, whose antecedents are lin-

guistic values, and the system behaviour can be described

in natural terms. The consequent is an output action or

class to be applied. For example, we can denote them as:

Ri : If Xi1 is Ai1 and . . . and Xin is Ain then Y is Bi

or

Ri : If Xi1 is Ai1 and . . . and Xin is Ain then Ck with wik

with i = 1 to M, and with Xi1 to Xin and Y being the input

and output variables for regression respectively, and Ck the

output class associated to the rule for classification, with

Ai1 to Ain and Bi being the involved antecedents and con-

sequent labels, respectively, and wik the certain factor

associated to the class. They are usually called linguistic

FRBSs or Mamdani FRBSs [79].

The second category based on a rule structure that has

fuzzy antecedent and functional consequent parts. This can

be viewed as the expansion of piece-wise linear partition

represented as

Ri : If Xi1 is Ai1 and . . . and Xin is Ain then Y = p Xi1; . . .; Xinð Þ:

with p(�) being a polynomial function, usually a linear

expression, Y = p0 + p1�Xi1 + _ + pn�Xin. The approach

approximates a nonlinear system with a combination of

several linear systems. They are called TS-type fuzzy

systems [97].

Other kind of fuzzy models are the approximate or

scatter partition FRBSs, which differ from the linguistic

ones in the direct use of fuzzy variables [2]. Each fuzzy

rule thus presents its own semantic, i.e., the variables take
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different fuzzy sets as values (and not linguistic terms from

a global term set). The fuzzy rule structure is then as

follow:

Ri : If Xi1 is Âi1 and . . . and Xin is Âin then Y is Ĝi:

with Âij to Âin and Ĝi being fuzzy sets. The major differ-

ence with respect to the rule structure considered in

linguistic FRBSs is that rules of approximate nature are

semantics free whereas descriptive rules operate in the

context formulated by means of the linguistic semantics.

In linguistic FRBSs, the KB is comprised by two com-

ponents, a database (DB) and a rule base (RB).

• A DB, containing the linguistic term sets considered in

the linguistic rules and the membership functions

defining the semantics of the linguistic labels.

Each linguistic variable involved in the problem will have

associated a fuzzy partition of its domain representing the

fuzzy set associated with each of its linguistic terms.

Figure 2 shows an example of fuzzy partition with five

labels.

This can be considered as a discretization approach for

continuous domains where we establish a membership

degree to the items (labels), we have an overlapping

between them, and the inference engine manages the

matching between the patterns and the rules providing an

output according to the rule consequents with a positive

matching. The determination of the fuzzy partitions is

crucial in fuzzy modelling [8], and the granularity of the

fuzzy partition plays an important role for the FRBS

behaviour [28].

If we manage approximate FRBSs, then we do not have

a DB due to the fact that rules have associated the fuzzy

values.

• An RB, comprised of a collection of linguistic rules that

are joined by a rule connective (‘‘also’’ operator). In

other words, multiple rules can fire simultaneously for

the same input.

The inference engine of FRBSs acts in a different way

depending of the kind of problem (classification or

regression) and the kind of fuzzy rules (linguistic ones,

TS-ones...). It always includes a fuzzfication interface that

serves as the input to the fuzzy reasoning process, an

inference system that infers from the input to several

resulting output (fuzzy set, class,...) and the defuzzification

interface or output interface that converts the fuzzy sets

obtained from the inference process into a crisp action that

constitutes the global output of the FRBS, in the case of

regression problems, or provide the final class associated to

the input pattern according to the inference model.

The generic structure of an FRBS is shown in Fig. 3.

For more information about fuzzy systems the following

books may be consulted [27, 64, 75, 108]. For different

issues associated to the trade-off between interpretability

and accuracy of FRBSs, the two following edited books

present a collection of contributions in the topic [18, 19].

Finally, we must point out that we can find a lot of

applications of FRBSs in all areas of engineering, sciences,

medicine,.... At the present it is very easy to search for these

applications using the publisher web search tools focusing

the search in journals of different application areas.

3 Taxonomy of genetic fuzzy systems

The central aspect on the use of GAs for automatic learning

of FRBSs is that the design process can be analyzed as a

search problem in the space of models, such as the space of

rule sets, by means of the coding of the model in a

chromosome.

From the optimization point of view, to find an appro-

priate fuzzy model is equivalent to code it as a parameter

structure and then to find the parameter values that give us

the optimum for a concrete fitness function. Therefore, the

first step in designing a GFS is to decide which parts of the

fuzzy system are subjected to optimization by the GA

coding them into chromosomes.

In this section, we first present a taxonomy of GFSs

according to the different parts of the fuzzy systems coded

by the genetic model. Then we will pay attention to the

different genetic learning coding approaches that we can

find in the literature, according to the way of coding an RB

and the cooperation versus competition among chromo-

somes, connecting them with the mentioned taxonomy.

3.1 Taxonomy

We divide the GFS approaches into two processes, tuning

and learning. It is difficult to make a clear distinction

between tuning and learning processes, since establishing a

precise borderline becomes as difficult as defining the

concept of learning itself. The first fact that we have to take

into consideration is the existence or not of a previous KB,
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including DB and RB. In the framework of GFSs we can

shortly introduce the following distintion.

• Genetic tuning. If there exists a KB, we apply a genetic

tuning process for improving the FRBS performance

but without changing the existing RB. That is, to adjust

FRBS parameters for improving its performance,

mantaining the same RB.

• Genetic learning. The second possibility is to learn KB

components (where we can even include an adaptive

inference engine). That is, to involve the learning of KB

components among other FRBS components.

We classify the proposals according to these two processes

and according to the FRBS components involved in the

genetic learning process. In this way, I propose the

taxonomy shown in Fig. 4.

There are three main areas in the taxonomy that we can

observe in the first tree: genetic tuning, genetic KB learn-

ing, and genetic learning of KB components and inference

engine parameters.

In the following, we shortly analyze the three areas. We

will provide some references as examples for every

approach, but we do not present an exhaustive list of papers

for every approach, this is far from the paper’s objective.

3.1.1 Genetic tuning

With the aim of making the FRBS perform better, some

approaches try to improve the preliminary DB definition or

the inference engine parameters once the RB has been

derived. A graphical representation of this kind of tuning is

shown in Fig. 5.

The following three tuning possibilities can be consid-

ered (see the sub-tree under ‘‘genetic tuning’’).

1. Genetic tuning of KB parameters. In order to do so, a

tuning process considering the whole KB obtained (the

preliminary DB and the derived RB) is used a posteriori

to adjust the membership function parameters. Never-

theless, the tuning process only adjusts the shapes of

the membership functions and not the number of

linguistic terms in each fuzzy partition, which remains

fixed from the beginning of the design process. In [68]

we can find a first and classic proposal on tuning. We

can also find recent proposals that introduce linguistic

modifiers for tuning the membership functions, see

[17]. This latter approach is close to the inference

engine adaptation.

2. Genetic adaptive inference systems. The main aim of

this approach is the use of parameterized expressions

in the Inference System, sometimes called Adaptive

Inference Systems, for getting higher cooperation

among the fuzzy rules and therefore more accurate

fuzzy models without loosing the linguistic rule

interpretability. In [6, 31, 32] we can find proposals

in this area focused in regression and classification.

3. Genetic adaptive defuzzification methods. The most

used technique in practice, due to its good perfor-

mance, efficiency and easier implementation, is to

apply the defuzzification function to every inferred

rule fuzzy set (getting a characteristic value) and to
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compute them by a weighted average operator. This

way to work introduces the possibility of using

parameter based average functions, and the use of

GAs can allow us to adapt the defuzzification methods.

In [71] we can find a proposal in this area.

3.1.2 Genetic KB learning

As a second big area we find the learning of KB compo-

nents. Following, we describe the four approaches that can

be found within the genetic learning of a KB (see the

second tree under ‘‘genetic KB learning’’).

1. Genetic rule learning. Most of the approaches pro-

posed to automatically learn the KB from numerical

information have focused on the RB learning, using a

predefined DB. The usual way to define this DB

involves choosing a number of linguistic terms for

each linguistic variable (an odd number between 3 and

9, which is usually the same for all the variables) and

setting the values of the system parameters by an

uniform distribution of the linguistic terms into the

variable universe of discourse. Figure 6 shows graph-

ically this type of RB learning. The pioneer proposal

for this approach can be found in [99].

On the other hand, we also find approaches that are focused

on the extraction of some descriptive rules for data mining

problems (association rules, subgroup discovery,...) [36, 69].

2. Genetic rule selection. Sometimes we have a big

number of rules extracted via a data mining method

that only provide us a big number of rules associated to

our problem. A big RB and an excessive number of

rules makes difficult to understand the FRBS behav-

iour. Thus we can find different kinds of rules in a

fuzzy rule set: irrelevant rules, redundant rules,

erroneous rules and conflictive rules, which perturb

the FRBS performance when they coexist with others.

To face this problem we can use a genetic rule

selection process for obtaining an optimized subset of

rules from a previous fuzzy rule set by selecting some

of them. Figure 7 graphically shows this idea. In [65]

we can find the most classic and first contribution in

this area and in [62] we can find the first journal paper

on multiobjective genetic rule selection.
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We must point out that rule selection can be combined with

tuning approches, trying to get a good rule set together with

a tuned set of parameters. In [3, 17] we can find two recent

proposal that combines genetic tuning with rule selection.

Figure 8 presents the scheme of the hybrid model proposed

in [3].

3. Genetic DB learning. There is another way to generate

the whole KB that considers two different processes to

derive both components, DB and RB. A DB generation

process allows us to learn the shape or the membership

functions and other DB components such as the scaling

functions, the granularity of the fuzzy partitions, ....

This DB generation process can use a measure for

evaluating the quality of the DB, we can call them as

‘‘A priori genetic DB learning’’. The second possibility

is to consider and embedded genetic learning process

where the DB generation process wraps an RB

learning one working as follows: each time a DB has

been obtained by the DB definition process, the RB

generation method is used to derive the rules, and

some type of error measure is used to validate the

whole KB obtained. We should note this operation

mode involves a partitioning of the KB learning

problem. These two kinds of learning models are

represented in Fig. 9. In [30] we can find a proposal

following the embedded genetic DB learning.

4. Simultaneous genetic learning of KB components.

Other approaches try to learn the two components of

the KB simultaneously. This kind of learning is

depicted in Fig. 10. Working in this way, they have

the possibility of generating better definitions but there

is a need to deal with a larger search space that makes

the learning process more difficult and slow. In [55]

we can find a contribution that is a reference in the

simultaneous genetic KB learning process.

Fig. 6 Genetic rule learning process

Fig. 7 Genetic rule selection process

Fig. 8 Example of genetic lateral tuning and rule selection

Fig. 9 Genetic DB learning (embedded and a priori)
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3.1.3 Genetic learning of KB components and inference

engine parameters

This is the last area of GFSs taxonomy, belonging to a

hybrid model between adaptive inference engine and KB

components learning. We can find novel approaches that

try to find high cooperation between the inference engine

via parameters adaptation and the learning of KB compo-

nents, including both in a simultaneous learning process. In

[80] we can find a recent proposal to learn a linguistic RB

and the parametric aggregation connectors of the inference

and defuzzification in a single step. Figure 11 presents the

coding scheme of the model proposed in this paper.

3.2 Genetic learning: rule coding and cooperation/

competition evolutionary process

Although GAs were not specifically designed for learning,

but rather as global search algorithms, they offer a set of

advantages for machine learning. Many methodologies for

machine learning are based on the search of a good model

inside the space of possible models. In this sense, they are

very flexible because the same GA can be used with dif-

ferent representations. Genetic learning processes cover

different levels of complexity according to the structural

changes produced by the algorithm, from the simplest case

of parameter optimization to the highest level of com-

plexity for learning the rule set of a rule-based system, via

the coding approach and the cooperation or competition

between chromosomes.

When considering the task of learning rules in a rule

based system, a wider range of possibilities is open. When

considering a rule based system and focusing on learning

rules, the different genetic learning methods follow two

approaches in order to encode rules within a population of

individuals:

• The ‘‘Chromosome = Set of rules’’, also called the

Pittsburgh approach, in which each individual repre-

sents a rule set [96]. In this case, a chromosome evolves

a complete RB and they compete among them along the

evolutionary process. GABIL is a proposal that follows

this approach [35].

• The ‘‘Chromosome = Rule’’ approach, in which each

individual codifies a single rule, and the whole rule set

is provided by combining several individuals in a

population (rule cooperation) or via different evolu-

tionary runs (rule competition).

In turn, within the ‘‘Chromosome = Rule’’ approach, there

are three generic proposals:

– The Michigan approach, in which each individual

encodes a single rule. These kinds of systems are

usually called learning classifier systems [58]. They are

rule-based, message-passing systems that employ rein-

forcement learning and a GA to learn rules that guide

their performance in a given environment. The GA is

used for detecting new rules that replace the bad ones

via the competition between the chromosomes in the

evolutionary process. An interesting study on the topic

can be found in [74].

– The IRL (Iterative Rule Learning) approach, in which

each chromosome represents a rule. Chromosomes

compete in every GA run, choosing the best rule per

run. The global solution is formed by the best rules

Fig. 10 Genetic KB learning process
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obtained when the algorithm is run multiple times. SIA

[104] is a proposal that follows this approach.

– The GCCL (genetic cooperative-competitive learning)

approach, in which the complete population or a subset

of it encodes the RB. In this model the chromosomes

compete and cooperate simultaneously. COGIN [49],

REGAL [44] and LOGENPRO [106] are examples

with this kind of representation.

These four genetic learning approaches (Pittsburgh, Mich-

igan, IRL and GCCL) have been considered for learning

KB components, and we can find different examples of

them in the literature. Two of the pioneer GFS proposals

were focused on the Pittsburgh [99] and Michigan [101]

approaches. MOGUL [24, 26, 54] and SLAVE [46] are two

proposals that follow the IRL approach in the framework of

GFSs. In [63, 67] we find two proposals following the

GCCL approach.

4 Genetic fuzzy systems outlook

This section tries to present a quick snapshot of the GFS

status stressing the following points:

• pioneer GFSs contributions, four contributions that

mark the birth of GFSs in 1991,

• the GFSs visibility at the ISI Web of Science,

• the milestones that cover the books and journal special

issues in the topic, and

• the most cited papers, that can also mark milestones as

important contributions in the topic.

4.1 Pioneer papers: the birth of GFSs in 1991

Following, are shortly described the four pioneer papers,

that introduced the first genetic tuning and genetic RB

learning proposals following the Michigan and the Pitts-

burgh approaches:

Karr’s AI Expert paper (Genetic tuning of the DB) [68].

The pioneer work in genetic tuning considers linguistic

FRBSs. The DB definition is encoded in the chromosome,

which contains the concatenated parameters of the input

and output fuzzy sets.

Valenzuela-Rendon’s ICGA91 paper (Linguistic RB

Learning, Michigan approach) [101]. This proposal pre-

sents the first GFS based on the Michigan approach for

learning RBs with DNF fuzzy rules. It employs a reward

distribution scheme that requires knowledge of the correct

action, and thus, must be considered as a supervised

learning algorithm. The author later extended the original

proposal, in order to enable true reinforcement learning

[102].

Thrift’s ICGA91 paper (Linguistic RB Learning, Pitts-

burgh approach) [99]. This is the pioneer work on the

Pittsburgh approach for learning RBs. This method works

by using a complete decision table that represents a special

case of crisp relation defined over the collections of fuzzy

sets corresponding to the input and output variables. A

chromosome is obtained from the decision table by going

row-wise and coding each output fuzzy set as an integer

including a ‘‘null’’ label as a 0. Therefore, the GA employs

an integer coding.

Pham and Karaboga’s Journal of Systems Engineering

paper (Relational matrix-based FRBS learning) [88]. This

is a quite different approach that uses a fuzzy relation R

instead of the classical crisp relation (decision table). The

GA is used to modify the fuzzy relational matrix of an one-

input, one-output fuzzy model. The chromosome is

obtained by concatenating the M�N elements of R, where M

and N are the number of linguistic terms associated with

the input and output variables. The elements of R are real

numbers in the interval [0,1].

After the publication of these four pioneer proposals we

can find an increasing number of contributions in the

specialized literature with proposals that cover all the dif-

ferent areas of the taxonomy, with a rich body of literature

on this topic and with high visibility. This is shown in the

next subsection, we shortly show the visibility of GFSs at

the ISI Web of Science.

4.2 GFSs visibility at the ISI Web of Science

The ISI Web of Science provides seamless access to current

and retrospective multidisciplinary information from

approximately 8,700 of the most prestigious, high impact

research journals in the world. Web of Science also pro-

vides a unique search method, cited reference searching.

With it, users can navigate forward, backward, and through

the literature, searching all disciplines and time spans to

uncover all the information relevant to their research. Users

can also navigate to electronic full-text journal articles

(http://scientific.thomson.com/products/wos/).

In the link of ‘‘Advanced Search’’, we consider the

query:

TS = [(‘‘GA-’’ OR ‘‘GA based’’ OR evolutionary OR

‘‘genetic algorithm*’’ OR ‘‘genetic programming’’ OR

‘‘evolution strate*’’ OR ‘‘genetic learning’’) AND (‘‘fuzzy

rule*’’ OR ‘‘fuzzy system*’’ OR ‘‘fuzzy neural’’ OR

‘‘neuro-fuzzy’’ OR ‘‘fuzzy control*’’ OR ‘‘fuzzy logic

cont*’’ OR ‘‘fuzzy class*’’ OR ‘‘fuzzy if’’ OR ‘‘fuzzy

model*’’)]
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TS field is a search based on the ‘‘Topic’’. The numer-

ical results of the query are

Date of analysis: 12 October 2007

Number of papers: 1,241

Sum of the time cited: 6,053

Average citations per item: 4.88

Figures 12 and 13 show the number of publications and

citations per year.

We observe an increasing number of publications per

year with more than 100 papers per year in the last five

ones. The number of citations shows a similar increasing

trend in recent years. All this data can allow us to say the

field of GFSs has now reached a stage of maturity after the

earliest papers published at 1991, and there are also many

basic issues yet to be resolved and there is an active and

vibrant worldwide community of researchers working on

these issues.

4.3 Some GFS milestones: books and special issues

For beginners, in the following we present the GFS mile-

stones associated to the books and special issues published

in the specialized literature.

We can find two authored books and three edited ones:

• A. Geyer-Schulz. Fuzzy rule-based expert systems and

genetic machine learning. Physica-Verlag, 1995 [43].

This is the first GFS book. It is a very specific book focused

on fuzzy classifier systems (Michigan approach) and RB

learning with genetic programming.

• O. Cordón, F. Herrera, F. Hoffmann and L. Magdalena.

Genetic Fuzzy Systems. Evolutionary Tuning and

Learning of Fuzzy Knowledge Bases, World Scientific,

2001.

This is the first general GFS book. It covers the overall

state of the art of GFSs by that time.

These three following books compile an important

number of contributions that gave maturity to the topic.

• F. Herrera and J.L. Verdegay (eds.). Genetic Algo-

rithms and Soft Computing. Physica-Verlag, 1996.

• E. Sanchez, Shibata and L. Zadeh (eds.). Genetic

Algorithms and Fuzzy Logic Systems. Soft Computing

Perspectives. World Scientific, 1997.

• W. Pedrycz (ed.). Fuzzy Evolutionary Computation.

Kluwer Academic Publishers, 1997.

In the following we provide a list of the journal special

issues devoted to GFSs, including important contributions

to all topics of GFSs.

• F. Herrera. Special Issue on Genetic Fuzzy Systems for

Control and Robotics. International Journal of Approx-

imate Reasoning, Vol 17, No 4, November 1997.

• F. Herrera and L. Magdalena. Special Issue on Genetic

Fuzzy Systems. International Journal of Intelligent

Systems, Vol 13, No 10–11, October–November 1998.

• O. Cordón, F. Herrera, F. Hoffmann and L. Magdalena.

Special Issue on Recent Advances in Genetic Fuzzy

System. Information Sciences, Vol 136, No 1–4,

August 2001.

• O. Cordón, F. Gomide, F. Herrera, F. Hoffmann, L.

Magdalena. Special Issue on Genetic Fuzzy Systems.

Fuzzy Sets and Systems, Vol 141, No 1, January 2004.

• J. Casillas, M.J. del Jesus, F. Herrera, R. Pérez, P.

Villar. Special Issue on Genetic Fuzzy Systems and the

Interpretability-Accuracy Trade-off. International Jour-

nal of Approximate Reasoning. Vol 44, No 1, February

2007.Fig. 12 Publications in GFS per year (Web of Science)

Fig. 13 Number of citations per year (Web of Science)
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• O. Cordón, R. Alcalá, J. Alcalá-Fdez, I. Rojas. Genetic

Fuzzy Systems. Special Section on Genetic Fuzzy

Systems: What’s Next?. IEEE Transactions on Fuzzy

Systems. Vol 15, No 4, August 2007.

• B. Carse, A.G. Pipe. Special Issue on Genetic Fuzzy

Systems. International Journal of Intelligent Systems.

Vol 22, No 9, September 2007.

The collection of papers that we could find on these special

issues give us a historical tour on the different stages we

can find in the evolution of GFSs research:

• The two first special issues (1997, 1998) contain

contributions devoted to learning KB components using

the different learning approaches (Michigan, IRL,

Pittsburgh) together with some applications. We can

find representative approaches of different areas of the

taxonomy.

• In the next two special issues (2001, 2004) we can find

contributions that exploit the mentioned genetic learn-

ing approaches together with contributions that stress

new branches such as genetic rule selection, multiob-

jective genetic algorithms for rule selection, the use of

genetic programming for learning fuzzy systems,

hierarchical genetic fuzzy systems, coevolutionary

genetic fuzzy systems, the combination of boosting

and evolutionary fuzzy systems learning, embedded

genetic DB learning, and first studies for dealing with

high dimensional problems, among others.

I would like to point out the review paper that was

published in the last issue [25] that was the first review in

the topic, shortly introducing GFS models and applications,

trends and open questions. Another short review was

presented in [52]. The present paper can be considered as a

continuation of those, with the novelty of the taxonomy,

the GFSs outlook based on the pioneer papers, the ISI Web

of Science based visibility and the milestones along the

GFSs history and new trends and prospects.

• The last three special issues, published in 2007,

emphasize three different directions. Carse and Pipe’s

special issue collect papers focused in the mentioned

areas (multiobjective evolutionary learning, boosting

and evolutionary learning,...) and stress some new ones

such as evolutionary adaptive inference systems. Casi-

llas et al.’s special issue is focused on the trade-off

between interpretability and accuracy, collecting four

papers that proposed different GFSs for tackling this

problem. Cordón et al.’s special issue focuses its

attention on novel GFS proposals under the title

‘‘What’s Next?’’, collecting highly innovative GFS

proposals that can mark new research trends. The four

collected papers are focused on: a new Michigan

approach for learning RBs based on XCS [15], GFSs

for imprecisely observed data (low quality data) [91],

incremental evolutionary learning of TS-fuzzy systems

[56], and evolutionary fuzzy rule induction for sub-

group discovery [36].

4.4 The ten most cited papers at the ISI Web of Science

The search on the ISI Web of Science allows us to get the

ten most cited papers that can provide a picture on ten

important contributions on the topic that are representative

approaches of different taxonomy areas. Figure 14 shows

the list of ten papers (we should note that we have elimi-

nated a paper devoted to a survey on neuro-fuzzy rule

generation that is not devoted to GFSs). Following, we

shortly describe them, paying attention to the associated

area of the taxonomy and the used learning approach.

Homaifar and Mccormick’s paper (IEEE TFS, 166 cites)

[55]. Authors proposed the use of GAs to learn a complete

KB for control problems, determining both membership

functions and RB together in order to address their co-

dependency (KB learning). They considered the simple GA

for a Pittsburgh approach, with integer coding for rule

consequents (similar to Thrift’s proposal) and integer

coding for membership function support amplitude (five

different amplitude values) in the same chromosome. This

contribution is a reference in the topic as a classic Pitts-

burgh approach for genetic KB learning.

Ishibuchi, Nozaki, Yamamoto et al.’s paper (IEEE TFS,

156 cites) [65]. GAs are used for selecting a small number

of fuzzy IF-THEN rules with high classification perfor-

mance. The proposed algorithm was based on a simple GA

with binary coding representing whether a rule should be

selected or not from an initial set of candidate rules

(obtained from a predefined DB by applying a simple data-

driven method). The problem was formulated as a combi-

natorial optimization problem with two objectives

considered by a weighted fitness function: to maximize the

number of correctly classified patterns and to minimize the

number of rules. This contribution is the most classic

contribution for genetic rule selection and one of the

departure points for studies in the trade-off between

interpretability and accuracy.

Setnes and Roubos’ paper (IEEE TFS, 92 cites) [93]. A

two-step approach was proposed for function approxima-

tion, dynamic systems modeling and data classification

problems by learning approximate TS-rules. First, fuzzy

clustering was applied to obtain a compact initial KB. Then

this model is optimized by a real-coded GA subjected to

constraints in order to maintain the semantic properties of

the rules. Each chromosome represents the parameters

defining each fuzzy model (membership functions of the

36 Evol. Intel. (2008) 1:27–46
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antecedents and coefficients of the consequents), thus

performing a tuning of the initial model. This approach was

also combined with an iterative similarity-driven rule base

simplification algorithm as an intermediate stage between

KB generation and parameter optimization. This is an

important contribution that uses GAs for tuning inside a

hybrid method, trying to get a more interpretable approx-

imate TS model.

Ishibuchi, Nakashima and Murata’s paper (IEEE

TSMC-B, 84 cites) [63]. Authors presented a genetics-

based machine learning method that automatically learns a

linguistic RB for pattern classification problems from

numerical data. In this method, each linguistic IF-THEN

rule is handled as a chromosome. Integer coding was

considered to represent the rule antecedents (including the

don’t care symbol) and the heuristic method proposed in

[65] was used to automatically generate the consequent

class and certainty factor for each antecedent combination.

A fitness value was assigned to each rule. The evolution is

not based on the performance of an entire rule set, the

solution is not the final population but the best population.

It follows a GCCL approach being an important contribu-

tion for learning RBs.

Park, Kandel and Langholz’s paper (IEEE TSMC, 83

cites) [86]. A new fuzzy reasoning method was used to

enhance the performance of fuzzy controllers obtained

from prior knowledge provided by an expert. To avoid

initial subjective selection of fuzzy reasoning models, the

authors proposed the use of GAs to find simultaneously

the optimal fuzzy relation matrix (used in the new fuzzy

reasoning method, extending Pham and Karaboga’s pro-

posal) and the fuzzy membership functions. In this way,

each chromosome is divided into two parts, one for the

fuzzy relation matrix and another for the fuzzy member-

ship functions of the DB, following a Pittsburgh

approach. It is a classic paper using fuzzy relations for

evolving a KB that can be considered as a tuning

approach since it considers the prior knowledge provided

by the experts.

Herrera, Lozano and Verdegay’s paper (IJAR, 66 cites)

[53]. Authors proposed a tuning method for obtaining high-

performance fuzzy control rules by means of GAs. The

tuning method locally fits the membership functions of the

fuzzy rules dealing with the parameters of the membership

functions. A chromosome represents the parameters of the

membership functions used by each rule in the initial KB,

the chromosome represents the concatenated rule parame-

ters. This is the first proposal for getting an approximate

FRBS via tuning associated to the rules.

Shi, Eberhart, Chen’s paper (IEEE TFS, 59 cites) [95].

A new GFS was proposed for classification, using a GA for

evolving the membership function parameters and, the type

and the RB including the number of rules inside it. In

addition, a fuzzy expert system was designed from the

experience and knowledge and was used to adapt the

genetic parameters of the GA. The chromosome was a

Fig. 14 GFS ten most cited papers
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mixture considering all the parts of the linguistic FRBS by

using integer coding and following a Pittsburgh approach.

This is an interesting approach for evolving KB compo-

nents for classification problems.

Carse, Fogarty and Muro’s paper (FSS, 59 cites) [14].

Carse et al. proposed a novel approach to genetics-based

machine learning of fuzzy controllers, called a Pittsburgh

Fuzzy Classifier System. This algorithm was based on the

reinforcement learning in fuzzy control and on the Pitts-

burgh model of learning classifier systems. It employs

variable length rule-sets simultaneously evolving fuzzy set

membership functions and fuzzy rules, that is, the KB for

approximate models. In the approach presented, genetic

operations (selection, recombination and replacement) and

credit assignment were carried out at the level of the

complete fuzzy rule-set. The chromosome representing a

complete rule-set was a variable length concatenated string

of such fuzzy rules. In addition, fuzzy set membership

functions are encoded together with each rule, as opposed

to using a global collection of fuzzy sets used by all rules

(approximate fuzzy rules). Real coding was considered to

encode both parts. This is a well-known paper considered

as a classic one for evolving an approximate FRBS with a

Pittsburgh approach.

Cordón and Herrera’s paper (IJAR, 1997, 53 cites). A

three-stage GGS based on soft constrained learning was

presented, to learn local semantics-based fuzzy rules

(approximate fuzzy rules) and linguistic RBs. Both possi-

bilities are presented in the paper. The first stage was

composed of an evolutionary generation process following

the IRL approach to identify a set of candidate local

semantics-based Mamdani rules. The method takes as a

base some initial linguistic fuzzy partitions. The second

stage was composed of a genetic niching-based selection

process based on that presented in [65]. The third stage

performs the same genetic tuning proposed in [53] for

approximate FRBSs and a genetic tuning based on the

global partitions for mantaining a certain interpretability

level. It is a classic proposal following the IRL approach

for evolving an approximate FRBS and a descriptive

FRBS.

Juang, Ling and Ling’s paper (IEEE TSMC-B, 2000,

52 cites) [67]. A new genetic reinforcement learning

algorithm was proposed in this contribution, the Symbi-

otic Evolution [82] based fuzzy controller. Each

chromosome represents a single TS-type rule, and an n-

rule fuzzy system is constructed by selecting chromo-

somes from the population. In this way, a real coding was

used to represent each rule by encoding the parameters of

local semantics-based Gaussian-type membership func-

tions and the associated coefficients of the consequent

part. It is an interesting GCCL approach for evolving an

approximate FRBS.

5 Current research trends In GFSs

This section, are introduced some current trends that have

focused the attention of researchers in the last few years

and I discuss some critical considerations on the publica-

tions in the topic at the present.

5.1 Discussing some current trends

In this subsection, from the abundant GFSs literature

published, we focus our attention into six current trends

that are of high interest at the present and show consider-

able potential in the near future.

1. Multiobjective genetic learning of FRBSs: interpret-

ability-precision trade-off.

2. GA-based techniques for mining fuzzy association

rules and novel data mining approaches.

3. Learning genetic models based on low quality data

(noise data and vague data).

4. Genetic learning of fuzzy partitions and context

adaptation.

5. Genetic adaptation of inference engine components.

6. Revisiting the Michigan-style GFSs.

(1) Evolutionary Multiobjective learning of FRBSs:

interpretability-precision trade-off. Multiobjective

evolutionary algorithms (MOEAs) are one of the

most active research areas in the field of evolutionary

computation, due to population-based algorithms

being capable of capturing a set of non-dominated

solutions in a single run of the algorithm. A large

number of algorithms have been proposed in the

literature [23, 33]. Among them, NSGA-II [34] and

SPEA2 [110] are well known and frequently used

MOEAs.

Obtaining high degrees of interpretability and accuracy is a

contradictory aim, and, in practice, one of the two

properties prevails over the other. Nevertheless, a new

tendency in the fuzzy modeling scientific community that

looks for a good balance between interpretability and

accuracy is increasing in importance. The improvement of

the interpretability of rule based systems is a central issue

in recent research, where not only the accuracy is receiving

attention but also the compacting and the interpretability of

the obtained rules [76, 81].

In multiobjective GFSs is desirable to design genetic

learning algorithms in which the learning mechanism itself

finds an appropriate balance between interpretability and

accuracy. We consider objectives based on accuracy and

objectives that include different complexity/interpretability

measures. Figure 15 from [61] illustrates this idea where

each ellipsoid denotes a fuzzy system. There exists a large
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number of non-dominated fuzzy systems along the accu-

racy-complexity trade-off curve.

There exists an important number of contributions

focused on this topic:

(a) Multiobjective genetic rule selection [62, 66].

(b) Multiobjective genetic RB learning [20, 21, 94, 103].

(c) Multiobjective genetic tuning [5].

(d) Multiobjective genetic data mining (including fuzzy

association rules, subgroup discovery, ...) [9, 69].

Whereas the definition of accuracy in a certain application

is straightforward, the definition of interpretability is rather

problematic. Most researchers would agree in interpret-

ability involving aspects as: the number of rules is enough

to be comprehensible, rule premises should be easy in

structure and contain only a few input variables, linguistic

terms should be intuitively comprehensible, etc.

There is a need to propose new interpretability metrics

that consider not only the number of rules but other aspects

as the number of labels of a rule, the shape of the mem-

bership functions, etc. with a better understanding and

formalization of the notions of ‘‘interpretability’’, ‘‘com-

prehensibility’’ or ‘‘simplicity’’. More research in

evaluation metrics is needed for giving an interpretability

measure associated to the FRBSs, allowing us to compare

different FRBSs for a problem from the interpretability

point of view, and including them as objectives into

MOEAs.

Another interesting issue for the future research that was

pointed out by Ishibuchi in [61] is the ‘‘theoretical analysis

for maximizing the generalization ability of fuzzy systems.

Multiobjective GFSs can be used for empirical analysis.

Theoretical analysis such as statistical learning theory [22]

seems to be required.’’

(2) GA-based techniques for mining fuzzy association

rules and novel data mining approaches. Fayyad et al.

defined knowledge discovery (KD) as the nontrivial

process of identifying valid, novel, potentially useful,

and ultimately understandable patterns in data [41].

KD may not be viewed as a synonymous of DM, but

they are intimately related. KD is a wide ranging

process which covers distinct stages: the comprehen-

sion of the problem, the comprehension of the data,

pre-processing (or preparation) of the data, DM and

post-processing (assessment and interpretation of the

models). The DM stage is responsible for automatic

KD of a high level and from information obtained

from real data. Some of the important problems that

DM and KD deal with are: rule extraction, identifi-

cation of associations, feature analysis, linguistic

summarization, clustering, classifier design and nov-

elty/anomaly detection.

The interpretability is crucial in the field of DM/KD where

knowledge should be extracted from databases and repre-

sented in a comprehensible form, or for decision support

systems where the reasoning process should be transparent

to the user. In fact, the use of linguistic variables and

linguistic terms in a discovered process has been explored

by different authors.

Frequent pattern mining has been a focused theme in

DM research over a decade. Association analysis is a

methodology that is useful for the discovery of interesting

relationships hidden in large data sets. The uncovered

relationships can be represented in the form of association

rules or sets of frequent items. Abundant literature can be

found presenting a tremendous progress in the topic

[51, 98].

As it was claimed in [39], the use of fuzzy sets to

describe association between data extends the types of

relationships that may be represented, facilitates the inter-

pretation of rules in linguistic terms, and avoids unnatural

boundaries in the partitioning of the attribute domains.

Linguistic variables with linguistic terms can contribute

in a substantial way to advance in the design of association

rules and the analysis of data to establish relationships and

identify patterns, in general [60]. On the other hand, GAs in

particular, and EAs in general, are widely used for evolving

rule extraction and patterns association in DM/KD [42].

The conjunction in the GFS field provides novel useful

tools for pattern analysis and for extracting new kinds of

useful information with a main advantage over other

techniques, its interpretability in terms of fuzzy if-then

rules. At the present we find interesting contributions

focused on the genetic extraction of fuzzy association rules

[59, 69, 70, 100].

We would like to pay attention to a subdivision of

descriptive induction algorithms, which has recently

received attention from researchers, called subgroup dis-

covery. It is a form of supervised inductive learning of

Fig. 15 Non-dominated fuzzy systems
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subgroup descriptions in which, given a set of data and

having a property of interest to the user, attempts to locate

subgroups which are statistically ‘‘most interesting’’ for the

user. Subgroup discovery has the objective of discovering

interesting properties of subgroups obtaining simple rules

(i.e., with an understandable structure and with few vari-

ables), highly significant and with high support (i.e.,

covering many of the instances of the target class). The

concept was initially formulated by Klösgen in [72] his rule

learning algorithm EXPLORA and by Wrobel in [107] the

algorithm MIDOS. Both use a rule-extraction model based

on decision trees, in order to obtain the best subgroups

among the population. In order to evaluate the subgroups,

evaluation measurements are defined which determine the

interest of an expression through a combination of unusu-

alness and size. MIDOS tackles, within this same approach,

the problem of discovery in multi-relational databases. A

recent study on the topic can be found in [77]. In [36] we find

a first approach to the use of GFSs for subgroup discovery.

The use of GFSs for association analysis is a topic that

would provide interesting future contributions focusing the

attention in the different research problems that we can find

in the frequent pattern mining area [51].

(3) Learning genetic models based on low quality data

(noise data and vague data). There are many practical

problems requiring learning models from uncertain

data. The experimental designs of GFSs learning from

data observed in an imprecise way are not being

actively studied by researchers. However, according

to the point of view of fuzzy statistics, the primary

use of fuzzy sets in classification and modelling

problems is for the treatment of vague data. Using

vague data to train and test GFSs we could analyze

the performance of these classifiers on the type of

problems for which fuzzy systems are expected to be

superior. Preliminary results in this area involve the

proposals of different formalizations for the definition

of fuzzy classifiers, based on the relationships

between random sets and fuzzy sets [90] and the

study of fitness functions (with fuzzy values) defined

in the context of GFSs [91].

This is a novel area that is worth being explored in the near

future, and can provide interesting and promising results.

(4) Genetic learning of fuzzy partitions and context

adaptation. The DB learning comprises the specifica-

tion of the universes of discourse, the number of

labels for each linguistic variable, as well as the

definition of the fuzzy membership functions associ-

ated to each label. In [28] it was studied the influence

of fuzzy partition granularity in the FRBS perfor-

mance, showing that using an appropriate number of

terms for each linguistic variable, the FRBS accuracy

can be significantly improved without the need of a

complex RB learning method.

On the other hand, the idea of introducing the notion of

context into fuzzy systems comes from the observation

that, in real life, the same basic concept can be perceived

differently in different situations. In some cases, this

information is related to the physical properties or dimen-

sions of the system or process, including restrictions

imposed due to the measurement acquisition or actuators.

In the literature, context adaptation in fuzzy systems has

been mainly approached as scaling of fuzzy sets from one

universe of discourse to another by means of non-linear

scaling functions whose parameters are identified from

data.

Different approaches have been proposed to deal with

the learning of membership functions, granularity, non-

linear contexts using GAs, ...[4, 11, 12, 29, 30, 50, 78].

Although there is an important number of contributions

in the area of DB Learning, I think that this is an important

research area where we can obtain important results, due to

the importance of using the adequate membership func-

tions and the adequate context. The use of GFSs is very

important due to the flexibility for encoding DB compo-

nents together with other fuzzy system components.

(5) Genetic adaptation of inference engine components.

We know that it is possible to use parametric

aggregation operators in the design of the inference

system and the defuzzification method, trying to get

the most appropriate parameter configuration in any

application. The tuning of these components can be

considered to get more accurate fuzzy models. We

come across different GFS approaches for finding the

most appropriate parameters [6, 31].

This is an interesting research area that can provide us with

the opportunity to adapt the inference parameters to an

FRBS and to design learning models that can coevolve the

inference engine parameters together with the KB

components.

(6) Revisiting the Michigan-style GFSs. The first descrip-

tion of a Michigan-style GFS was given in [101]. All

the initial approaches in this area were based on the

strength in the sense that a rule (classifier) gets

strength during interactions with the environment

(through rewards and/or penalties). This strength can

then be used for two purposes: resolving conflicts

between simultaneously matched rules during learn-

ing episodes; and as the basis of fitness for the GAs.

A completely different approach can be considered in

which a rule’s fitness, from the point of view of the GA, is
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based on its ‘‘accuracy’’, i.e., how well a rule predicts

payoff whenever it fires. Notice that the concept of

accuracy used here is different from the traditionally used

in fuzzy modelling (i.e., capability of the fuzzy model to

faithfully represent the modeled system). This accuracy-

based approach offers a number of advantages such as

avoiding overgeneral rules, obtaining optimally general

rules, and learning of a complete covering map. The first

accuracy-based evolutionary algorithm, called XCS, was

proposed in [105] and it is currently of major interest to the

research community in this field.

Casillas et al. proposed in [15] a new approach to

achieve accuracy-based Michigan-style GFSs. The pro-

posal, Fuzzy-XCS, is based on XCS but properly adapted

to fuzzy systems, with promising results for function

approximation problems and for robot simulation online

learning. In [84] it is proposed an extension of UCS

algorithm, a recent Michigan-style genetic learning algo-

rithm for classification [10].

These approaches build a bridge between the Michigan-

style genetic learning studies and the fuzzy systems mod-

els. This is an interesting research line that can provide

interesting results in the near future.

5.2 Some critical considerations

The question that I proceed to discuss in this section is

related to some common features of a large number of

recent publications in the topic.

In the last few years, we can find a lot of publications

that present a ‘‘novel’’ proposal for evolving a KB or a

specific component (RB or DB). When we read the abstract

we feel a great interest to read the specific aspects of the

proposal, and which is more important, to see the results

and the comparative analysis against the well known

approaches in the GFSs literature in particular, or fuzzy

systems literature in general.

What are the critical points for a large number of recent

published papers?

Next, we discuss the critical issues that we can find in

some recent publications. We focus our attention on two

aspects, the EAs used in the GFSs and the experimental

study.

1. On the EAs used in the GFSs. At this point, we discuss

two questions, the use of a simple GA and the use of

novel EAs.

(a) Simple GAs. In an important number of contributions

we find a description of the simplest GAs, with a

classical parameter coding (binary alphabet) and

simple components.

There exists a wide literature on GAs, in particular, and

EAs in general, with important approaches that introduce

important advances. Some examples are, the real coding

for continuous variables, different parent replacement

strategies, adaptive components, etc.

On the other hand, there are specific kinds of GAs for

different tasks, such as niching GAs for multimodal func-

tions, hybrid combinations of GAs and local search

(memetic algorithms), etc.

Authors must really know GA components and models

before applying a simple GA, and choose an adequate

algorithm, if necessary, for getting a good GFS.

(b) On the use of novel EAs. Recently, it is usual to find

evolutionary learning proposals that use a classical

genetic representation for a KB and use a novel EA

(such as particle swarm, differential evolution, etc.) but

authors do not compare them with the classic GFSs that

we can find in the literature, with the same coding

approach and using GAs. Researchers claim that the

novel EA provides very good results, but do not offer

any justification for their use.

The use of a novel EA must be justified from whatever

meaningful point of view: efficiency, efficacy/precision,

interpretability, scalability, etc.

2. Experimental study. At this point, we focus our

attention in four aspects to analyze: benchmark

problems, comparison with the state of the art,

reproducibility, and statistical analysis.

(a) Benchmark problems. When we read the experimen-

tal analysis we usually find a different set of

benchmark problems in every paper. In particular,

we can find specific applications for learning from

data without any possibility for getting the data set,

therefore it is impossible to reproduce the same

experimental study. It is necessary to manage ade-

quate and unified sets of benchmark problems for

learning from data, providing all the necessary

information for reproducing the experimental study.

We are working in this sense and we are preparing a

benchmark site for problems and data sets for unifying the

experimentation, providing the data partitions used in the

experimental studies. The set is called KEEL-dataset that

can be found at our project site: http://www.keel.es. See [7]

for a wide description of KEEL software tool.

(b) Reproducibility. In the same way, it is not possible to

reproduce some algorithms due to the lack of the

parameters values used by the authors in the exper-

imental study. It is necessary to give a complete

description of the algorithm components (coding
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approach, operators, parameters, ...) for allowing the

reader to reproduce the algorithms.

(c) Comparison with the state of the art. When authors

propose a new approach, they must first justify its

usefulness, indicating which is the objective and we

must find a measure for evaluating it (precision,

complexity, ...). Then, it is necessary to make an

experimental study comparing with the best approach

according to the same objective and same fuzzy

system components that are considered. Unfortu-

nately, we do not have a study determining the state

of the art in every area of the taxonomy as the level to

reach for a new proposal. However, this is a real need

for the near future. In any case, authors must compare

with the most well known approaches that exist in the

abundant literature, discussing the advantages of the

proposal. It is not enough to compare with a simple

approach that is not the state of the art at the present.

(d) Lack of experimental statistical analysis. Another

critical point is related to the comparative study.

Currently there is not a systematic evaluation meth-

odology for GFSs.

Experimental results reported in the machine learning

literature often use statistical tests of significance to

support the claim that a new learning algorithm generalizes

better. In fact, the performance analysis of learning

algorithms has always centred the attention of investigators

in the machine learning area, and different comparison

proposals have been developed (cross validation, uses of

5 9 2cv, leave one out, etc.) in terms of their type I and

type II errors, both on synthetic datasets, and standard

benchmarks of machine learning [37, 38]). The use of

statistical analysis tools is a peremptory necessity in the

analysis of GFS models as it is in classical machine

learning.

These last four critical points can be extended to other

fuzzy rule learning approaches that use other learning

techniques.

I consider these six points (organized into two groups)

as critical points to advance towards the right issues, that is,

to concentrate more on the strengths and distinctive fea-

tures of the GFSs, providing an useful advance in the fuzzy

systems theory.

6 Genetic fuzzy systems: prospects

Nowadays, I consider the field of GFSs as a mature area,

that needs to advance towards new questions and problems.

In what follows, I enumerate three research directions that

are worth continuing the exploration, or initiate it in some

aspects.

1. Interpretability quality.

2. New data mining tasks: frequent and interesting

pattern mining, mining data streams, etc.

3. Dealing with high dimensional data sets.

(1) Interpretability quality. There exists another impor-

tant feature for measuring the FRBS quality, the

model interpretability. We claim on the interpretabil-

ity but without metrics for measuring it. We use it as

an objective when we use MOEAs for extracting

fuzzy models but only considering the size of the rule

base or the number of variables that participate per

rule.

Interpretability is considered to be the main advantage of

fuzzy systems over alternatives like neural networks,

statistical models, etc. As authors claim in [81], interpret-

ability means that human beings are able to understand the

fuzzy system’s behaviour by inspecting the RB. Fuzzy

systems constructed from expert knowledge—the tradi-

tional approach—are usually well understandable.

In the recent years, research has started to focus on the

trade-off between interpretability and accuracy [18, 19].

Analysis of the model interpretability and comprehensi-

bility is always convenient, and it is a necessity when

accuracy is not a model feature.

The inclusion of novel interpretability measures in the

fitness function of GFS models will provide novel and

interesting approaches for getting a good balance between

interpretability and precision.

(2) New data mining tasks: frequent and interesting

pattern mining, mining data streams, etc. Many new

problems have emerged and have been solved by the

data mining researchers, but there are still a lot of

problems that receive attention and new proposals are

under development. We can find a lot of novel

problems far from the classic classification and

regression problems, problems such as frequent

pattern mining open questions, data streams, sequen-

tial and time series data, adversary data mining,

anomaly detection, non-static, imbalanced data...

[109].

As we have already mentioned, linguistic variables with

linguistic terms can contribute in a substantial way to

advance in the design of data analysis approaches to

establish relationships and identify patterns in some of the

enumerated problems. The development of GFSs may be

useful for providing algorithms and solutions to the

mentioned problems.

(3) Dealing with high dimensional data sets. It is usual to

find big databases, i.e., with high number of features

and/or instances. Regarding the interpretability of

linguistic FRBSs, the difficulty comes from the
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exponential growth of the fuzzy rule search space

with the increase in the number of features/instances

considered. Usually, human users do not want to

check hundreds of fuzzy rules, the number of fuzzy

rules is closely related to the interpretability of

FRBSs. On the other hand, the rule length is also

closely related to the interpretability of FRBSs.

This problem can be tackled in different ways:

(a) Compacting and reducing the rule set. As a post-

processing approach, this is done under an initial rule

extraction process that provides a big number of rules.

It appears the problem of the number of rules and the

size of the coding representation, with the necessity of

efficient and effective EAs.

(b) Using data reduction techniques. Carrying out a

feature selection process, that determines the most

relevant variables before or during the inductive

learning process of the FRBS, and removing irrele-

vant training instances prior to FRBS learning. The

first approach has been already tried in the GFS

specialized literature [16, 47, 48], but the latter, up to

our knowledge in the topic, has not been used for

learning FRBS. For example, it has been used for

extracting decision trees, see [13, 92].

Feature and instance selection provide smaller training sets,

which may get more accurate and more compact models.

And in both cases, GAs are used frequently, because the

selection problem may be defined as the problem of

searching the optimal subset of features/instances.

The inclusion of genetic data reduction processes inside

of a GFS model is a research direction that allows us to

advance in the extraction of FRBSs with an appropriate

balance between interpretability and accuracy in high

dimensional problems.

(c) Using genetic programming for learning compact

FRBSs. Genetic programming is an extension to the

inspiration of GA, where the main problem of GAs

concerning the fixed problem definition is avoided by

using variable-length trees instead of fixed-sized

individuals. The definition of context-free grammars

for rule construction has been revealed of special

utility for this purpose [106]. The use of genetic

programming in a GFS model can lead us to obtaining

a reduced fuzzy rule set, with few antecedents

conditions per rule and high-generalization capability,

getting FRBSs with high interpretability for high-

dimensional problems.

(d) Algorithm scalability. Another problem when we

deal with high dimensional problems is the analysis

of the algorithm scalability on big databases,

emphasizing the training time and the convergence

towards compact and interpretable models. The

balance between problem size and algorithm scala-

bility is another important aspect for GFSs that are

worth studying in depth. At this point, we must

remark the existence of efficient parallel GAs [1] as

a kind of GAs that would be evaluated for designing

GFSs for large databases putting special emphasis on

aspects of scalability and efficiency. Another inter-

esting idea that has been advanced in [83] consisting

of dividing training data sets and the population.

They are divided into the same number of sub-

populations and training data subsets, which is also

the same as the number of client CPUs. Then each

client CPU performs genetic learning (genetic rule

selection in this contribution) using a single training

data subset and a single sub-population given by the

server CPU. It seems that each sub-population is

likely to overfit the corresponding training data

subset. To avoid that, the assignment of the training

data subsets to the client CPUs change after a pre-

specified number of generations (i.e., every ten

generation).

Of course, this is not a complete list of potential research

directions for GFSs, but it is a set of personal reflections on

some potential research lines for investigation together

with the research lines that emerge from the current trends

discussed in the previous section.

7 Concluding remarks

The hybridization between fuzzy systems and GAs in GFSs

became an important research area during the last decade.

GAs allow us to represent different kinds of structures,

such as weights, features together with rule parameters,

etc., allowing us to code multiple models of knowledge

representation. This provides a wide variety of approaches

where it is necessary to design specific genetic components

for evolving a specific representation.

Nowadays, it is a mature research area, where

researchers need to reflect in order to advance towards

strengths and distinctive features of the GFSs, providing

useful advances in the fuzzy systems theory.

Finally, I would like to finish with four considerations

on this paper:

• This paper does not try to be a directory to guide the

reader to a set of references, beginners in the topic can

get three important list of references in [25, 27, 61].

• It presents a brief overview of the current trends and

future directions of GFSs that I consider as ‘‘burning

issues’’, but of course, it is not a complete list of

potential research directions for GFSs.
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• It pays special interest to propose a GFSs taxonomy.

This can help to locate the new proposals into the

existing literature, allowing to point out the novel

contributions in comparison with the state of the art. It

may also be useful for identifying critical problems

related to GFSs and taxonomy areas.

• It calls the attention on critical points that need to be

tackled for researchers working with GFSs and fuzzy

knowledge extractions.

Finally, I would like to point out that the link

http://sci2s.ugr.es/gfs/index.php will provide more infor-

mation on the paper content (software and algorithm

implementations, slides, more information on high cited

papers, ...).
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47. González A, Pérez R (2001) Selection of relevant features in a

fuzzy genetic learning algorithm. IEEE Trans Syst Man Cybern

B Cybern 31(3):417–425
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